Enhancing Amber Performance with GDR

Samuel Khuvis¹, Karen Tomko¹, Scott R. Brozell¹, Chen-Chun Chen², Hari Subramoni², Dhabaleswar K. Panda²

¹Ohio Supercomputer Center, ²Ohio State University

SC23

Outline

- Introduction
- Experimental Setup
- ► Performance Analysis
- Code modifications
- Results
- Summary

Introduction

Overview of Amber

- Widely-used suite for MD simulations of proteins and nucleic acids.
- Supports particle-mesh Ewald (PME) explicit solvents and Generalized Born implicit solvents.
- Added GPU support in version 11.
- Multi-GPU implementations in Amber are done by passing data from GPU buffer to host buffer, performing MPI communication, and then passing back to GPU buffers.

GPU support in MPI

- Capability to specify device buffers added to MVAPICH2 in 2011 and HPC-X OpenMPI v1.7.0 in 2013.
- If appropriate hardware/software is available, communication is performed between GPUs without host transfers.
- If unavailable, MPI performs interprocess communication (IPC) via host-to-device and device-to-host communication.
- Additional data copying affects performance.

Availability of Device-to-Device Technologies

- Hardware has only started to become available at HPC centers in the last few years.
- Many scientific codes have been slow to take advantage.
- GROMACS only added support for GPU-to-GPU communication in its 2022 release.

Experimental Setup

Benchmarks

Benchmarks from the Amber20 Benchmark Suite:

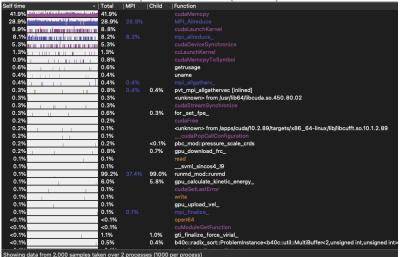
- ► Particle-mesh Ewald (PME)
 - Cellulose production
 - ► FactorIX production
 - JAC production
 - ► STMV production
- Generalized Born (GB)
 - Myoglobin
 - Nucleosome

For each PME case, we run with the statistical ensembles:

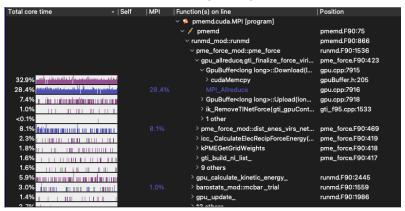
- NVE holds total number of particles constant; total energy
 (E) and volume (V) are conserved,
- ▶ **NPT** holds total number of particles constant; pressure (P) and temperature (T) are conserved.

There is a modest computational cost to pressure and temperature control in NPT in comparison to the more straightforward NVE.

System Description


- Pitzer system at OSC
- ▶ 48-core cascade lake nodes with 2 NVIDIA V100 GPUs
- ▶ Ran with 2 processes per node and 2 GPUs per node on 2, 4, and 8 nodes.
- Mellanox EDR (100Gbps) Infiniband
- MPI implementations:
 - ► MVAPICH2 2.3.6
 - MVAPICH2-GDR 2.3.7 (cuda-aware)
 - HPC-X OpenMPI 3.1.6 (cuda-aware)

Performance Analysis


MAP Profile of JAC production (NPT)

➤ Significant time spent in MPI communication (MPI_Allreduce) and device-to-host communication (cudaMemcpy).

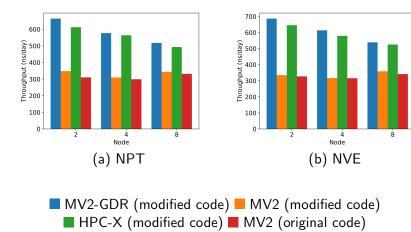
Callstack of JAC production (NPT)

Device-to-host communication and MPI communication called from gpu_allreduce.

Code modifications

cudaMemcpy Device—to—Host MPI_Allreduce Host—to—Host cudaMemcpy Host—to—Device

cuda Device Synchronize
MPI_Allreduce Device—to—Device
cuda Memcpy Device—to—Host


Only 5 lines of code changed.

Results

JAC Benchmark

Average Throughputs for All Benchmarks

MPI Implementation	Throughput (ns/day)	Speedup
MVAPICH2 (original code)	192.5	1.00
MVAPICH2 (modified code)	201.4	1.05
HPC-X OpenMPI (modified code)	234.7	1.22
MVAPICH2-GDR (modified code)	262.9	1.36

▶ 36% improvement with GDR over original code.

Average Throughputs for PME Benchmarks

MPI Implementation	Throughput (ns/day)	Speedup
MVAPICH2 (original code)	118.2	1.00
MVAPICH2 (modified code)	120.3	1.02
HPC-X OpenMPI (modified code)	197.2	1.67
MVAPICH2-GDR (modified code)	217.8	1.84

▶ 84% improvement with GDR over original code.

Summary

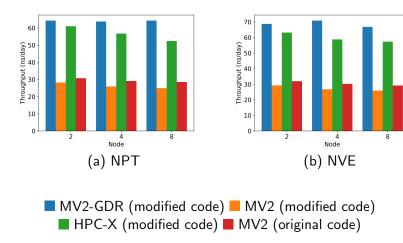
- Most expensive functions in benchmark runs were MPI_Allreduce and cudaMemcpy from gpu_allreduce.
- Modified gpu_allreduce to communicate between GPU buffers, reducing host ↔ device communication.
- Increases throughput by 36% over all benchmarks and 84% for PME subset.
- Other molecular dynamics (MD) techniques would benefit from scalable multi-GPU capability, such as long time-scale MD, free energy calculations, enhanced sampling, conformational sampling, and drug discovery.

Paper

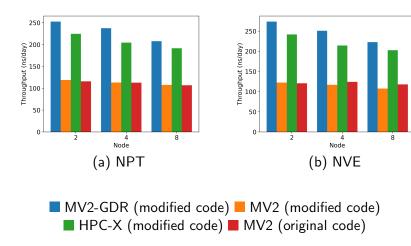
For more details, read our paper from PEARC: Samuel Khuvis, Karen Tomko, Scott R. Brozell, Chen-Chun Chen, Hari Subramoni, and Dhabaleswar K. Panda. 2023. Optimizing Amber for Device-to-Device GPU Communication. In Practice and Experience in Advanced Research Computing (PEARC '23), July 23–27, 2023, Portland, OR, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3569951.3597553

OH-TECH

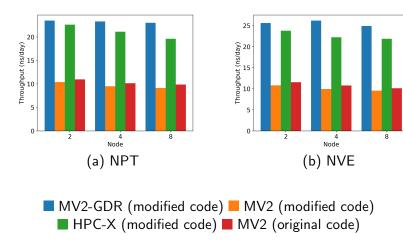
Ohio Technology Consortium
A Division of the Ohio Department of Higher Education


- info@osc.edu
- y twitter.com/osc
- f facebook.com/ohiosuperco mputercenter
- w osc.edu
- B oh-tech.org/blog
- In linkedin.com/company/ohiosupercomputer-center

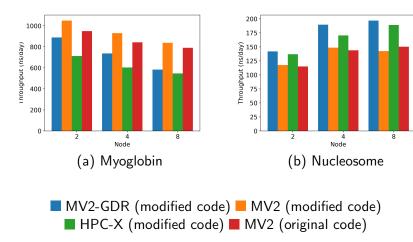
Appendix



Cellulose Benchmark



FactorIX Benchmark



STMV Benchmark

GB Benchmarks

Message sizes for 2 MPI ranks

Benchmark	Message size (KB)
JAC	553
Cellulose	9577
FactorIX	2131
STMV	25011
myoglobin	20
nucleosome	197

