
DESIGNING IN-NETWORK COMPUTING AWARE REDUCTION
COLLECTIVES IN MPI

2024 OFA Virtual Workshop

Bharath Ramesh and Dhabaleswar K. (DK) Panda
Network Based Computing Laboratory

The Ohio State University
http://nowlab.cse.ohio-state.edu/

3Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

4Network Based Computing Laboratory OFA workshop – April’24

Introduction: Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, Slingshot)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs)

Accelerators
high compute density, high

performance/watt
>9.7 TFlop DP on a chip

High Performance Interconnects –
InfiniBand

<1usec latency, 200-400Gbps Bandwidth>
Multi-/Many-core

Processors SSD, NVMe-SSD, NVRAM

Frontier Summit LumiFugaku

5Network Based Computing Laboratory OFA workshop – April’24

• Reduction collectives (such as MPI_Allreduce) are important for HPC and AI
– Involve both compute and communication

• Using CPUs everywhere leads to sub-optimal scale-up and scale-out efficiency
– Motivates the need for offloading common operations away from the CPU to allow

the CPU to perform other useful tasks

• In-network compute allows offloading operations to network devices
– Switches are a good candidate due to high bandwidth and ability to reduce data on-

the-fly eliminating redundancy

– High scale-out efficiency and network topology awareness

– Frees up CPU cycles for other operations

MPI Reduction collectives and In-network Computing

6Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

7Network Based Computing Laboratory OFA workshop – April’24

SHARP Reduction trees and Streaming Aggregation (SAT)

Aggregation Tree Switch-level reduction (radix 16)

Images taken from Graham, Richard et al. Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation Hardware Design
and Evaluation. DOI : 10.1007/978-3-030-50743-5_3 (https://link.springer.com/content/pdf/10.1007/978-3-030-50743-5_3.pdf)

8Network Based Computing Laboratory OFA workshop – April’24

Hierarchical design for small message MPI_Allreduce

Phase 1 : Intra-socket
reduction

Phase 2 : Inter-socket
reduction

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

9Network Based Computing Laboratory OFA workshop – April’24

Hierarchical design for small message MPI_Allreduce

Phase 3 : Inter-node allreduce. Uses SHARP for scale-out performance

Legend

Socket leader shared memory

Intra-socket shared memory

Intra-socket leader process

Inter-node allreduce

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

10Network Based Computing Laboratory OFA workshop – April’24

Hierarchical design for small message MPI_Allreduce

Phase 4 : Inter-socket
broadcast

Phase 5 : Intra-socket
broadcast

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2

Node 1
Socket 1 Socket

2

Node 2

11Network Based Computing Laboratory OFA workshop – April’24

Overview of the MVAPICH Project
• High Performance open-source MPI Library

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS

EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:
– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,375 organizations in 91 countries

• More than 1.77 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (Nov ‘23 ranking)
– 11th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 29th , 448, 448 cores (Frontera) at TACC

– 46th, 288,288 cores (Lassen) at LLNL

– 61st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 29th ranked TACC Frontera system

• Empowering Top500 systems for more than 18 years

http://mvapich.cse.ohio-state.edu/

12Network Based Computing Laboratory OFA workshop – April’24

Results for small MPI_Allreduce – Varying message sizes

• Scaling with message size, average latency

• Close to a flat curve across message sizes up to 2K

1 ppn, 7861 nodes 16 ppn, 1024 nodes

Available in the MVAPICH 3.0 release

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

13Network Based Computing Laboratory OFA workshop – April’24

Results for small MPI_Allreduce – Varying node counts

• Scaling with increasing node counts, 16 bytes, average latency

• Same as trends with reduce (implementations are almost the same except
for the intra-node broadcast phases)

1 ppn, 7861 nodes 16 ppn, 1024 nodes

B. Ramesh, K. Suresh, N. Sarkauskas, M. Bayatpour, J. Hashmi, H. Subramoni, and
DK Panda – “Scalable MPI Collectives using SHARP: Large Scale Performance

Evaluation on the TACC Frontera System”, ExaMPI’20

More information in the following paper

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

14Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

15Network Based Computing Laboratory OFA workshop – April’24

• Two-copy reduction collectives with SHARP
– Used leader-based schemes that had a reduction, followed by a SHARP operation and

finally a broadcast

– Not suitable for large message sizes (>=128k)

• Single-copy schemes are very efficient for large message data movement
– XPMEM allows remote process to have load/store access through address space mapping

• Using Sharp SAT in MPI has a few limitations and bottlenecks that need to be
addressed for achieving good scale-out performance

• Motivates the need for large message reduction designs that combine advantages
of SHARP and single-copy schemes like XPMEM

Limitations of state-of-the-art schemes for large message
reduction collectives

16Network Based Computing Laboratory OFA workshop – April’24

Motivation

0
5000

10000
15000
20000
25000

1M 2M 4M 8M 16M 32M

La
te

nc
y

(u
s)

Message size (bytes)

Allreduce runtime registration overhead

SHARP-allreduce-without-registration SHARP-registration

• SHARP SAT provides excellent bandwidth with close to
point-to-point latency

• Registration involves pinning pages to memory (like
InfiniBand registration)

– Overhead increases significantly with increase in message size

– Requires a cache that avoids expensive calls to
sharp_coll_reg_mr

• Switch resources are limited
– Causes bottlenecks when scaling up on modern CPUs with

hundreds of cores

– The SHARP runtime places limits to manage resources

• Motivates need for designs that are aware of SHARP
runtime capabilities, overcome bottlenecks and scale-up
efficiently for many processes per node

0

100

200

300

400

500

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message size (bytes)

Comparison of SHARP protocols on 8 nodes

SHARP-LLT SHARP-SAT

17Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

18Network Based Computing Laboratory OFA workshop – April’24

• Problem Statement - Can we propose an algorithm for large message AllReduce
that overcomes bottlenecks and resource constraints in the SHARP runtime by
making efficient use of node and network level resources?

• Contributions
– Identify registration overheads involved in the use of SHARP streaming aggregation for

large messages and propose solutions to address them

– Analyze the impact of chunking reductions when using streaming aggregation for
different message sizes to empirically determine ways to overlap intra-node reductions
with SHARP-based reductions

– Propose an algorithm for large AllReduce that utilizes SAT and CPUs efficiently

– Evaluate the proposed design by comparing it against state-of-the-art MPI libraries

Problem Statement and Contributions

19Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

20Network Based Computing Laboratory OFA workshop – April’24

• Use a registration cache to amortize registration costs in the SHARP runtime

• Designate a “leader” process on each node to interact with SHARP

• Chunk buffer into PPN (number of processes per node) chunks and reduce to a
single buffer belonging to the leader process

– Uses XPMEM for load/store access

– All processes perform local reductions, but only leader process calls the SHARP runtime

– Once local reductions are complete, leader calls a non-blocking MPI_Allreduce
• Perfect overlap of intra-node and inter-node steps

– Local reduction happens in batches for good network utilization

– Final result broadcast within the node

Proposed Design Overview

21Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

22Network Based Computing Laboratory OFA workshop – April’24

Registration cache design

1

10

100

1000

10000

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

La
te

nc
y

(u
s)

Message Size (bytes)

Impact of registration cache designs

SAT-with-registration-cache SAT-without-registration-cache

• Use an AVL tree or similar, to store buffer
addresses

– O(log n) insertion/query time

– If buffer entry exists, directly get
registration information from cache

• Up to 5.6X reduction in latency

23Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

24Network Based Computing Laboratory OFA workshop – April’24

Analyzing impact of chunking iallreduce operations

0

50

100

150

200

16384 65536 262144 1048576

La
te

nc
y

(u
s)

Message Size (bytes)

Iallreduce + waitall using SHARP SAT

1 chunk 2 chunks 4 chunks

8 chunks 16 chunks 32 chunks

• Measure impact of a message sent using one call
to the SHARP library vs multiple calls

• Given a message size M and number of chunks C,
call non-blocking SHARP allreduce C times (of size
M/C each) followed by waitall

• Indirect measure of overlap at the network level

• Splitting into chunks of size >= 16384 gives the
same latency (independent of num_chunks)

– Can be overlapped with reductions within the node

25Network Based Computing Laboratory OFA workshop – April’24

Proposed Allreduce Design
P0 P1

N0

sendbuf

tmpbuf

recvbuf

P3 P4
N1

sendbuf

tmpbuf

recvbuf

P0 P1
N0

sendbuf

tmpbuf

recvbuf

P3 P4
N1

sendbuf

tmpbuf

recvbuf

Initial State

Reduce to leader

• First process on each node is designated as leader

• Before reduction, exchange buffer information
using shared memory (for XPMEM load/stores)

• Process i reduces the ith chunk from every process
and stores to tmpbuf at leader

• At the end of this step, leader on every node has
the reduced result for the current phase

• Leader process initiates non-blocking inter-node
SHARP allreduce

• Use “request” objects to track progress of SHARP
Allreduce operations

P0 P1

N0

sendbuf

tmpbuf

recvbuf

P3 P4

N1

sendbuf

tmpbuf

recvbuf

Initiate non-blocking SHARP-based inter-node allreduce

26Network Based Computing Laboratory OFA workshop – April’24

Proposed Allreduce Design – Continued
• For large buffers, the intra-node reduction and inter-

node phases are run multiple times
• Reduction of large buffers is time consuming

• Done in multiple phases for good network utilization

• Chunk size if tuned to get perfect overlap of intra-node
and inter-node operations

• Leader waits for non-blocking allreduces to complete
after all runs of the first two phases are done

• Perform and intra-node broadcast to get final result

P0 P1
N0

sendbuf

tmpbuf

recvbuf

P3 P4
N1

sendbuf

tmpbuf

recvbuf

P0 P1
N0

sendbuf

tmpbuf

recvbuf

P3 P4
N1

sendbuf

tmpbuf

recvbuf

After Waitall

After Broadcast

B. Ramesh, G. Kuncham, K. Suresh, R. Vaidya, N. Alnaasan, M. Abduljabbar, A.
Shafi, D. Panda, Designing In-network Computing Aware Reduction Collectives in

MPI, Hot Interconnects 2023, Aug 2023.

More information in the following paper

27Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

28Network Based Computing Laboratory OFA workshop – April’24

Experimental setup

Cluster MRI HPCAC

Processor model AMD EPYC 7713 Intel(R) Xeon(R) Gold 6138

Max Clock speed 3.72GHz 2GHz

Number of sockets 2 2

Cores per socket 64 20

RAM 256GB 196GB

Interconnect NVIDIA HDR-200 with
Quantum 2 switches

NVIDIA HDR-200 with
Quantum 2 switches

MPI libraries MVAPICH2-X, HPC-X MVAPICH2-X, HPC-X

29Network Based Computing Laboratory OFA workshop – April’24

Results for large MPI_Allreduce – 2 nodes
• Increased parallelism by

using multiple processes and
SHARP for reduction

• Up to 81.43% over state-of-
the-art for 32PPN and
86.4% for 64PPN on MRI

• Up to 33.67% over state-of-
the-art for 32PPN and 60%
for 64PPN on HPCAC

• Increased number of page
faults leads to decreased
benefits at 1M (Needs to be
investigated further)

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN

30Network Based Computing Laboratory OFA workshop – April’24

Results for large MPI_Allreduce – 4 nodes
• Increased parallelism by

using multiple processes and
SHARP for reduction

• Up to 83.05% over state-of-
the-art for 32PPN and
88.52% for 64PPN on MRI

• Up to 32.62% over state-of-
the-art for 32PPN and
46.91% for 64PPN on HPCAC

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN

31Network Based Computing Laboratory OFA workshop – April’24

Results for large MPI_Allreduce – 8 nodes
• Increased parallelism by

using multiple processes and
SHARP for reduction

• Up to 79.44% over state-of-
the-art for 32PPN and
78.36% for 64PPN on MRI

• Up to 58.08% over state-of-
the-art for 32PPN and
52.13% for 64PPN on HPCAC

MRI - 32PPN MRI - 64PPN

HPCAC - 32PPN HPCAC - 64PPN

32Network Based Computing Laboratory OFA workshop – April’24

• Introduction

• Background

• Motivation

• Problem Statement and Contributions

• Design
– Overview

– Registration cache design

– Proposed Allreduce design

• Results

• Conclusion and Future work

Outline

33Network Based Computing Laboratory OFA workshop – April’24

• SHARP runtime enables in-network offload with excellent bandwidth utilization

• Proposed designs overcome various bottlenecks by using a leader-based
algorithm and streaming aggregation for large message reductions

– Outperforms state-of-the-art by up to 86%

• Will be available in a future release of MVAPICH-plus

• Future work
– Comprehensive application evaluation

– Evaluating performance at larger scales

– Exploring NUMA-awareness

Conclusion and Future Work

34Network Based Computing Laboratory OFA workshop – April’24

THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/

	Designing In-network Computing Aware Reduction Collectives in MPI
	Outline
	Introduction: Drivers of Modern HPC Cluster Architectures
	MPI Reduction collectives and In-network Computing
	Outline
	SHARP Reduction trees and Streaming Aggregation (SAT)
	Hierarchical design for small message MPI_Allreduce�
	Hierarchical design for small message MPI_Allreduce�
	Hierarchical design for small message MPI_Allreduce�
	Overview of the MVAPICH Project
	Results for small MPI_Allreduce – Varying message sizes�
	Results for small MPI_Allreduce – Varying node counts�
	Outline
	Limitations of state-of-the-art schemes for large message reduction collectives
	Motivation
	Outline
	Problem Statement and Contributions
	Outline
	Proposed Design Overview
	Outline
	Registration cache design
	Outline
	Analyzing impact of chunking iallreduce operations
	Proposed Allreduce Design
	Proposed Allreduce Design – Continued
	Outline
	Experimental setup
	Results for large MPI_Allreduce – 2 nodes
	Results for large MPI_Allreduce – 4 nodes
	Results for large MPI_Allreduce – 8 nodes
	Outline
	Conclusion and Future Work
	THANK YOU!

