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What is Machine Learning and Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 

https://en.wikipedia.org/wiki/Machine_learning

• Machine Learning (ML)

– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML

– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using 

DNNs

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning
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History: Milestones in the Development of ML/DL
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• Introduction

• Deep Learning

– Deep Neural Networks

– Distributed Deep Learning 

– DL Solutions

• Conclusion 

Outline
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/


OSU Booth @ SC22 7Network Based Computing Laboratory

• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent

– Batch Size = 1

• Mini-batch Gradient Descent

– Somewhere in the middle 

– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 

size will yield the fastest 

learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed

– AlexNet -> ResNet -> NASNet – AmoebaNet

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..

– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives

• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass

– Perform forward pass and 

calculate the prediction

– Calculate Error by comparing 

prediction with actual output 

– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation

– Call MPI_Allreduce to reduce the 

local gradients 

– Update parameters locally using 

global gradients

Batch
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• Data Parallelism

• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 

for CPU Training

MVAPICH2-GDR for 

GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 

for CPU Training

MVAPICH2-GDR for 

GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu

http://hidl.cse.ohio-state.edu/
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Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod with MVAPICH2-X

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod with MVAPICH2-GDR

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip 

install --no-cache-dir horovod
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+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.

.

Model: resnet50

Batch size: 64

Number of GPUs: 1

Running warmup...

Running benchmark...

Iter #0: 333.9 img/sec per GPU

Iter #1: 334.2 img/sec per GPU

Iter #2: 333.9 img/sec per GPU

Iter #3: 333.8 img/sec per GPU

Iter #4: 333.9 img/sec per GPU

Img/sec per GPU: 334.0 +-0.2

-----------------------------------------

Total img/sec on 1 GPU(s): 334.0 +-0.2

-----------------------------------------

Run PyTorch on a single GPU

V100
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+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so 

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.

.

Model: resnet50

Batch size: 64

Number of GPUs: 2

Running warmup...

Running benchmark...

Iter #0: 317.0 img/sec per GPU

Iter #1: 314.9 img/sec per GPU

Iter #2: 315.4 img/sec per GPU

Iter #3: 318.0 img/sec per GPU

Iter #4: 316.7 img/sec per GPU

Img/sec per GPU: 316.4 +-2.2

-----------------------------------------

Total img/sec on 2 GPU(s): 632.8 +-4.3

-----------------------------------------

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on 
2 GPUs
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)

• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on OSC Pitzer system
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)

• ResNet-50 Training using 

TensorFlow benchmark on 

SUMMIT -- 1536 Volta 

GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        

= 3 x 90 = 270 seconds = 4.5 

minutes!
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Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

*We observed issues for NCCL2 beyond 384 GPUs 

MVAPICH2-GDR reaching ~0.42 million 

images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 

performance for DNN training

• Report a peak of 260,000 images/sec on 

2048 nodes

• On 2048 nodes, ResNet-50 can be trained 

in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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• Modern GPUs like A100 are very 

powerful devices

• In some cases, DNN training 

cannot utilize all compute cores

• GPU utilization can be increased 

by increasing the batch size

– There is a limit!

• GPU utilization increases with 

input image size

• How can we increase GPU 

utilization?

GPU Utilization: Distributed Data-Parallel Training
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• MPS is a client-server runtime implementation of the CUDA API that enables the 

sharing of GPU resources.

– Logical partitioning 

MPS: Multi-Process Service
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AccDP: Accelerated Data Parallelism using MV2-GDR
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• Image Size: 256 X 256

• 4 MPS clients per GPU

• Up to 62% better performance than traditional Data-Parallel training

Accelerating Data-Parallel Training using MVAPICH2

Single Node Multi Node
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• Data Parallelism

• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Motivation for Model-Parallelism

Pascal GPU

Volta GPU 

CPU Broadwell (128 GB)

CPU Skylake
(192 GB)

Only possible with Model Parallelism!

Memory Consumption (Extrapolated)
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• Data-Parallelism– only for models that fit the memory

• Out-of-core models

– Deeper model → Better accuracy but more memory required!

• Model parallelism can work for out-of-core models!
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Why do we need Memory aware 

designs?

– Data and Model Parallel 

training has limitation!

– Maximum Batch Size 

depends on the memory.

– Basic Model Parallelism 

suffers from 

underutilization of memory 

and compute →

GEMS: GPU Enabled Memory Aware Model Parallelism Systems 

Memory requirement increases with the increase in image size!

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System for 
Distributed DNN”,  SC ’20.
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• Pathology whole slide image (WSI) 

– Each WSI = 100,000 x 100,000 pixels

– Can not fit in a single GPU memory

– Tiles are extracted to make training possible

• Two main problems with tiles

– Restricted tile size because of GPU memory limitation

– Smaller tiles loose structural information

• Reduced training time significantly

– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)

– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)

– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)

– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)

– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: https://blog.kitware.com/digital-slide-
archive-large-image-and-histomicstk-open-source-
informatics-tools-for-management-visualization-and-
analysis-of-digital-histopathology-data/

Scaling ResNet110 v2 on 1024×1024 image tiles 
using histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani, “GEMS: 
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).
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Parallelization Strategies

• Data Parallelism

• Model Parallelism
– Layer-level Parallelism

• Layer

• Pipeline

• Sub-Graph

– Neuron-level Parallelism

• Spatial

• Channel

• Hybrid Parallelism
– D&SP

– Megatron

– Hy-Fi

Distributed Training

Data Parallelism Model Parallelism Hybrid Parallelism

Layer-level Parallelism Neuron-level Parallelism

Layer 
Parallelism

Pipeline 
Parallelism

Sub-Graph 
Parallelism

Spatial 
Parallelism

D&SP

Advance 
Offload 

Schemes

Channels 
Parallelism

Megatron

Hy-Fi

Jain, Arpan, et al. "Hy-Fi: Hybrid Five Dimensional Parallel DNN Training on High-Performance GPU Clusters." International Conference on 

High Performance Computing. Springer, Cham, 2022.
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• Data-Parallelism– only for models that fit 

the memory

• Out-of-core models

– Deeper model → Better accuracy but more memory 

required!

– Real-world applications have very high-resolution 

images →

• Model parallelism can work for out-of-core 

models!

– Performance is questionable!

– Layer-parallelism is not enough

Why Hybrid Parallelism? 
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• Integrates spatial, layer, pipeline, bi-directional, and data parallelism

Proposed Hybrid Five-Dimensional Parallelism (Hy-Fi) 

Jain, Arpan, et al. "Hy-Fi: Hybrid Five Dimensional Parallel DNN Training on High-Performance GPU Clusters." International Conference on 

High Performance Computing. Springer, Cham, 2022.
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• Approach
– LP: Layer Parallelism

– Pipeline: Pipeline Parallelism

– SP: Spatial Parallelism

– Master: Hy-Fi

– Opt: with Communication optimization in Hy-Fi

• Setup
– Image Size: 2048 X 2048 

– 2048 NVIDIA V100 GPUs 

• Speedup
– Up to 2.67X over Layer Parallelism (LP)

– Near-linear scaling (94.5%) on 2,048 GPUs 

Accelerating Out-of-core Training at Scale
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Jain, Arpan, et al. "Hy-Fi: Hybrid Five Dimensional Parallel DNN Training on High-

Performance GPU Clusters." International Conference on High Performance 

Computing. Springer, Cham, 2022.
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• Enabled training on 8,192 X 8,192 and 16,384 X 16,384 images sizes

• Speedup over basic spatial parallelism
– 8,192 X 8,192 Images: 1.476X and 2.26X (Strong Scaling)

– 16,384 X 16,384 Images: 1.47X

Enabling Training on Very High-Resolution Images

AmobeNet-f214 on 8,192 X 8,192 imagesAmobeNet-f214 on 16,384 X 16,384 images

2.26X
1.47X
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• Introduction

• Deep Learning

– Deep Neural Networks

– Distributed Deep Learning 

– DL Solutions

• Conclusion 

Outline
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• Exponential growth in Machine Learning/Deep Learning/Data Science 

frameworks

• Provided an overview of issues, challenges, and opportunities for 

designing efficient communication runtimes

– Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks

– Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL 

middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion
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Thank You!

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

jain.575@osu.edu

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

