MVAPICH e3*HIiBD SReHIDL

MPI, PGAS and Hybrid MPI+PGAS Library H ig h-Performance High-Performance
Big Data Deep Learning

)

Flover: A Temporal Fusion Framework for Efficient
Autoregressive Model Parallel Inference

X Follow us on

https://twitter.com/mvapich Jinghan Yao, Nawras Alnaasan, Tian Chen,

Aamir Shafi, Hari Subramoni, D.K. Panda
The Ohio State University
E-mail: shafi.16@osu.edu

https://twitter.com/mvapich

Presentation Outline

e [ntroduction to Autoregressive models

— Deployment scenarios of inference Generative LLMs

— Existing parallel inference methods

e Designs, implementations, and experiments

— Temporal fusion of multiple random requests

— Adaptive memory shuffle for creating contiguous memory
e Demo

e Summary

Network Based Computing Laboratory GTC 2024

Introduction to Autoregressive Models

e An autoregressive model is a type of time series
model that uses observations from previous time
points to predict future values.

Input tokens

Transformer
self-attention
layer

Global autoregressive
self-attention

Network Based Computing Laboratory

GTC 2024

Generative LLMs are all autoregressive
models that follow a time dependency in
generating new tokens.

Life is P—

S S R (N D O A

Transformer decoder

A S A A R

(o M ———

Parallel Inference on large language models? Overview

e LLM training & inference Large Language Models till now
Phase Sensitivity Rolltleadry G BardG @PT-4® || furassic-2%2 (Claudd
Tree LLaMAlo
. : 170T
Training Model-learning | Throughput Goz) Y
: (e) sLoozZa] Galactical RNEEN |
Inference | User-facing Latency Be e
T BLOOM| 3¢/ ZmO & .
.. '7 7 7 ~ 3 a inervajy
* Inference: Latency-sensitive (Closed-Source Lwo < ol GG
. . 1 76 B i InstructGPT thinchile® GPT-NeoX[e)]
— Final phase of deep learning SET ‘7—’@ [GDAG
@Z:Z) (CodeX® [GLaM G\ (Gopher]©) ERNIE3.'5¢;-@
— The closest end to users] e _—
(Jurassic-142
N . GPT-J[e}
e Smaller batch size in the workflow Num,/Params —
— Less efficient GPU utilization D
1758 GPT-3 B
e Users’ requests arrive randomly @) -
— Very hard to parallelize - e Bonjer i
Yy P 1.58 o GPT-210) : %
e Performed by various hardware . L GPT-11C) o
_ _ _ 0.1B (@») ek : =
— Single/multi GPUs, edge devices —

e Response time is the most crucial
.- . Courtesy: Yang, Jingfeng, et al. "Harnessing the power of lims in practice: A survey on chatgpt and beyond." arXiv
— Long waiting is not acceptable preprint arXiv:2304.13712 (2023).

Network Based Computing Laboratory GTC 2024

Enhancing Real-time Parallel Inference on Generative LLM

e GPT models generate responses sequentially, creating answers one word

at a time, not in one go. We refer as an autoregressive process.

e Inference requests arrive randomly on the server side.

e Each request only handles a very small batch size.

e Inference on GPT models usually has highly variable lengths of answer.

Request #0

[Underneath the ancient tree... GPT

Request #1

[Who is Picasso? GPT

Request #2

When was the first NVIDIA GPU
released?

GPT

Ve

Underneath the ancient tree, a small child sat,
enraptured by the ethereal glow of the fading
sun. The leaves rustled softly as a gentle breeze
whispered through them, carrying with it
stories from distant lands. Time seemed to hold
its breath as the world transitioned from day to
night, painting the sky in hues of crimson and
gold. The child, cradled by the roots of ...

Who is Picasso? Picasso was a Spanish painter
and sculptor, a key figure in the modern art
movement.

_

(When was the first NVIDIA GPU released?

NVIDIA, founded in 1993 by Jensen Huang,
Chris Malachowsky, and Curtis Priem, released
its first GPU, the GeForce 256, in 1999. The
GeForce 256 was marketed as the world's first
"Graphics Processing Unit" or GPU. Before the
term "GPU" was popularized by NVIDIA,

graphics cards were ...

Examples
e Request #0 arrives at +1s, will take 8s to finish
e Request #1 arrives at +2.8s, will take 4s to finish
e Request #2 arrives at +6s, will take 11s to finish

What is the best strategy to parallel inference
these requests?

Overhead in concurrent model instances

W Avg Latency, usec M Ideal Latency, usec

80000
60000 .
Efficiency: 47.8%
40000
20000 ‘////,//////////////
0
1 2 4 6 8 10 20

Number of requests
Inefficiency of existing solutions, severe overhead

Network Based Computing Laboratory

GTC 2024

Existing Parallel Inference solutions

e Dynamic batching allows the server to wait within a time window (e.g. 500ms), requests that arrive within the time
window will be packed together. When the time window is reached or the maximum requests are presented, the
packed batch will be passed into the inference model for efficient processing.

e Concurrent instances allows the immediate launching of a new inference model instance once a request arrives, and
the instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances

launched simultaneously.

+0 ms +230ms +470ms +500ms +510 ms

I ® ¢ ¢ =3P Time
Dynamic Batching | request#0 request#1 | | request#2 request#S F =TT T Tt T Waiting T TTTTTTC

i %

I%il > —
i tloynamic Batching Inference for 300 iter. Output #0~2
I request #0 |——> Create Model Instance #0 —>| Inference for 300 iter. | Output #0
Concurrent Instances request #1 |——> Create Model Instance #1 —>: Inference for 300 iter. | Output #1
request #2 J|——> Create Model Instance #2 —)\ Inference for 300 iter. Output #2

: reauest #3 |—> Create Model Instance #3 —)\ Inference for 300 iter. \—»

Pro pOSEd request #0 request #1 request #2 request #3
: | ' " X
femporal Fusion | Main inference stream | Total iter for 4 requests = e.g. 540

Overlap in iterations

| Output #0 || Output #1 || Output #2 | | Output #3 |

Network Based Computing Laboratory GTC 2024

Existing Parallel Inference solutions -- Bottlenecks

e Dynamic batching: Determining the time window can be heuristic and exhibits no pattern. For e.g., earlier requests will

have to wait for the whole window until it can be processed. This significantly increases latency and prevents possible
overlap of computation.

e Concurrent instance allows the immediate launching of a new inference model instance once a request arrives, and the
instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances
launched simultaneously, causing severe resource/bandwidth contention and redundant kernel launching.

Cumulative token generation progress

+0ms +230 ms +470ms +500ms +510 ms)
100 - =—#= Temporal Fusion (ours) et
L 60 Dynam!c Batch!ng, window = 2000ms fﬂ
request #3 0 Dynam!c Batch!ng, w!ndow = 4000ms
request #0 I request #1 I request #2 ' o —— Dynamic Batching, window = 8000ms
S 609 —a— Dynamic Batching, window = 16000ms
\ \ \ c :
== Concurrent Instances (FasterTransformer)
I “Iv—»f Inference o
Waiting Dynamic Batching =
o
Dynamic Batching
5 10 15 20 25 30 35
|] 2 32 4 === Temporal Fusion (ours)
I rguest #0 |——> Create Model Instance #0 —> Inference for 300 iter. | H . L
| ! S 28 Dynamic Batching, window = 2000ms
| U . . . =
—> Create Model Instance #1 —b{ Inference fo © 24- Dynamic Batching, window = 4000ms
_— - 20 == Dynamic Batching, window = 8000ms
T T — i i i =
request #2 |——> Create Model Instance #2 - 956 Dynamic Batching, window = 16000ms

Concurrent Instances (FasterTransformer)

-2 4
Create Mo £ g- Dynamic batching causes

300% latency in early arrived requests

Concurrent Instances

5 10 15 20 25 30 35
Time elapsed (s)

Network Based Computing Laboratory GTC 2024

Presentation Outline

e Designs, implementations, and experiments

— Temporal fusion of multiple random requests

— Adaptive memory shuffle for creating contiguous memory
e Demo

e Summary

Network Based Computing Laboratory GTC 2024

Flover -- a Temporal Fusion framework for LLM inference

e Main contributions:
— Promptly processes incoming requests eliminating the need for any batching or time window allocation

— Avoids launching redundant model instances or kernel calls

Requests' inference timeline

e e e m e e - - ————— -

[t 0] [t 1] e o o m I Output of a iteration Iayer 0 > layer n-1 1

reques reques 1 Will be used as input 1
y for nextiteration - III I I II I 1 -
1 I n
Q
Adding to request queue -:- I Autoregressive process ! g.

wmew g W m SN SN SN SN SN S S SN S S S S S S O O O e .. ,
Pre-processing waiting for I walt_mg ft_)r et
next iteration B .I next iteration Y=
Ready for fusion : / e Iter 300 o
. J—V i—: req 0,1,2 @
Main Inference 3]
- e 1 1 1] EEExExEEE 1 !] === 1 ® oo >
tream Iteration 0 Iter 1 Iter2 lIter3 Iter4 Iter 255 Iter 256 Iter 257 Iter 258 Iter 299 Iter 301 Iter 302 O
request0 req0 req0 req0,1 req0,1 req 0,1 req0,1 req 0,1 req0,1,2 req 0,1,2 req1,2 req1,2 &
\ \ — 1 —

request0 | request0 N request 0 [INEEEG—_ 0
. icti reques ;
request1 | ~— Temporal Fusion — request1 [_— Evicting |requ »| post processing
request2 | finish

Flover runs a main inference instance throughout the whole runtime, which can adaptively generate new
tokens for any number of requests.

Network Based Computing Laboratory GTC 2024

Designs — Combined kernel launch

e Generating tokens for different requests follows identical procedures, we do not need separate launching of kernels.

e \We can simply update the buffer offset and size, at the beginning of every iteration when new requests are added to

inference stream, then we initialize single GPU kernel calls to operate on the entire buffer.

Algorithm 2 Main stream for token generation

/* Create an inference map to track every request */
InferenceMap inmap;

while not finish /* Loop */
/* 1. Iteratively generate new tokens for current requests */
/* 2. At the start of every loop, pulling for new requests ready for token generation */
If inque.get (req) then
/* Kernel operations need to cover the buffer region of the new request */
Update (offset, size);
inmap.insert (req);
End If

/* Start token generation */

cublasGemm (ctxt_buffer + offset, size, ...);
LayerNorm(ln_buffer + offset, size, ...);
GenericActivation (act_buffer + offset, size, ...);
NCCLAllreduce (reduce_buffer + offset, size, ...);

/* Check if any request finishes, so that it’s buffers can be evicted */
inmap.FindAndEvict (require_shuffle);

If require_shuffle then
/* Perform memory shuffle, making buffers tight and contiguous */
inmap.LaunchMemShuffle () ;
End If
/* End loop */

Request #0 add to
inference stream

Request #1 add to
inference stream

Request #2 add to
inference stream

Request #0 finish,
Request #3 add to
inference stream

kernel call offset = 2, size =1

Req# O

kernel call offset = 2, size = 2

Req# OB 1

kernel call offset = 2, size = 3

Reqg# B 1 2

kernel call offset = 3, size = 3

Req # 7213

GPU global memory

Network Based Computing Laboratory GTC 2024

Designs — Memory Shuffle for creating contiguous buffer

1. Inference requests for generative models differ in the

Req #2 and #5 finishes Running requests
maximum output lengths: G PN s to. mensa -2
Req #1, mem id = 3
i i i i Req #2, mem id = 4
o This can lead to memory bubbles leading to inefficient Rz 1ol 121312 MfSls Req #3, memid = 5
des|gn Req #4, mem id = 6
Req #5, mem id = 7
. . . . Req #6, mem id = 8
2. Flover tackles this by explicitly managing memory and w/o. memory shuffle -
: . . Kernel's workload=7 Re g =
. 1 4 : 1 q #0, mem id = 2
performing an efficient memory shuffle: —2—>2 4 4 | Rea 1, memid = 3
. .. Req #3, mem id = 5
o The figure shows when request #2 and #5 finish, there Req #4 mem id = 6
Reqz B 1 3 4 5 o #6 mem
. . Req #6, mem id = 8
will be bubbles in memory Luffer offeat — 2
o Using an explicit 2-step shuffling design, Flover ensures butfer size =7
_ 2-step memory shuffle
that each kernel always works on a continuous buffer Kernel's workload=5 Shuffled to contiguous buffer
- . ‘ , , Req #0, id = 4
avoiding the overhead of page loading each chunk v VT | Req #3. ﬁ:ﬁjd .
Req #4, mem id = 6
/* Start token generation */ Req #1, mem_id = 7
& b 3 4 1 b id =
cublasGemm (ctxt_buffer + offset, size, ...); S R;ff::lj e
LayerNorm(ln_buffer + offset, size, ...); buffer size = 5
GenericActivation (act_buffer + offset, size, ...);
NCCLAllreduce (reduce_buffer + offset, size, ...);

Network Based Computing Laboratory GTC 2024

Flover Implementation

e Software:
— Based on NVIDIA FasterTransformer C++ codebase, which is one of the most widely used Triton
backends and large language model (LLM) solutions.

— For the following experiments, we use several famous language models --- GPT-J 6B, Llama 7B, Llama
13B, Llama 33B, and Llama 65B.
e GPT-J 6B is officially supported in FasterTransformer.

e Llama variants are provided and validated under https://github.com/NVIDIA/FasterTransformer/pull/575.

e \We use modular design that enables fast implementations of new GPT models.

— Tensor parallelism is leveraged across GPUs.
— MVAPICH2-GDR 2.3.7 is used for controlling and synchronizing different ranks.

— NCCL 2.14.3 is used for collective communications.

e Hardware:

— We conduct all experiments on NVIDIA A100-SXM 80GB GPUs with AMD EPYC 7763 64-Core Processor.
Each computing node has 2 CPU sockets and 4 GPUs connected by NVLINK.

Network Based Computing Laboratory GTC 2024

https://github.com/NVIDIA/FasterTransformer/pull/575

Experiment 1. Overall Latency of inference requests

e This experiment quantifies the performance of Flover, while using temporal fusion, to process multiple
requests in parallel:

— We use a constant time interval of 500ms to study the parallel efficiency.

e Notice that for all models, the average inference latency for a single request is >> 500ms, therefore it
leaves great potential for parallel acceleration.

e Flover achieves up to 16.7x speedup in latency compared to FasterTransformer.

GPT-J 6B Llama 13B Llama 33B Llama 65B
250 @ FasterTransformer M Flover Speedup 300 ® FasterTransformer M Flover Speedup 500 ® FasterTransformer M Flover * Speedup 500 ® FasterTransformer M Flover Speedup
\U.‘Ei’ A 11.788 A \ A 16.70. A
200 400 400
1 GPU w/o TP 200 1 GPU w/o TP 2 GPUs, TP=2 4 GPUs, TP=4

100

Overall Latency (seconds)
Overall Latency (seconds)
Overall Latency (seconds)
Overall Latency (seconds)

o

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Number of Reauests Number of Reauests Number of Reauests Number of Reauests

(a). Parallel inference on different models. We measure the overall time spent on parallel inference 1, 2, 4, 8, 16, 32 requests.

Network Based Computing Laboratory GTC 2024

Experiment 2. Throughput/Latency in Token Generation

e Flover efficiently utilizes GPUs, as shown in the Fig (b) for throughput, by enabling individual kernels to
operate on larger contiguous buffer pieces. This is similar to increasing the batch size from 1 to 32 leading
to near linear speedups.

e Does processing requests in parallel slowdown the average inference latency for each request? This is
important to understand as this directly affects the user experience of their request. Fig (c) shows that with
8 and 32 parallel requests, the slowdown is limited to 3% and 8% respectively.

Throughput Flover Average Latency v.s. Single Request Latency
00—
-»- Flover GPT-) 6B _x__x__x- --- GPT-) 6B single req latency === Llama 13B single req latency
—%- Flover Llama 13B —*_*—X— —— 32 reqs, Avg. latency = 1.05x —— 32 reqs, Avg. latency = 1.05x
700 T =y Flover LIGM@a 33B = S s s s T o e ? 16 reqs, Avg. latency = 1.04x ? —— 16 reqs, Avg. latency = 1.04x
Flover Llama 65B x’x"x —'x__x___)(- ' 8 reqgs, Avg. latency = 1.03x ! —— 8 reqs, Avg. latency = 1.02x
6001 —%- FasterTransformer GPT-) 6B e WL b LSO i i
- - FasterTransformer Llama 13B ’,X ’xf—x’ ! !
v - - FasterTransformer Llama 33B x'x’ X=X : gy : / \
® 500 1o FactarTrancformar Lingha &R " e A e i N i /[\
FasterTransformer Llama 65B X T : - : /e
0 3 X 1 e . 1 N\ _
~ /x /x’ ,x”x I* T T T — T — — T I--“A T — T -I_ T
x/ -
2 400 ,X] ’x', i *’X,—)« S) - 5600 5700 5800 5900 6000 6100 9200 9400 9600 9800 10000
9 A 5 4 ="
LY X’ X’ % » --=- Llama 33B single req latency --- Llama 65B single req latency
|2 300 . it ,X‘ """""" X/x’ """ - 32 reqs, Avg. latency = 1.09x - - 32 reqs, Avg. latency = 1.13x
/X/ X/ b i ? 16 reqs, Avg. latency = 1.07x ? —— 16 reqs, Avg. latency = 1.05x
’ ,X’ 1 8 reqs, Avg. latency = 1.05x 1 —— 8 reqs, Avg. latency = 1.01x
200 pr T : :
>(1 - 1
100 ,X O S s e T TV E A i
: A ;)’(_”;:)(;-”—’)F’—’"—X-””-)i(—’”’;)’{_”; R T o S e o e T O G S 1 [\ 1
- Iy P o B o Bk o Sl o ey’ s Bl i o X § § I [\ i
w ===R="R" "R e = ¢, - —— \ s
23 -3e=X==X B o : /L 1
0 1 £ < = | S S
0 5 10 15 20 25 30 13500 13750 14000 14250 14500 14750 15000 15250 11000 11500 12000 12500 13000
(b) Number of Requests (c) Time elapsed in millisecond

Network Based Computing Laboratory GTC 2024

Experiment 3. Random Arrival of Requests

To depict a realistic setting, this experiment models the arrival of inference requests as a Poisson process

for the inference requests.
Here we use 32 requests. Time intervals between requests are randomly sampled from the exponential

distribution with different A.
A single request requires 512 iterations, which take 5800ms on the inference server.
With relatively small A, Flover achieves 11.2x speedup against FasterTransformer. As 91.3% of all requests are

overlapped and hence processed in parallel with single kernel call.

When increasing A, the temporal overlapped requests are fewer, therefore, less space for optimizing the parallel

C ® FasterTransformer ® Flover ® Flover - Avg. overlapped requests
200000 30.0 A(ms) | 20 | 50 | 100 | 150 | 200 | 300 | 400
3 2N Total Iters.| 557 | 616 | 748 | 888 | 911 | 1174 | 1366
 1e0000 ' s Overlap [91.3%|81.8%|67.3%|62.1%|60.3%|45.2%|36.7%
2 §° % N ' Speedup [11.2x [11.1x|{10.2x| 9.3x | 9.1x | 7.9x | 7.1x
E P2 2 A (ms) | 500 | 750 | 1000 | 2000 | 3000 | 4000 | 5000
> co000 o7 100 Total Tters.| 1537 | 2239 | 2621 | 5483 | 7738 | 8902 |10694
o »ﬂ@F. i B A Overlap [31.0%|23.2%|20.0%|9.3% | 6.7% | 5.7% | 4.8%
3, doll | m Speedup | 6.5x | 4.5x [4.2x [2.Ix | I.3x | 1.3x [I.Ix
20 50 100 150 200 300 400 500 750 1000 2000 3000 4000 5000 '
Lambda (milliseconds)
(a) (b)

GTC 2024

Network Based Computing Laboratory

Experiment 4. Memory Shuffle for Non-uniform Requests

e Inreal-world scenarios, requests from different users vary drastically in the total number of iterations
(another random variable):
— This randomness can cause variability in the length of the generated sequences, making it hard to fit a simple
distribution.
— To evaluate this in the worst-case, we adopt a uniform distribution U(a, b) to model total iterations:
e Lower bound a is set to 128, and we vary upper bound b = {512,1024, 1536,2048}.

e If arequest finishes, we evict it from the memory, and perform memory shuffle to reorganize the requests buffer,
guaranteeing a contiguous memory region for GPU kernel to operate on.

Llama 13B Llama 65B
600 A - Aol T765.9
- FasterTransformer -4- Memory Shuffle Speedup A [1.24 1200+ FasterTransformer -4- Memory Shuffle Speedup A [1.24
'g 500.- L4 Flover w/o. Memory Shuffle /' % 1 Flover w/o. Memory Shuffle RS
9 =3 Flover w. Memory Shuffie LSS "—*’* [5 1000 | E=2 Flover w. Memory Shuffle ‘__’_‘__’_4——0‘" % -1.22
0 ‘__,_.%-0’* — @ AT
c 400 665" ' @ »! - 1.20
c
> g 1.18 5 8007 24
£ 300 ‘,* 4 ' E ’/” 627.0 (118
2 v el L 1.16 g 600 '
o " ! ‘E ,‘ F1.16
= 2001 1728 = 400- ¥
© -1.14 T ” L 1.14
d>) 100 - a 253.8
i >]
Q h4.821 5 34.620.0 44.637.0 546443 [117 & 200 65 112
’ ; , 'l_M;' DO I DO o5 X 53.444, :254.1
0 % AV serene 2 Y & , : 1.10 0 2122320 39—1213%,4 a — Wl ot 110
512 1024 . 1536 2048 512 1024 1536 2048
Max generation length Max generation length

Memory shuffle further brings a 20% speedup!

Network Based Computing Laboratory GTC 2024

Experiment 5. Hardware Profiling

e The CUDA profiling shows uniform resource usage for Flover due to 1 thread and 1 instance issuing kernel calls

— Each segment in Fig (b) represents one iteration in inference

- CUDA HW (0000:01:00.0 - NVIDIA
~ [All Streams]

+ >99.9% Kernels

» 38.5% ampere_fp16_s16816geud dilihl dleth o Ukl Wil 101 sk ol ol 00 o v Rl DR MOV i 0000 s A0 abuci) 0 O b 0 0 il b bk e) R 1 T) 1Ll fad

Y ST AT RITTR TR NS AT TR R € IR TN Y TR Y
+ 22.2% Kernel LT R CTIOTSTT Y O I JERYNTTYPR FTY T WY O T AT (TR TUTRTIS I) PR ' TV " R T TR Y I N Y ¥ /Tt YRRRTR ST PRI BP0 | [T TRT 'gy > (FTRT I N 11 §

Y VT TOR YRR RrINT 1 TR " FTTRY FRray rpare R N PR R T i 1

* 20.1% ampere_fp16_s16816g€:wui wran ikl 1haon do bnd i dianire ks imewnliwsr Uad b oo swnwte Jurch i ot oot wn e -R&SQU«"Q& raglnguan.d Jrokos il m by e dowow ba olfluch e am Riln Lan cluarmal st & ulas b whoofodi, vl o diad ok Waodd b soilia w

» 8.0% ampere_fp16_s16816gen. - | Sid ol I il M 83
39 kernergrw:shldden E' T N | B oo D S redundant kerner IaUChing ‘ﬁ: L. 7(T————— Sty L] LORtotrea
<0.1% Memory

18 streams hidden

- Threads (27)
» v [1915308]
» v [1915301]
» v [1915304]
» v [1915300]

sl g, e T R L N T P I R T N R R E NN TN IR R I N T T VI R F P R R T TR ST RT

HERTRRTE

I ISEE IR RN E I Y

st a '

- CUDA HW (0000:01:00.0 - NVIDIA
- [All Streams]
- 99.7% Kernels

+ 19.6% Kernel

» 18.9% ampere_fp16_51681 6000wt bioiubs ek tiuiobt ok o] Sk okt S bl ot b e S b 4 Sk b b e b S b b b bl A bl St U e b, b M Mot bbb e st bbb .M bt e Mt e b e . Mt b S e . bk . s e

+ 14.0% ampere_fp16_s16816ge H H H 3 ¥

Buni s aiit All requests only require 1 Spinning on Splnnlng on

» 12.5% masked_multihead_atte . _..................... kernel call... | DAL AN RN 00, O L D R0 L request queue... IO I nference quetie -
40 kernel groups hidden... — +|fihlllelluleiubl bl ol ialill L.J\Luh_.,t 0o ool o000l 00 L ool st ol e oot el uuh.h il L.h‘L.u uu\u; i ﬂn...J NAARMAARTARNN AN ARRL AR AR NAT x..h_u "

0.3% Memory

18 streams hidden +

- Treads (29 _____________/

» v [1926061]

v [1926062]
» v [1926038]
» v [1926090]

(b) NVIDIA Nsight Profiling on Flover. Each green box denotes parallel generating 1 token for all requests.

Network Based Computing Laboratory GTC 2024

Experiment 6. A Comprehensive Comparison

e Flover maintains both scalability and responsiveness while dealing with heavy load scenarios.

— The figure shows the cumulative token generation progress of processing 32 requests in parallel.

Cumulative token generation progress

100 + =4 Temporal Fusion (ours) WO
° Dynamic Batching, window = 2000ms /‘A“‘“——-—
°w 80 1 —+4— Dynamic Batching, window = 4000ms
gﬁ = Dynamic Batching, window = 8000ms
"E 601 —u— Dynamic Batching, window = 16000ms
Q - Concurrent Instances (FasterTransformer)
v 40
&
20 A -
0 -
7]
th 32 + =—— Temporal Fusion (ours)
g 281 Dynamic Batching, window = 2000ms
g 244 7 Dynamic Batching, window = 4000ms
= 20 - = Dynamic Batching, window = 8000ms
g - Dynamic Batching, window = 16000ms
ﬁ 161 —— Concurrent Instances (FasterTransformer)
T 127 . .
= g- Dynamic batching causes
- 4 300% latency in early arrived requests
® 0

5 10 15 20 25 30 35
Time elapsed (s)

Network Based Computing Laboratory GTC 2024

Experiment 7. Compare to the latest TensorRT-LLM

e We compare the latest TensorRT-LLM commit d8ebeee with the released Flover.

— We use the in-flight batching benchmark to evaluate the performance of TensorRT-LLM

e We test the following combinations on LIaMA 7B:
— Number of requests: a) 32, b) 64
— Generation length of each request: a) 512, b) random sample from a uniform distribution of U(128,512).

— Interval between requests:
e 0 ms (this is the default setting in TensorRT-LLM in-flight batching benchmark)
e 100 ms and 500 ms, we modify the gptManagerBenchmark.cpp by adding the following after Line.512:
- std::this_thread::sleep for(std::chrono::milliseconds(100)); // 100, 500, customized intervals

TensorRT-LLM vs. Flover 32 requests TensorRT-LLM vs. Flover 64 requests
B TensorRT-LLM In-flight batching benchmark [Flover B TensorRT-LLM In-flight batching benchmark | Flover
25000 40000
— —
[T 20000 7
30000
£ £
S— —
> 15000 >
Q Q
c c 20000
Q Q
10000
K ke
-] 10000
E 5000 S
Q Q
> >
(o) 0 (o) 0
Len 512, Len 512, Len 512, Random Random Random Len 512, Len 512, Len 512, Random Random Random
interval Oms interval interval len,interval len, interval len, interval interval Oms interval interval len, interval len, interval len, interval
100ms 500ms Oms 100ms 500ms 100ms 500ms 0Oms 100ms 500ms

Network Based Computing Laboratory GTC 2024

benchmarks/cpp/gptManagerBenchmark.cpp
https://github.com/NVIDIA/TensorRT-LLM/blob/d8ebeee2f6fcb219e6efc541ccc914765799fa3a/benchmarks/cpp/gptManagerBenchmark.cpp

Presentation Outline

e Demo

e Summary

Network Based Computing Laboratory GTC 2024

Demo: Parallel Inference 32 requests with random generation lengths on LLaMA 7B

Network Based Computing Laboratory GTC 2024

Summary

e This talk presented Flover that leverages temporal parallelism of autoregressive models:
— Promptly processes requests avoiding the need for any batching or time window allocation
— Avoids launching redundant model instances or kernel calls utilizing efficient memory management

e Flover achieves optimal performance on single GPU and distributed inference scenarios,
ensuring robustness and scalability in diverse autoregressive model inference:

— The talk presented performance numbers compared to FasterTransformer and TensorRT-LLM

e Flover is available as an open-source software:
— https://github.com/OSU-Nowlab/Flover

— Comments and contributions are welcome

e |n the future, we plan to enhance Flover to support emerging language model

architectures

Network Based Computing Laboratory GTC 2024

https://github.com/OSU-Nowlab/Flover

Thank Youl!

{shafi.16}@osu.edu

&gased Co %

:%.

O
A
Yo
7]
X Follow us on ‘z\

https://twitter.com/mvapich Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

L X - :
P ®
=~ WVAPICH o2 HIBD HIDL
t an ri + ibrar . /
V MPI, PGAS and Hybrid MPI+PGAS Library H|gh-Performance ngh_Performance
Big Data Deep Learning
The High-Performance MP'/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory GTC 2024

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

