
Flover: A Temporal Fusion Framework for Efficient
Autoregressive Model Parallel Inference

Follow us on

https://twitter.com/mvapich Jinghan Yao, Nawras Alnaasan, Tian Chen,

Aamir Shafi, Hari Subramoni, D.K. Panda

The Ohio State University

E-mail: shafi.16@osu.edu

https://twitter.com/mvapich

GTC 2024 2Network Based Computing Laboratory

• Introduction to Autoregressive models
– Deployment scenarios of inference Generative LLMs

– Existing parallel inference methods

• Designs, implementations, and experiments
– Temporal fusion of multiple random requests

– Adaptive memory shuffle for creating contiguous memory

• Demo

• Summary

Presentation Outline

GTC 2024 3Network Based Computing Laboratory

• An autoregressive model is a type of time series
model that uses observations from previous time
points to predict future values.

Introduction to Autoregressive Models
Generative LLMs are all autoregressive
models that follow a time dependency in

generating new tokens.

GTC 2024 4Network Based Computing Laboratory

Parallel Inference on large language models? Overview

Courtesy: Yang, Jingfeng, et al. "Harnessing the power of llms in practice: A survey on chatgpt and beyond." arXiv
preprint arXiv:2304.13712 (2023).

• Inference: Latency-sensitive

– Final phase of deep learning

– The closest end to users

• Smaller batch size in the workflow

– Less efficient GPU utilization

• Users’ requests arrive randomly

– Very hard to parallelize

• Performed by various hardware

– Single/multi GPUs, edge devices

• Response time is the most crucial

– Long waiting is not acceptable

Phase Sensitivity
Training Model-learning Throughput

Inference User-facing Latency

• LLM training & inference Large Language Models till now

0.1B

1.5B

175B

170T

176B

Num. Params

GTC 2024 5Network Based Computing Laboratory

Enhancing Real-time Parallel Inference on Generative LLM

Underneath the ancient tree... GPT

Underneath the ancient tree, a small child sat,
enraptured by the ethereal glow of the fading
sun. The leaves rustled softly as a gentle breeze
whispered through them, carrying with it
stories from distant lands. Time seemed to hold
its breath as the world transitioned from day to
night, painting the sky in hues of crimson and
gold. The child, cradled by the roots of …

Who is Picasso?
Who is Picasso? Picasso was a Spanish painter
and sculptor, a key figure in the modern art
movement.

When was the first NVIDIA GPU
released?

When was the first NVIDIA GPU released?
NVIDIA, founded in 1993 by Jensen Huang,
Chris Malachowsky, and Curtis Priem, released
its first GPU, the GeForce 256, in 1999. The
GeForce 256 was marketed as the world's first
"Graphics Processing Unit" or GPU. Before the
term "GPU" was popularized by NVIDIA,
graphics cards were ...

GPT

GPT

• GPT models generate responses sequentially, creating answers one word
at a time, not in one go. We refer as an autoregressive process.

• Inference requests arrive randomly on the server side.

• Each request only handles a very small batch size.

• Inference on GPT models usually has highly variable lengths of answer.

Request #0

Request #1

Request #2

Examples

• Request #0 arrives at +1s, will take 8s to finish

• Request #1 arrives at +2.8s, will take 4s to finish

• Request #2 arrives at +6s, will take 11s to finish

What is the best strategy to parallel inference

these requests?

Inefficiency of existing solutions, severe overhead

GTC 2024 6Network Based Computing Laboratory

Existing Parallel Inference solutions
• Dynamic batching allows the server to wait within a time window (e.g. 500ms), requests that arrive within the time

window will be packed together. When the time window is reached or the maximum requests are presented, the
packed batch will be passed into the inference model for efficient processing.

• Concurrent instances allows the immediate launching of a new inference model instance once a request arrives, and
the instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances
launched simultaneously.

GTC 2024 7Network Based Computing Laboratory

Existing Parallel Inference solutions -- Bottlenecks
• Dynamic batching: Determining the time window can be heuristic and exhibits no pattern. For e.g., earlier requests will

have to wait for the whole window until it can be processed. This significantly increases latency and prevents possible
overlap of computation.

• Concurrent instance allows the immediate launching of a new inference model instance once a request arrives, and the
instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances

launched simultaneously, causing severe resource/bandwidth contention and redundant kernel launching.

GTC 2024 8Network Based Computing Laboratory

• Introduction to Autoregressive models
– Deployment scenarios of inference Generative LLMs

– Existing parallel inference methods

• Designs, implementations, and experiments
– Temporal fusion of multiple random requests

– Adaptive memory shuffle for creating contiguous memory

• Demo

• Summary

Presentation Outline

GTC 2024 9Network Based Computing Laboratory

Flover -- a Temporal Fusion framework for LLM inference
• Main contributions:

– Promptly processes incoming requests eliminating the need for any batching or time window allocation

– Avoids launching redundant model instances or kernel calls

Flover runs a main inference instance throughout the whole runtime, which can adaptively generate new
tokens for any number of requests.

GTC 2024 10Network Based Computing Laboratory

Designs – Combined kernel launch
• Generating tokens for different requests follows identical procedures, we do not need separate launching of kernels.

• We can simply update the buffer offset and size, at the beginning of every iteration when new requests are added to

inference stream, then we initialize single GPU kernel calls to operate on the entire buffer.

GTC 2024 11Network Based Computing Laboratory

Designs – Memory Shuffle for creating contiguous buffer
1. Inference requests for generative models differ in the

maximum output lengths:
o This can lead to memory bubbles leading to inefficient

design

2. Flover tackles this by explicitly managing memory and
performing an efficient memory shuffle:
o The figure shows when request #2 and #5 finish, there

will be bubbles in memory

o Using an explicit 2-step shuffling design, Flover ensures
that each kernel always works on a continuous buffer
avoiding the overhead of page loading each chunk

GTC 2024 12Network Based Computing Laboratory

Flover Implementation
• Software:

– Based on NVIDIA FasterTransformer C++ codebase, which is one of the most widely used Triton
backends and large language model (LLM) solutions.

– For the following experiments, we use several famous language models --- GPT-J 6B, Llama 7B, Llama
13B, Llama 33B, and Llama 65B.

• GPT-J 6B is officially supported in FasterTransformer.

• Llama variants are provided and validated under https://github.com/NVIDIA/FasterTransformer/pull/575.

• We use modular design that enables fast implementations of new GPT models.

– Tensor parallelism is leveraged across GPUs.

– MVAPICH2-GDR 2.3.7 is used for controlling and synchronizing different ranks.

– NCCL 2.14.3 is used for collective communications.

• Hardware:
– We conduct all experiments on NVIDIA A100-SXM 80GB GPUs with AMD EPYC 7763 64-Core Processor.

Each computing node has 2 CPU sockets and 4 GPUs connected by NVLINK.

https://github.com/NVIDIA/FasterTransformer/pull/575

GTC 2024 13Network Based Computing Laboratory

Experiment 1. Overall Latency of inference requests
• This experiment quantifies the performance of Flover, while using temporal fusion, to process multiple

requests in parallel:
– We use a constant time interval of 500ms to study the parallel efficiency.

• Notice that for all models, the average inference latency for a single request is >> 500ms, therefore it
leaves great potential for parallel acceleration.

• Flover achieves up to 16.7x speedup in latency compared to FasterTransformer.

1 GPU w/o TP 1 GPU w/o TP 2 GPUs, TP=2 4 GPUs, TP=4
16x13x10x 11x

GTC 2024 14Network Based Computing Laboratory

Experiment 2. Throughput/Latency in Token Generation
• Flover efficiently utilizes GPUs, as shown in the Fig (b) for throughput, by enabling individual kernels to

operate on larger contiguous buffer pieces. This is similar to increasing the batch size from 1 to 32 leading
to near linear speedups.

• Does processing requests in parallel slowdown the average inference latency for each request? This is
important to understand as this directly affects the user experience of their request. Fig (c) shows that with
8 and 32 parallel requests, the slowdown is limited to 3% and 8% respectively.

GTC 2024 15Network Based Computing Laboratory

Experiment 3. Random Arrival of Requests
• To depict a realistic setting, this experiment models the arrival of inference requests as a Poisson process

for the inference requests.
– Here we use 32 requests. Time intervals between requests are randomly sampled from the exponential

distribution with different !.

– A single request requires 512 iterations, which take 5800ms on the inference server.

– With relatively small !, Flover achieves 11.2x speedup against FasterTransformer. As 91.3% of all requests are
overlapped and hence processed in parallel with single kernel call.

– When increasing !, the temporal overlapped requests are fewer, therefore, less space for optimizing the parallel
inference.

GTC 2024 16Network Based Computing Laboratory

Experiment 4. Memory Shuffle for Non-uniform Requests
• In real-world scenarios, requests from different users vary drastically in the total number of iterations

(another random variable):
– This randomness can cause variability in the length of the generated sequences, making it hard to fit a simple

distribution.

– To evaluate this in the worst-case, we adopt a uniform distribution "($, &) to model total iterations:

• Lower bound ! is set to 128, and we vary upper bound " = 512, 1024, 1536, 2048 .
• If a request finishes, we evict it from the memory, and perform memory shuffle to reorganize the requests buffer,

guaranteeing a contiguous memory region for GPU kernel to operate on.

Memory shuffle further brings a 20% speedup!

GTC 2024 17Network Based Computing Laboratory

Experiment 5. Hardware Profiling
• The CUDA profiling shows uniform resource usage for Flover due to 1 thread and 1 instance issuing kernel calls

– Each segment in Fig (b) represents one iteration in inference

GTC 2024 18Network Based Computing Laboratory

Experiment 6. A Comprehensive Comparison
• Flover maintains both scalability and responsiveness while dealing with heavy load scenarios.

– The figure shows the cumulative token generation progress of processing 32 requests in parallel.

GTC 2024 19Network Based Computing Laboratory

Experiment 7. Compare to the latest TensorRT-LLM
• We compare the latest TensorRT-LLM commit d8ebeee with the released Flover.

– We use the in-flight batching benchmark to evaluate the performance of TensorRT-LLM

• We test the following combinations on LlaMA 7B:
– Number of requests: a) 32, b) 64

– Generation length of each request: a) 512, b) random sample from a uniform distribution of !(128, 512).
– Interval between requests:

• 0 ms (this is the default setting in TensorRT-LLM in-flight batching benchmark)
• 100 ms and 500 ms, we modify the gptManagerBenchmark.cpp by adding the following after Line.512:

– std::this_thread::sleep_for(std::chrono::milliseconds(100)); // 100, 500, customized intervals

benchmarks/cpp/gptManagerBenchmark.cpp
https://github.com/NVIDIA/TensorRT-LLM/blob/d8ebeee2f6fcb219e6efc541ccc914765799fa3a/benchmarks/cpp/gptManagerBenchmark.cpp

GTC 2024 20Network Based Computing Laboratory

• Introduction to Autoregressive models
– Deployment scenarios of inference Generative LLMs

– Existing parallel inference methods

• Designs, implementations, and experiments
– Temporal fusion of multiple random requests

– Adaptive memory shuffle for creating contiguous memory

• Demo

• Summary

Presentation Outline

GTC 2024 21Network Based Computing Laboratory

Demo: Parallel Inference 32 requests with random generation lengths on LLaMA 7B

GTC 2024 22Network Based Computing Laboratory

Summary
• This talk presented Flover that leverages temporal parallelism of autoregressive models:

– Promptly processes requests avoiding the need for any batching or time window allocation

– Avoids launching redundant model instances or kernel calls utilizing efficient memory management

• Flover achieves optimal performance on single GPU and distributed inference scenarios,
ensuring robustness and scalability in diverse autoregressive model inference:
– The talk presented performance numbers compared to FasterTransformer and TensorRT-LLM

• Flover is available as an open-source software:
– https://github.com/OSU-Nowlab/Flover

– Comments and contributions are welcome

• In the future, we plan to enhance Flover to support emerging language model
architectures

https://github.com/OSU-Nowlab/Flover

GTC 2024 23Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

{shafi.16}@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

