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• An autoregressive model is a type of time series 
model that uses observations from previous time 
points to predict future values.

Introduction to Autoregressive Models
Generative LLMs are all autoregressive 
models that follow a time dependency in 

generating new tokens.
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Parallel Inference on large language models? Overview

Courtesy: Yang, Jingfeng, et al. "Harnessing the power of llms in practice: A survey on chatgpt and beyond." arXiv 
preprint arXiv:2304.13712 (2023).

• Inference: Latency-sensitive

– Final phase of deep learning

– The closest end to users

• Smaller batch size in the workflow

– Less efficient GPU utilization

• Users’ requests arrive randomly

– Very hard to parallelize 

• Performed by various hardware

– Single/multi GPUs, edge devices

• Response time is the most crucial

– Long waiting is not acceptable

Phase Sensitivity
Training Model-learning Throughput

Inference User-facing Latency

• LLM training & inference Large Language Models till now
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Enhancing Real-time Parallel Inference on Generative LLM

Underneath the ancient tree... GPT

Underneath the ancient tree, a small child sat, 
enraptured by the ethereal glow of the fading 
sun. The leaves rustled softly as a gentle breeze 
whispered through them, carrying with it 
stories from distant lands. Time seemed to hold 
its breath as the world transitioned from day to 
night, painting the sky in hues of crimson and 
gold. The child, cradled by the roots of …

Who is Picasso?
Who is Picasso? Picasso was a Spanish painter 
and sculptor, a key figure in the modern art 
movement.

When was the first NVIDIA GPU 
released?

When was the first NVIDIA GPU released?
NVIDIA, founded in 1993 by Jensen Huang, 
Chris Malachowsky, and Curtis Priem, released 
its first GPU, the GeForce 256, in 1999. The 
GeForce 256 was marketed as the world's first 
"Graphics Processing Unit" or GPU. Before the 
term "GPU" was popularized by NVIDIA, 
graphics cards were ...

GPT

GPT

• GPT models generate responses sequentially, creating answers one word 
at a time, not in one go. We refer as an autoregressive process.

• Inference requests arrive randomly on the server side.

• Each request only handles a very small batch size.

• Inference on GPT models usually has highly variable lengths of answer.

Request #0

Request #1

Request #2

Examples

• Request #0 arrives at +1s, will take 8s to finish

• Request #1 arrives at +2.8s, will take 4s to finish

• Request #2 arrives at +6s, will take 11s to finish

What is the best strategy to parallel inference 

these requests?

Inefficiency of existing solutions, severe overhead
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Existing Parallel Inference solutions
• Dynamic batching allows the server to wait within a time window (e.g. 500ms), requests that arrive within the time 

window will be packed together. When the time window is reached or the maximum requests are presented, the 
packed batch will be passed into the inference model for efficient processing.

• Concurrent instances allows the immediate launching of a new inference model instance once a request arrives, and 
the instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances 
launched simultaneously.
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Existing Parallel Inference solutions -- Bottlenecks
• Dynamic batching: Determining the time window can be heuristic and exhibits no pattern. For e.g., earlier requests will 

have to wait for the whole window until it can be processed. This significantly increases latency and prevents possible 
overlap of computation.

• Concurrent instance allows the immediate launching of a new inference model instance once a request arrives, and the 
instance will only infer this request. For e.g., 32 parallel inference requests will require 32 model instances 

launched simultaneously, causing severe resource/bandwidth contention and redundant kernel launching.
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Flover -- a Temporal Fusion framework for LLM inference
• Main contributions: 

– Promptly processes incoming requests eliminating the need for any batching or time window allocation 

– Avoids launching redundant model instances or kernel calls

Flover runs a main inference instance throughout the whole runtime, which can adaptively generate new 
tokens for any number of requests. 
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Designs – Combined kernel launch
• Generating tokens for different requests follows identical procedures, we do not need separate launching of kernels.

• We can simply update the buffer offset and size, at the beginning of every iteration when new requests are added to 

inference stream, then we initialize single GPU kernel calls to operate on the entire buffer.
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Designs – Memory Shuffle for creating contiguous buffer
1. Inference requests for generative models differ in the 

maximum output lengths: 
o This can lead to memory bubbles leading to inefficient 

design

2. Flover tackles this by explicitly managing memory and 
performing an efficient memory shuffle: 
o The figure shows when request #2 and #5 finish, there 

will be bubbles in memory

o Using an explicit 2-step shuffling design, Flover ensures 
that each kernel always works on a continuous buffer 
avoiding the overhead of page loading each chunk
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Flover Implementation
• Software:

– Based on NVIDIA FasterTransformer C++ codebase, which is one of the most widely used Triton 
backends and large language model (LLM) solutions. 

– For the following experiments, we use several famous language models --- GPT-J 6B, Llama 7B, Llama 
13B, Llama 33B, and Llama 65B.

• GPT-J 6B is officially supported in FasterTransformer.

• Llama variants are provided and validated under https://github.com/NVIDIA/FasterTransformer/pull/575.

• We use modular design that enables fast implementations of new GPT models.

– Tensor parallelism is leveraged across GPUs.

– MVAPICH2-GDR 2.3.7 is used for controlling and synchronizing different ranks.

– NCCL 2.14.3 is used for collective communications.

• Hardware:
– We conduct all experiments on NVIDIA A100-SXM 80GB GPUs with AMD EPYC 7763 64-Core Processor. 

Each computing node has 2 CPU sockets and 4 GPUs connected by NVLINK.

https://github.com/NVIDIA/FasterTransformer/pull/575
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Experiment 1. Overall Latency of inference requests
• This experiment quantifies the performance of Flover, while using temporal fusion, to process multiple 

requests in parallel: 
– We use a constant time interval of 500ms to study the parallel efficiency. 

• Notice that for all models, the average inference latency for a single request is >> 500ms, therefore it 
leaves great potential for parallel acceleration.

• Flover achieves up to 16.7x speedup in latency compared to FasterTransformer.

1 GPU w/o TP 1 GPU w/o TP 2 GPUs, TP=2 4 GPUs, TP=4
16x13x10x 11x
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Experiment 2. Throughput/Latency in Token Generation 
• Flover efficiently utilizes GPUs, as shown in the Fig (b) for throughput, by enabling individual kernels to 

operate on larger contiguous buffer pieces. This is similar to increasing the batch size from 1 to 32 leading 
to near linear speedups.

• Does processing requests in parallel slowdown the average inference latency for each request? This is 
important to understand as this directly affects the user experience of their request. Fig (c) shows that with 
8 and 32 parallel requests, the slowdown is limited to 3% and 8% respectively.
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Experiment 3. Random Arrival of Requests
• To depict a realistic setting, this experiment models the arrival of inference requests as a Poisson process 

for the inference requests. 
– Here we use 32 requests. Time intervals between requests are randomly sampled from the exponential 

distribution with different !. 

– A single request requires 512 iterations, which take 5800ms on the inference server. 

– With relatively small !, Flover achieves 11.2x speedup against FasterTransformer. As 91.3% of all requests are 
overlapped and hence processed in parallel with single kernel call.

– When increasing !, the temporal overlapped requests are fewer, therefore, less space for optimizing the parallel 
inference.
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Experiment 4. Memory Shuffle for Non-uniform Requests 
• In real-world scenarios, requests from different users vary drastically in the total number of iterations 

(another random variable):
– This randomness can cause variability in the length of the generated sequences, making it hard to fit a simple 

distribution.

– To evaluate this in the worst-case, we adopt a uniform distribution "($, &) to model total iterations:

• Lower bound ! is set to 128, and we vary upper bound " = 512, 1024, 1536, 2048 .
• If a request finishes, we evict it from the memory, and perform memory shuffle to reorganize the requests buffer, 

guaranteeing a contiguous memory region for GPU kernel to operate on.

Memory shuffle further brings a 20% speedup!
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Experiment 5. Hardware Profiling
• The CUDA profiling shows uniform resource usage for Flover due to 1 thread and 1 instance issuing kernel calls

– Each segment in Fig (b) represents one iteration in inference
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Experiment 6. A Comprehensive Comparison
• Flover maintains both scalability and responsiveness while dealing with heavy load scenarios.

– The figure shows the cumulative token generation progress of processing 32 requests in parallel. 
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Experiment 7. Compare to the latest TensorRT-LLM
• We compare the latest TensorRT-LLM commit d8ebeee with the released Flover.

– We use the in-flight batching benchmark to evaluate the performance of TensorRT-LLM

• We test the following combinations on LlaMA 7B:
– Number of requests: a) 32, b) 64

– Generation length of each request: a) 512, b) random sample from a uniform distribution of !(128, 512).
– Interval between requests: 

• 0 ms (this is the default setting in TensorRT-LLM in-flight batching benchmark)
• 100 ms and 500 ms, we modify the gptManagerBenchmark.cpp by adding the following after Line.512:

– std::this_thread::sleep_for(std::chrono::milliseconds(100)); // 100, 500, customized intervals

benchmarks/cpp/gptManagerBenchmark.cpp
https://github.com/NVIDIA/TensorRT-LLM/blob/d8ebeee2f6fcb219e6efc541ccc914765799fa3a/benchmarks/cpp/gptManagerBenchmark.cpp
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Demo: Parallel Inference 32 requests with random generation lengths on LLaMA 7B
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Summary
• This talk presented Flover that leverages temporal parallelism of autoregressive models:

– Promptly processes requests avoiding the need for any batching or time window allocation 

– Avoids launching redundant model instances or kernel calls utilizing efficient memory management

• Flover achieves optimal performance on single GPU and distributed inference scenarios, 
ensuring robustness and scalability in diverse autoregressive model inference: 
– The talk presented performance numbers compared to FasterTransformer and TensorRT-LLM

• Flover is available as an open-source software: 
– https://github.com/OSU-Nowlab/Flover  

– Comments and contributions are welcome

• In the future, we plan to enhance Flover to support emerging language model 
architectures

https://github.com/OSU-Nowlab/Flover
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

{shafi.16}@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

