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Trends in Modern HPC Systems: Interconnects lag behind

Accelerators (GPUs, FPGA)
High compute power

High peak memory bandwidth
(H100: 24576 Gb/s memory bandwidth,

7200 Gb/s NVLINK)

High Performance Interconnects 
InfiniBand, Omni-Path, EFA

<1usec latency, 200Gbps+ Bandwidth

Multi/ Many-core 
Processors

SSD, NVMe-SSD, NVRAM
Node local storage

#5 Summit (27,648 GPUs)
#6 Sierra (17,280 GPUs)

#9 Selene
NVIDIA DGX A100 SuperPOD

(2,240 GPUs)

#1 Frontier
AMD Instinct MI250X

(37632 GPUs)
https://www.top500.org/

#2 Fugaku
(158,976 nodes with A64FX 

ARM CPU, a GPU-like processor)

https://www.top500.org/


GTC ‘24 3Network Based Computing Laboratory

• Disparity between intra-node and inter-node GPU communication prevents 
efficiently scaling applications to larger GPU systems

• Bandwidth of IB network is saturated for large message

Motivation

[1] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences”, 
in International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018.

(a) Disparity between intra-node and inter-node GPU communication on 
Sierra OpenPOWER supercomputer [1] (b) Saturated bandwidth at large message size
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• For HPC and Deep Learning applications on modern GPU clusters
– What are the other techniques—besides improving the communication 

bandwidth—that can be used to reduce the communication time?

 Compression can reduce the data size and lower the pressure on network with 
limited bandwidth 

– How can we design efficient on-the-fly message compression schemes to improve 
the performance of these applications?

 We integrate GPU-based compression algorithms into MVAPICH2-GDR with 
optimization to achieve high performance on-the-fly message compression for
 Point-to-point operations

 Various collective operations (Alltoall, Allgather, Broadcast, Reduce Scatter)

Research Challenges
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), 

and AWS EFA, Rockport Networks, and Slingshot

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:
– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,375 organizations in 91 countries

• More than 1.76 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (June‘23 ranking)
– 11th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 29th, 448, 448 cores (Frontera) at TACC

– 46th, 288,288 cores (Lassen) at LLNL

– 61st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and 
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 29th ranked TACC Frontera system

• Empowering Top500 systems for more than 18 years

http://mvapich.cse.ohio-state.edu/
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• Compression algorithms MPC and ZFP are integrated into MVAPICH2-GDR 
• Rendezvous protocol is used to send the header data and compressed data

Framework of GPU-based on-the-fly compression

Framework of GPU-based on-the-fly compression [2]

[2] Q. Zhou, C. Chu, N. Senthil Kumar, P. Kousha, M. Ghazimirsaeed, H. Subramoni, D. Panda, “Designing High-Performance MPI Libraries with On-the-fly 
Compression for Modern GPU Clusters”, in 35th IEEE International Parallel & Distributed Processing Symposium, May 2021. [Best Paper Finalist]
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• Data flow
1. Launch compression kernel with control parameters 
2. Run compression kernel on GPU 
3. Return compressed size 
4. Send header data with RTS packet 
5. Send compressed GPU data 
6. Launch decompression kernel with header data 
7. Run decompression kernel to restore the data.

Data Flow: Point-to-Point On-the-fly Compression

Data flow of GPU communication with 
Point-to-Point On-the-fly compression 
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• AlltoAll is one of the most communication-intensive MPI operations that become the bottleneck 
of efficiently scaling these applications(e.g, PSDNS, DeepSpeed) to larger dense GPU systems

• Existing Point-to-Point based compression has limitation of 
overlapping compression/decompression kernels across send/receive operations.

• How to overcome the limitation of Point-to-Point based compression to accelerate applications? 
– Move the point-to-point compression to the collective-level

– Revamp and optimize GPU-based compression for the collective-level online compression

Limitation of Point-to-Point compression for Alltoall

Compare point-to-point compression operations versus proposed design(a) PSDNS Time Breakdown (b) AlltoAll Latency for 8 GPUs on 2 Longhorn(V100) nodes
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• Data Flow of Host-Staging based Collective-level Compression
– 1. GPU data is compressed to the temporary device buffer and copied to the host buffer asynchronously

– 2. MPI_Isend sends out the data in the host buffer to other CPUs

– 3. MPI_Irecv receives the data to the host buffer from other CPUs

– 4. Received data is copied to the temporary device buffer asynchronously and decompressed to the target buffer

Host-Staging based Collective-level Compression

1
2

3
4
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• Enabling Multiple CUDA Streams in ZFP Library
– Design new APIs zfp_compress_multi_stream and zfp_decompress_multi_stream

– Propose new execution policy zfp_exec_cuda_multi_stream

• Co-design the GPU-based compression at the collective level
– 1. Launch compression/decompression kernels on multiple CUDA streams

– 2. Use same stream for data movement (D->H, H->D) and the corresponding compression/decompression kernels

– 3. Achieve overlap between the compression/decompression kernels across multiple send/receive operations

Optimization for Host-staging based Compression

(a) Send operations (b) Receive operations
[3] Q. Zhou, P. Kousha, Q. Anthony, K. Khorassani, A. Shafi, H. Subramoni, and D. K. Panda, Accelerating MPI All-to-All Communication with Online Compression on Modern GPU Clusters. 
ISC High Performance 2022, May 2022.
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• Improvement compared to MVAPICH2-GDR with Point-to-Point compression
– Reduces All-to-All runtime by up to 26.4% with ZFP(rate: 16) on 32 GPUs

– Improves the throughput by up to 35.8% with ZFP(rate: 16) on 32 GPUs

Application-Level Evaluations (DeepSpeed Benchmark)

35.8%
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• Chunked-Chain based Broadcast with Collective-level Online Compression
– Launch ZFP compression/decompression kernel on non-default CUDA stream to achieve overlap

– Middle ranks send the received compressed data to the right rank and only run decompression

– Launch an MPI_Bcast operation to transfer the compressed message sizes of all the chunks

Broadcast with Collective-level Online Compression 

(a) Data Flow of Broadcast with 
Collective-level Compression (b) Collective-level Compression vs. Point-to-Point Compression

VS.

Q. Zhou, Q. Anthony, A. Shafi, H. Subramoni, and D. K. Panda, Accelerating Broadcast Communication with GPU Compression for Deep Learning Workloads, 
29th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC ’22), Dec 2022.



GTC ‘24 13Network Based Computing Laboratory

• PyTorch (v1.12) DDP training with ZeroRedundancyOptimizer on CIFAR10 dataset

• Improvements compared to original Chunked-Chain and Point-to-Point compression
– Reduces training time by up to 15.0% with ZFP(rate: 8) on 64 GPUs vs. Chunked-Chain

– Reduces training time by up to 6.4% with ZFP(rate: 8) on 64 GPUs vs. Point-to-Point compression

– Training accuracy converges to similar value as original Chunked-Chain Broadcast

Application-Level Evaluations (PyTorch DDP training)

Training Time per epoch 
(BS=128, LR=0.001) on Longhorn (NVIDIA V100)

Training Accuracy
(8 GPUs) on Bridges-2 (NVIDIA V100)

Training Accuracy
(16 GPUs) on Bridges-2 (NVIDIA V100)
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• For Deep Learning training on modern GPU clusters

– Model size has been increasing greatly (BERT, GPT, ...)
– Fully Sharded Data Parallel (FSDP)* scheme has been 

introduced in PyTorch (v1.11) to shard the parameters, 
gradients, and optimizer states of the DL models amongst 
multiple GPUs.

– Relies on the Allgather and Reduce-Scatter communication 
primitives to gather weights and sync up gradients.

– Brings extra communication cost in training of large DNN 
models.

Fully Sharded Data Parallel (FSDP)

PyTorch, “Fully Sharded Data Parallel (FSDP),” https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api
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• Existing Allgather and Reduce-Scatter algorithms for transferring large GPU data suffer from 
poor performance due to the limited interconnect bandwidth between the GPUs.

• Allgather and Reduce-Scatter communication primitives add large overheads to the training 
of large models

Bottleneck of Allgather and Reduce-Scatter in FSDP

(b) Allgather latency with 16 V100 GPUs (c) Reduce-Scatter latency with 16 V100 GPUs

https://engineering.fb.com/wp-content/uploads/2021/07/FSDP-graph-2a.png?w=1024 

(a) Allgather and Reduce-Scatter operations[2]
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• Each GPU copies the its own data from send 
buffer to the receiver buffer directly

• Compression operation is only executed once

• MPI_Irecv is posted immediately after 
launching compression on non-default stream

• MPI_Isend is posted to send out the 
compressed data

• Decompression kernel is launched on a non-
default CUDA stream to restore the data

Ring-based Allgather Communication with Collective-
level Online Compression

Q. Zhou, Q. Anthony, L. Xu, A. Shafi, M. Abduljabbar, H. Subramoni, and D. K. Panda, 
Accelerating Distributed Deep Learning Training with Compression Assisted Allgather and Reduce-
Scatter Communication, 37th IEEE International Parallel Distributed Processing Symposium 
(IPDPS ’23), May 2023.
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• Data elements on each GPU are scattered 
to all the corresponding GPUs

• Compression kernel is launched for data 
element or reduction result 

• Launch reduction kernel on GPU to get 
the aggregated result

• MPI_Isend/Irecv transfer compressed 
data element or reduction result

• Decompression kernel is launched to 
restore data element or reduction result 

Ring-based Reduce-Scatter Communication with 
Collective-level Online Compression
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• PyTorch FSDP training performance
– Use enhanced MPI backend with proposed compression designs for Allgather and Reduce-Scatter

– Reduces training time by up to 31.7% (32 GPUs, ZFP rate: 10) vs. Baseline

– Reduces training time by up to 12.5% (32 GPUs, ZFP rate: 10) vs. Point-to-Point compression (“P2P”) 

Application-Level Evaluation (FSDP Training)

Cluster: Longhorn(NVIDIA V100), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001

31.7%12.5%
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• PyTorch FSDP training accuracy
– Use enhanced MPI backend with proposed compression designs for Allgather and Reduce-Scatter

– Proposed design with ZFP compression (rate:16, rate:10) achieves similar convergent training 
accuracy vs. Baseline

– Big accuracy drop and large variance with lower compression rate: 8 due to larger compression 
errors added to weights and gradients

Application-Level Evaluation (FSDP Training)

Cluster: Pitzer(NVIDIA V100), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001
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LLM training with Hybrid Compression design

• For LLM training on modern GPU clusters

– Model size exceeds memory capacity
– 3D Parallelism adopted with 

Megatron+DeepSpeed to efficiently perform 
training across thousands of GPUs.

• Data Parallelism (Allreduce)

• Pipeline Parallelism (Point-to-point)

• Tensor Parallelism (Allgather + Allreduce)

• ZeRO (Reduce-Scatter + Allgather)

– Heavy communication saturating 
interconnect bandwidth
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• Naïve ZFP or MPC solution poses 
different pros and cons

– Lossy ZFP provides speedups but 
degradation in accuracy

– Lossless MPC maintains baseline 
accuracy but degradation in 
throughput

• DP Gradients are sparse, MP 
activations are dense

– Possible Hybrid solution for 
according parallelism degree

Hybrid Compression Solution Experiment setup

Model GPT-NeoX-
20B

Dataset Books3

PP 
Degree

6

MP 
Degree

4

Grad 
Accumul

ation 
Step

1

Micro 
batch 

size per 
GPU

4

CPU IBM Power9 44 
Cores/Node

Memory 256GB

GPU NVIDIA Tesla V100 
(32GB)

Interconnect InfiniBand EDR 100GB/s

Lassen cluster 
setup
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• lossy ZFP compression for Data Parallel gradient Allreduce + lossless MPC compression 
for Model Parallel (TP + PP) communication

• Good performance speedup (4.4% increase for samples/sec & 5.3% increase for TFLOPS), 
loss curves greatly improved

Hybrid Compression Solution (MZHybrid)

Cluster: Lassen (NVIDIA V100)



GTC ‘24 23Network Based Computing Laboratory

• Low-rate ZFP compression for Data Parallel gradient Allreduce + high-rate ZFP 
compression for Model Parallel (TP + PP) communication

• Even better performance speedup (17.3% increase for samples/sec & 12.7% increase for 
TFLOPS), loss curves still acceptable

Hybrid Compression Solution (ZHybrid)

1.13x

1.17x

Cluster: Lassen (NVIDIA V100)
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• Integrated lossless(MPC) and lossy(ZFP) compression algorithms into MVAPICH2-GDR

• Implemented various compression designs for various communication operations
– Proposed Host-staging based collective-level compression for All-to-All operation

– Proposed Chunked-Chain based compression design for optimizing Broadcast communication

– Proposed Ring-based compression design for optimizing Allgather and Reduce-Scatter

• Accelerating AI workloads in Deep Learning training
– Reduced Alltoall communication time in DeepSpeed benchmark by up to 26.4%

– Reduced the PyTorch DDP training time by up to 15.0% 

– Reduced the PyTorch FSDP training time by up to 31.7%

– Accelerated the training of LLMs like GPT-NeoX-20B by up to 17.3%

• Future work
– Study and incorporate more GPU-based compression algorithms (e.g., NVIDIA nvCOMP, etc.)

– Extend our designs to other common collectives

Conclusion
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

subramoni.1@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich
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• Motivation and Research Challenges

• Framework and data flow of GPU-based Point-to-Point On-the-fly compression

• Host-staging based collective-level compression for AlltoAll communication

• DDP training with Chunked-Chain based collective-level compression for Bcast
communication

• FSDP training with Ring-based collective-level compression for Allgather and Reduce-
Scatter 

• LLM training with hybrid compression schemes

• Performance result: DeepSpeed Benchmark, DDP training, FSDP training, LLM training 

• Conclusion & Future work

Outline
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