
Impact of Node Level Caching in MPI
Job Launch Mechanisms

Jaidev Sridhar and D. K. Panda
{sridharj,panda}@cse.ohio-state.edu

Presented by Pavan Balaji, Argonne National Laboratory

Network-Based Computing Lab

The Ohio State University

Columbus, OH USA

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Introduction
  HPC Clusters continue to increase rapidly in size

–  Largest systems have hundreds of thousands of cores today

  As clusters grow, there has been increased focus on the
scalability of programming models and libraries
–  MPI, PGAS models

–  “First class citizens”

  Job launch mechanisms have not received enough
attention and have scaled poorly over the last few years
–  Traditionally ignored since the “percentage of time” for launching jobs

on production runs is small

–  But increasingly becoming important, especially for extremely large-
scale systems Courtesy Intel Corp.

Multi-Core Trend

 Sandia Thunderbird
– 8,960 processing cores

– 4,480 compute nodes
Courtesy Intel Corp.

TACC Ranger
– 62,976 processing cores

– 3,936 compute nodes

  The total number of compute cores has increased by a
factor of 7, however, the number of compute nodes has
remained flat

  Job launchers must take advantage of multi-core compute
nodes

Largest InfiniBand cluster in 2006 Largest general purpose InfiniBand cluster
in 2008

Limitations
  MPI Job launch mechanisms scale poorly over large

multi-core clusters
–  Over 3 minutes to launch a MPI job over 10,000 cores (in the

early part of 2008)
–  Unable to launch larger jobs

•  Exponential increase in job launch time

  These designs run into system limitations
–  Limits on the number of open network connections

–  Delays due to simultaneous flooding of network

Job Launch Phases
  Typical parallel job launch involves two phases

–  Spawning processes on target cores

–  Communication between processes to discover peers

  In addition to spawning processes, job launcher must
facilitate communication for job initialization
–  Point to point

–  Collective communication

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

ScELA Design
  Designed a Scalable, Extensible Launching Architecture

(ScELA) that takes advantage of increased use of multi-
core compute nodes in clusters
–  Presented at Int’l Symposium on High Performance Computing (HiPC ‘08)

  Supported both PMGR_Collectives and PMI
  The design was incorporated into MVAPICH 1.0 and

MVAPICH2 1.2
–  MVAPICH/MVAPICH2 - Popular MPI libraries for InfiniBand and

10GigE/iWARP, used by over 975 organizations worldwide
 (http://mvapich.cse.ohio-state.edu)
–  Significant performance benefits on large-scale clusters

  Many other MPI stacks have adopted this design for their
job launching mechanisms Courtesy Intel Corp.

Design:

ScELA Architecture
  Hierarchical launch

–  Central launcher launches Node
Launch Agents (NLA) on target nodes

–  NLAs launch processes on cores

  NLAs interconnect to form a k-ary
tree to facilitate communication

  Common communication
primitives built on NLA tree

  Libraries can implement their
protocols (PMI, PMGR, etc.) over
the basic framework

Launcher

NLA Interconnection Layer

Cache

PMI PMGR … Communication
Protocols

Communication Primitives
Point to Point Collective Bulletin Board

ScELA Architecture

Design:
Launch Mechanism

Central
Launcher

NLA
Node 1

Process
1

Process
2

NLA
Node 2

Process
3

Process
4

NLA
Node 3

Process
5

Process
6

o  Central Launcher starts
NLAs on Target Nodes
o  NLAs launch Processes

Evaluation:
Large Scale Cluster

  ScELA compared MVAPICH
0.9.9 on the TACC Ranger
–  3,936 nodes with four 2.0 GHz

Quad-Core AMD “Barcelona”
Opteron processors

–  16 processing cores per node

  Time to launch a simple MPI
“Hello World” program

  Can scale at least 3X

  Order of magnitude faster

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(s

ec
s)

Processes

ScELA

MVAPICH 0.9.9

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

PMI Bulletin Board on ScELA
  PMI is a startup communication protocol used by

MVAPICH2, MPICH2, etc.
  For process discovery, PMI defines a bulletin board

protocol
–  PMI_Put (key, val) publishes a key, value pair

–  PMI_Get (key) fetches appropriate value

  We define similar operations NLA_Put and NLA_Get to
facilitate a bulletin board over the NLA tree

  NLA level caches to speedup information access

Focus in this Paper
  Is it beneficial to cache information in intermediate nodes

in the NLA tree?
  How these caches need to be designed?

  What trade-offs exist in designing such caches?

  How much performance benefits can be achieved with
such caching?

Four Design Alternatives for
Caching
  Hierarchical Cache Simple (HCS)

  Hierarchical Cache with Message Aggregation (HCMA)

  Hierarchical Cache with Message Aggregation and
Broadcast (HCMAB)

  Hierarchical Cache with Message Aggregation,
Broadcast with LRU (HCMAB-LRU)

PMI Bulletin Board on ScELA
with HCS

NLA
Node 2

Process
4

Process
3

NLA
Node 1

Process
1

Process
2 NLA

Node 3

Process
5

Process
6

PMI_Put (key, val) NLA_Put (key, val) PMI_Get (key) Value NLA_Get (key)

Cache

Cache

Cache

Better Caching Mechanisms
  We’ve seen a simple

Hierarchical Cache (HCS)
–  Slow, due to number of

messages

  Reduce number of
messages with message
aggregation – HCMA

PMI_Put (mykey, myvalue);
PMI_Barrier ();
...
val1 = PMI_Get (key1);
val2 = PMI_Get (key2);
...

Caching Mechanisms (contd)
  HCMA still has lots of messages over network during

GETs
  Propose HCMAB

–  HCMA + Broadcast

  HCS, HCMA, HCMAB are memory inefficient
–  Information exchange is in stages – discard old information

  Propose HCMAB-LRU
–  Have a fixed size cache with LRU

–  HCMAB-LRU

Comparison of Memory usage
  For n (key, value) pairs exchanged by p processes

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Evaluation:
Experimental Setup
  OSU Cluster

–  512-core InfiniBand Cluster

–  64 compute nodes

–  Dual 2.33 GHz Quad-Core Intel “Clovertown”

–  Gigabit Ethernet adapter for management traffic

  TACC Ranger (62,976-cores)
  InfiniBand connectivity

Simple PMI Exchange (1:2)
•  Each MPI process publishes one (key, value) pair using PMI_Put
•  Retrieves values published by two other MPI processes

•  HCMAB and HCMAB-LRU are the best

Heavy PMI Exchange (1:p)
•  Each MPI process publishes one (key, value) pair using PMI_Put
•  All p processes read values published by all other p processes

•  HCMAB and HCMAB-LRU are the best with significant performance
improvement
•  HCMAB and HCMAB-LRU demonstrate good scalability with increase in
 system size

Software Distribution

  Both HCS and HCMAB have been integrated into

MVAPICH2 1.2 and available to the MPI community for

some time

  Additional enhancements in terms of parallelizing the

startup further have been carried out in MVAPICH2 1.4

Presentation Outline

  Introduction and Motivation

  ScELA Design

  Impact of Node-Level Caching

  Experimental Evaluation

  Conclusions and Future Work

Conclusion and Future Work
  Propose the impact of caching in scalable, hierarchical

job launch mechanisms, especially for emerging multi-
core clusters

  Demonstrate design alternatives and their impact on
performance and scalability

  Integrated into the latest MVAPICH2 1.4 version
– Basic enhancements are available in MVAPICH versions

(1.0 and 1.1)

  Parallelize the job launch phase even further for even
larger clusters with a million of processes

http://mvapich.cse.ohio-state.edu

Questions?

{sridharj, panda}@cse.ohio-state.edu

