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•  GPUs are becoming a common component of modern clusters – higher 
compute density and performance/watt  

•  3 of the top 5 systems in the latest Top 500 list use GPUs 

•  Increasing number of HPC workloads are being ported to GPUs - many 
of these use MPI 

•  MPI libraries are being extended to support communication from GPU 
device memory 

GPUs for HPC 
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At Sender: !
!

cudaMemcpy (sbuf, sdev)!
MPI_Send (sbuf, . . . )!
!

At Receiver:!
!

MPI_Recv (rbuf, . . . )!
cudaMemcpy (rdev, rbuf)!

MVAPICH/MVAPICH2 for GPU Clusters 

Earlier 

At Sender: !
!

MPI_Send (sdev, . . . )!
!

At Receiver:!
!

MPI_Recv (rdev, . . . )!

Now 

PCIe 

GPU 

CPU 

NIC 

Switch 

inside 
MVAPICH2 

•  Efficient overlap copies over the PCIe with RDMA transfers over the network 

•  Allows us to select efficient algorithms for MPI collectives and MPI datatype 
processing 

•  Available with MVAPICH2 v1.8 (http://mvapich.cse.ohio-state.edu) 
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Motivation 
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Memory 

 

I/O Hub 

Process 0 Process 1 •  Multi-GPU node architectures are 
becoming common 

•  Until CUDA 3.2 
–  Communication between processes  

staged through the host 

–  Shared Memory (pipelined) 

–  Network Loopback [asynchronous) 

•  CUDA 4.0 
–  Inter-Process Communication (IPC) 

–  Host bypass 

–  Handled by a DMA Engine 

–  Low latency and Asynchronous 

–  Requires creation, exchange and 
mapping of memory handles - overhead 

HCA 
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228 usec 

•  Comparison of bare copy costs between two processes on one node, 
each using a different GPU (outside MPI)  

•  8 Bytes 
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Problem Statement 
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•  Can we take advantage of CUDA IPC to improve performance of MPI 
communication between GPUs on a node? 

•  How do we address the memory handle creation and mapping 
overheads? 

•  What kind of performance do the different MPI communication 
semantics deliver with CUDA IPC? 
–  Two-sided Semantics 

–  One-sided Semantics 

•  How do CUDA IPC based designs impact the performance of end-
applications?  
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Basics of CUDA IPC 
Process 0 Process 1 

cudaIpcGetMemhandle  
(&handle, base_ptr) 

cudaIpcOpenMemhandle  
(&base_ptr, handle) 

IPC handles 

cudaMemcpy  
(rbuf_ptr, base_ptr + displ) 

cudaEventRecord  
(&ipc_event, event_handle) 

cudaIpcGetEventHandle 
(&event_handle, event) 

cudaStreamWaitEvent 
(0, event) 

other CUDA calls that can 
modify the sbuf 

IPC memory handle should be 
closed at Process 1 before the 
buffer is freed at Process 0 

cudaIpcOpenEventhandle  
(&ipc_event, event_handle) 

 cuMemGetAddressRange 
(&base_ptr, sbuf_ptr) 

Done 

sbuf_ptr rbuf_ptr 
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Design of Two-sided Communication 
•  MPI communication costs 

–  synchronization 

–  data movement 

•  Small message communication 
–  minimize synchronization overheads 

–  pair-wise eager buffers for host-host communication 

–  associated pair-wise IPC buffers on GPU 

–  synchronization using CUDA Events 

•  Large message communication  
–  minimize number for copies - rendezvous protocol 

–  minimize memory mapping overheads using a mapping cache  
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Design of One-sided Communication 
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•  Separates communication from synchronization 

•  Window 

•  Communication calls - put, get, accumulate 

•  Synchronization calls 
–  active - fence, post-wait/start-complete 

–  passive – lock-unlock  

–  period between two synchronization calls is a communication epoch  

•  IPC memory handles created and mapped during window creation 

•  Put/Get implemented as cudaMemcpyAsync 

•  Synchronization using CUDA Events 
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•  Intel Westmere node 

–  2 NVIDIA Tesla C2075 GPUs 

–  Red Hat Linux 5.8 and CUDA Toolkit 4.1  

•  MVAPICH/MVAPICH2 - High Performance MPI Library for IB, 

10GigE/iWARP and RoCE 

–  Available since 2002 

–  Used by more than 1.930 organizations (HPC centers, Industries and Universities) 

in 68 countries 

–  More than 111,000 downloads from OSU site directly 

–  Empowering many TOP500 clusters 

•  5th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology 

•  7th ranked 111,104-core cluster (Pleiades) at NASA 

•  25th ranked 62,976-core cluster (Ranger) at TACC  

–  http://mvapich.cse.ohio-state.edu 

Experimental Setup 
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Two-sided Communication Performance 
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70% 
46% 

78% 
considerable 
improvement in 
MPI performance 
due to host 
bypass 
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One-sided Communication Performance 
(get + active synchronization vs. send/recv) 
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Better 
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compared to 
two-sided  
semantics. 
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One-sided Communication Performance 
(get + passive synchronization) 
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•  Lock + 8 Gets + Unlock with the target in a busy loop (128KB 
messages) 



 Lattice Boltzmann Method 
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Dataset per GPU  

2SIDED-SHARED-MEM 2SIDED-IPC 1SIDED-IPC 

•  Computation fluid dynamics code with support for multi-phase flows 
with large density ratios 

•  Modified to use MPI communication from GPU device memory - one-
sided and two-sided semantics 

•  Up to 16% improvement in per step 

16% 

19 



Outline 

•  Motivation 

•  Problem Statement  

•  Basics of CUDA IPC   

•  CUDA IPC based Designs in MVAPICH2 

–  Two Sided Communication 

–  One-sided Communication 

•  Experimental Evaluation 

•  Conclusion and Future Work 

20 



21 

Conclusion and Future Work 
•  Take advantage of CUDA IPC to improve MPI communication between GPUs 

on a node  

•  70% improvement in latency and 78% improvement in bandwidth for two-
sided communication 

•  One-sided communication gives better performance and allows for truly 
asynchronous communication 

•  16% improvement in execution time of Lattice Boltzmann Method code 

•  Studying the impact on other applications while exploiting computation-
communication overlap 

•  Exploring efficient designs for inter-node one-sided communication on GPU 
clusters 
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{potluri, wangh, bureddy, singhas, panda} @cse.ohio-state.edu  

carlos@tacc.utexas.edu 
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http://nowlab.cse.ohio-state.edu/ 

MVAPICH Web Page 
http://mvapich.cse.ohio-state.edu/�
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