

Design and Implementation of Key Proposed MPI-3 One-Sided Communication Semantics on InfiniBand

Sreeram Potluri, Sayantan Sur, Devendar Bureddy and Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University, USA

Introduction

- Reduced synchronization overheads, simultaneous use of powerful system resources - key on modern clusters
- Better support through one-sided communication in MPI-2
- Optimized implementation in MVAPICH2
- Limitations in semantics hindered its wider acceptance
- RMA working group proposed several extensions as part of the MPI-3 effort
- Efficient implementation is crucial to highlight their performance benefits, encourage their wide-spread use
- Can the new semantics be implemented with high performance in MVAPICH2?

Overview

MPI-3 One Sided Communication

Synchronization

- Lock_all, Unlock_all
- Win_flush,
 Win_flush_local,
 Win_flush_all,
 Win_flush_local_all
- Win sync

Separate and Unified Windows

Communication

- Get accumulate
- Rput, Rget, Raccumulate, Rget_accumulate
- Fetch_and_op, Compare_and_swap

Accumulate Ordering

Window Creation

- Win_allocate
- Win_create_dynamic, Win_attach, Win_detach

Undefined Conflicting
Accesses

Flush Operations

- Local and remote completions bundled in MPI-2 onesided communication model
- Handled using synchronization operations, requires closure of an epoch
- Overhead in scenarios that require only local completions
- Considerable overhead on networks like IB semantics and cost of local and remote completions are different
 - RDMA Reads and Atomic Ops: CQ event means both local and remote completions
 - RDMA Writes: CQ event only means local completion. Remote completion requires a follow up Send/Recv exchange or an atomic operation.
- Flush operations allow for more efficient check for completions

Flush Operations

- Local completion of Put is efficient using flush
- Completion does not require closure of the epoch

8-core Intel Westmere Nodes connected with InfiniBand QDR IB

Request Based Operations

- Current semantics provide bulk synchronization
- Lack of a way to request completion of individual operations, without closing an epoch
- Does not serve well for fine grained computation and communication overlap
- Request based operations (MPI_Rput, MPI_Rget, and others) return an MPI Request, can be polled for completion
- Added GCP(Get-Compute-Put) Benchmarks in the OSU suite to highlight their benefits

Request Based Operations

GCP Benchmark

MPI_Win_lock
for i in 1, N
 MPI_Get (ith Block)
end for
MPI_Win_unlock

Compute (N Blocks)

MPI_Win_lock
for i in 1, N
 MPI_Put (ith Block)
end for
MPI Win unlock

No Overlap

MPI_Win_lock
for i in 1, N
 MPI_Get (ith Block)
end for
MPI_Win_unlock

MPI_Win_lock
for i in 1, N
 Compute (ith Block)
 MPI_Put (ith Block)
end for
MPI Win unlock

Overlap using Lock-Unlock

MPI_Win_lock
for i in 1, N
 MPI_Rget (ith Block)
end for

MPI_Wait_any (get requests)
while a get request j completes
 Compute (jth Block)
 MPI_Rput (jth Block)
 MPI_Wait_any (get requests)
end while
MPI_Wait_all (put requests)
MPI_Win_unlock

Overlap using Request Ops

Request Based Operations

Request based operations provide superior overlap

8-core Intel Westmere Nodes connected with InfiniBand QDR IB

Dynamic Windows

- Creation of a window is collective on communicator
- A process can attach or detach memory to the window dynamically
- User has to manage exchange and correct use of address information
- MPI Implementations on IB have to manage dynamic exchange of key information to use RDMA
- MVAPICH2 uses a pull model request-for-info sent when the first operation is issued on a region, information is cached
- Request is piggy-backed onto the first data packet for small and medium message sizes

Dynamic Windows

- Dynamic windows can provide performance similar to static windows
- Key exchange overhead is amortized

8-core Intel Westmere Nodes connected with InfiniBand QDR IB

Conclusion and Future Work

- First implementation of features from the proposed onesided communication semantics for MPI-3
- Highlighted their benefits
- Working towards a complete implementation of the proposed MPI-3 one-sided communication standard
- Modifying application benchmarks to show how realworld applications can benefit from the proposed extensions

Thank You!

{potluri, surs, bureddy, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page

http://mvapich.cse.ohio-state.edu/