Design and Implementation of Key Proposed MPI-3
One-Sided Communication Semantics on Inﬁn“i,Band

Sreeram Potluri, Sayantan Sur, Devendar Bureddy
and Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

OHIO
SIATE

Introduction

* Reduced synchronization overheads, simultaneous use
of powerful system resources - key on modern clusters

« Better support through one-sided communication in
MPI-2

* Optimized implementation in MVAPICH2
« Limitations in semantics — hindered its wider acceptance

 RMA working group proposed several extensions as part
of the MPI-3 effort

 Efficient implementation is crucial — to highlight their
performance benefits, encourage their wide-spread use

« Can the new semantics be implemented with high
performance in MVAPICHZ2?

2

OHIO
W

NETWORK-BASED
COMPUTING
LABORATORY

Overview

MPI-3 One Sided Communication

Synchronization

Communication

* Lock_all, Unlock_all

* Win_flush,
Win_flush_local,
Win_flush_all,
Win_flush_local_all

* Win_sync

« Get_accumulate

* Rput, Rget,
Raccumulate,
Rget _accumulate

* Fetch_and_op,
Compare_and_swap

Window Creation

* Win_allocate

* Win_create_dynamic,
Win_attach,
Win_detach

Separate and Unified
Windows

Accumulate Ordering

Undefined Conflicting
Accesses

3

OHIO
W

NETWORK-BASED
COMPUTING
LABORATORY

Flush Operations

* Local and remote completions bundled in MPI-2 one-
sided communication model

 Handled using synchronization operations, requires
closure of an epoch

 Overhead in scenarios that require only local
completions

 Considerable overhead on networks like IB - semantics
and cost of local and remote completions are different

« RDMA Reads and Atomic Ops: CQ event means both local and
remote completions

« RDMA Writes: CQ event only means local completion. Remote
completion requires a follow up Send/Recv exchange or an atomic
operation.

* Flush operations allow for more efficient check for
completions

4

OHIO
W

Flush Operations

—#=Put+Unlock -#-Put+Flush_local “<Put+Flush —“*-Get+Unlock —“Get+Flush_local Get+Flush

10 10

8 & 8 /
—a ,”\ 'a
2 6 - 2 6 A
o g T 1 o
qé 4)’ % = A E 4 Aw_ﬁ Tl ;’—d
= a & & & & = e e e . &

y) 2

0 -W' 0 ‘_,'N|<r|°°I“H°Iqu-looluolmlzlzlxl

1 4 16 64 256 1K 4K megdldn "oy
Message Size (Bytes) Message Size (Bytes)

» Local completion of Put is efficient using flush
« Completion does not require closure of the epoch

8-core Intel Westmere Nodes connected with InfiniBand QDR IB
5

OHIO
SIATE

Request Based Operations

* Current semantics provide bulk synchronization

« Lack of a way to request completion of individual
operations, without closing an epoch

* Does not serve well for fine grained computation and
communication overlap

* Request based operations (MP|_Rput, MPIl_Rget, and
others) return an MPI Request, can be polled for
completion

« Added GCP(Get-Compute-Put) Benchmarks in the OSU
suite to highlight their benefits

6

OHIO
e

Request Based Operations

GCP Benchmark

F

MPI_Win_lock
foriin1, N

MPI_Get (ith Block)
end for
MPI_Win_unlock

Compute (N Blocks)

MPI_Win_lock
foriin1, N

MPI_Put (ith Block)
end for
MPI_Win_unlock

MPI_Win_lock
foriinl, N

MPI_Get (ith Block)
end for
MPI_Win_unlock

MPI_Win_lock
foriinl, N
Compute (ith Block)
MPI_Put (ith Block)
end for
MPI_Win_unlock

MPI_Win_lock
foriinl, N

MPI_Rget (ith Block)
end for

MPI_Wait_any (get requests)

while a get request j completes
Compute (jth Block)
MPI_Rput (jth Block)
MPI_Wait_any (get requests)

end while

MPI_Wait_all (put requests)

MPI_Win_unlock

No Overlap

Overlap using Lock-Unlock

Overlap using Request Ops

7

OHIO
W

Request Based Operations

——Lock-Unlock -i-Request Ops
100
o /g___E/E
£ 80
(V]
>
O 60
S
(0] / M
£ 40 /
(J]
o
Q 20
0 m T T T 1
2K 8K 32K 128K 512K 2M
Message Size (Bytes)

 Request based operations provide superior overlap

8-core Intel Westmere Nodes connected with InfiniBand QDR IB

8
OHIO
SIAIE

Dynamic Windows

 Creation of a window is collective on communicator

« A process can attach or detach memory to the window
dynamically

« User has to manage exchange and correct use of
address information

 MPI Implementations on IB have to manage dynamic
exchange of key information to use RDMA

« MVAPICHZ2 uses a pull model — request-for-info sent
when the first operation is issued on a region,
information is cached

* Request is piggy-backed onto the first data packet for
small and medium message sizes

9

OHIO
W

NETWORK-BASED
COMPUTING
LABORATORY

Dynamic Windows

—-Static Window —<Dynamic Window

OSU Put Latency OSU Put Bandwidth
8 4000
2
] =
: z
=4 £ 2000
£ 3
= € 1000
©
0
O | | | | | | | | | | | | | 1 O ; [I—I [T 1T T 17T 17T T 1T T 171
0 2 8 32 128 512 2K 1 16 256 4K 64K 1M
Message Size (Bytes) Message Size (Bytes)

« Dynamic windows can provide performance similar to static
windows
» Key exchange overhead is amortized

8-core Intel Westmere Nodes connected with InfiniBand QDR IB
10

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Conclusion and Future Work

* First implementation of features from the proposed one-
sided communication semantics for MPI-3

« Highlighted their benefits

« Working towards a complete implementation of the
proposed MPI-3 one-sided communication standard

» Modifying application benchmarks to show how real-
world applications can benefit from the proposed
extensions

11

OHIO
W

Thank Youl!

{potluri, surs, bureddy, panda}@cse.ohio-state.edu

ased
&?J

£
v

",

[

5

P
‘\
-_: MVAPICH

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

12

