NETWORK-BASED
COMPUTING
LABORATORY

CRFS: A Lightweight User-Level Filesystem
for Generic Checkpoint/Restart

Xiangyong Ouyang, Raghunath Rajachandrasekar,
Xavier Besseron, Hao Wang, Jian Huang,
Dhabaleswar K. Panda

Department of Computer Science & Engineering
| The Ohio State University

B

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* |ntroduction and Motivation

» Checkpoint Profiling and Analysis
 CRFS: A lightweight user-level Filesystem
* Performance Evaluation

* Conclusions and Future Work

OHIO
. —————swe o

NETWORK-BASED
COMPUTING
LABORATORY

Introduction

« High Performance Computing (HPC) keeps growing
in terms of scale and complexity
— Mean-time-between-failures (MTBF) is getting smaller
— Fault-Tolerance is becoming imperative
— Checkpoint/Restart is becoming increasingly important

* Checkpoint/Restart (C/R): the most widely adopted
Fault-tolerance approach

— Phase 1: build a global consistent state (suspend
communications)

— Phase 2. create a snapshot of every process, save itto a
shared parallel filesystem

— Phase 3: Resume communications and execution

OHIO
) —————sswe 3

Problems with Basic C/R

« Checkpoint/Restart mechanisms incur intensive 1/O
overhead
x Sheer amount of data
x Simultaneous |10 streams leads to severe contentions
x Large variations of individual process completion time

* A lot of studies to tackle the I/O bottleneck

— Performed inside specific MPI stack or checkpoint library or
applications

x Not portable
x Constrained to certain MPI stacks

OHIO
) ————sswe a4

NETWORK-BASED
COMPUTING
LABORATORY

Problem Statements

« What are the primary causes of intensive |1/O
overhead for Checkpoint / Restart?

* How to design a portable and generic solution
with optimizations to improve C/R performance?

e Can such a portable solution benefit a wide
range of MPI stacks?

« What will be the performance benefits?

OHIO
) —————sswe 5

NETWORK-BASED
COMPUTING
LABORATORY

Outline

» Checkpoint Profiling and Analysis
 CRFS: A lightweight user-level Filesystem
» Performance Evaluation

» Conclusions and Future Work

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

MVAPICH/MVAPICHZ2 Software

« MVAPICH: MPI over InfiniBand, 10GigE/iWARP and
RDMA over Converged Enhanced Ethernet (RoCE)

MVAPICH (MPI-1) and MVAPICHZ2 (MPI-2)
Used by more than 1,650 organizations worldwide (in 63 countries)
Empowering many TOP500 clusters (7, 17t ...)

Available with software stacks of many IB, 10GE/IWARP and RoCE,
and server vendors including Open Fabrics Enterprise Distribution
(OFED)

Available with Redhat and SuUSE Distributions

http://mvapich.cse.ohio-state.edu/

« Has supported Checkpoint/Restart and Process Migration for

the last several years

— Already used by many organizations

OHIO
. ————swe 7

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

—

NETWORK-BASED
COMPUTING
LABORATORY

F

Checkpoint Writing Profiling (1)

Checkpoint Writing information [1]

Write Size % of Writes % of Data % of Time
0-64 50.86 0.04 0.17
64-256 0.61 0.00 0.00 |Lots of
256-1K 0.25 0.01 0.00 |small/median writes
K-4K ___ |- 046 1_____ L3l 0.01_|=> Inefficient 10
<27]_4K-16K 36.49 [1.36 4466 | __--To=
16K-64K 0. 0TT 6.55
64K-256K 0.49 3.79 11.80
256K-512K 0.25 3.58 1.75
SI2K-IM | — 06l |- ___IL.12 [____1472
cz"T> 0.25 61.21 2035 [~ 77T ~===

* NAS Parallel Benchmark - LU.C.64

« Compute nodes: dual Quad-core Xeon,

* MVAPICH2-1.6 with Checkpoint/Restart support

* Checkpoint to ext3

* Checkpoint size: 1,472 MB, VFS write calls per node: 7800

[1] X. Ouyang, K. Gopalakrishnan, D. K. Panda, “Accelerating Checkpoint Operation by Node-Leve Write

OHIO Aggregation on Multicore Systems”, ICPP 2009
i SIATE —

Checkpoint Writing Profiling (2)

Checkpoint Write Time (LU.C.64, 64 processes on 8/rkodes)
R

6
|

Cumulative Write Time
2
|

per process (seconds)
4
|

1e+00 1e+02 1e+04 1e+06
Write size (bytes)
= contentions caused by concurrent writes = wide variation of
completion time.
=Faster process has to wait for slower counterparts
=Slow down checkpoint as a while

OHIO
) ————sswe o

Optimize 10 at Different Layers

Optimizations in specific MPI stacks

Mmm[ol}mw]]" o X C?nly benefit f:ertain MPI
Applications implementations
Checkpointing Library J

User space

Kermnel space
(Ckpt Lib Kernel Module)

(Underlying Filesystem)

= How to get both performance
and portability at the same time?

MVAPICH2 | MPICHZ2 | OpenMPI |__ Generic /'O
Applications
Optimizations in checkpoint library

User space

_ Kernel space x Require changes in kernel modules,
not portable
(Underlying Filesystem)

OHIO
SIATE

Our Approach

MVAPICH2 | MPICH2 MPI .)
[I [DPEH] Generic I/O

Applications

CRFS: a generic
Checkpoint/Restart
Filesystem

Checkpointing Library]

Kernel space

Ckpt Lib Kernel Module)

Underlying Filesystem)

CRFS: a user-level filesystem optimized for checkpoint I/O
\ User-level design: portable

\ Optimizations inside filesystem: transparently benefit a
wide range of MPI stacks and applications

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Outline

 CRFS: A lightweight user-level Filesystem
 Performance Evaluation
 Conclusions and Future Work

OHIO
SIATE

CRFS Design Strategies

 Based on FUSE: user-level filesystem

* Intercepts VFS write system calls

— Aggregates many writes into bigger (fewer) chunks
(better 10 efficiency)

 Internal IO thread pool: asynchronously write
bigger data chunks to back-end filesystem

— Reduce 10 contentions
— ext3, NFS, Luster etc.

OHIO
e —————sswe 13

CRFS Design

MPI processes CRFS
Buffer Pool Work Queue
N
C'heckpoint
Library ead
4 Pool
VFS > noklz Backend Filesystems
VFS Write ext3 | | Lustre | | NFS | ===

Design choices

» Buffer pool size

> 10 thread pool
OHIO
SIALE

NETWORK-BASED
COMPUTING
LABORATORY

Outline

« Performance Evaluation
 Conclusions and Future Work

OHIO
SIATE

Experimental Setup

* Environment

— Dual-socket Quad core Xeon , InfiniBand DDR, Linux 2.6.30,
FUSE-2.8.5

— NAS parallel Benchmark (NPB) 3.3, LU with class B/C/D input
— MVAPICH2-1.6rc3, OpenMPI 1.5.1, MPICH2 1.3.2p1
» With Checkpoint/Restart support

— No modifications to any MPI stacks required
— Backend Filesystem:
« Ext3, NFSv3, Lustre 1.8.3 (3 OSS, 1 MDS, o2ib transport)
 Experiments

— Single node RAW IO bandwidth

* To select proper design parameters

— Checkpoint time with 3 MPI stacks

» Evaluate CRFS performance
— CRFS scalability with varied level of IO multiplexing
— CREFS capability to reduce variation in checkpoint

completion time
OHIO
_

CRFS Raw Write Bandwidth

Chunk Size=128K

|
1,200 ~ @ Chunk Size=256K
[1 Chunk Size=512K
1.000 @ Chunk size=A1M]
’ B Chunk Size=2M
[1 Chunk Size=4M
800 —

600

400

Aggregated Bandwidth (MB/s)

200

AMB 8MB 16MB 32MB 64MB
Buffer Pool Size

8 processes writing concurrently on a node.

v'16 MB buffer pool can generate good throughput
v'128 KB chunk size performs well

v'4 10 threads yield the best performance in most cases

OHIO
T

Checkpoint Sizes

e

// \\\

J/ \
,l' Total | Process
Benchmark MPI Library ! Checkpoint |\ Image Size
1 Size (MB) \ (MB)
MVAPICH2-IB 'l 903.2 | y 7.1
LU.B.128 OpenMPI-IB : 909.1 | | 7.1
MPICH2-TCP | | 4978 | i 3.9
MVAPICH2-IB | | 1,928.7 '; 15.1
OpenMPI-IB | ! 17517 | 1 13.7
LU.C.128 MPICH2-TCP “‘ 1,359.6 .l' 10.7
MVAPICH2-IB \ 13,6539 'i 106.7
OpenMPI-IB \ 13,8649 108.3
LUD.128 MPICH2-TCP ‘\\ 13,261.2!'1 103.6

\
N 4

NETWORK-BASED
COMPUTING
LABORATORY

Checkpoint Time (MVAPICH2)

B Native B Using CRFS

453s

Bl Native B Using CRFS

355s

30
40
|

20

Average local checkpoint time (seconds)
Average local checkpoint time (seconds
20

2 4 o
- _ -
ext3 lustre nfs ext3 lustre nfs
(a) LU.B.128 (b) LU.C.128

E W Native = USiTg;EFE&-; +Single NFS server cannot Handle heavy 10
E E e . *FUSE overhead manifested
@ {
=
S D /
3
8-
e * Lustre: CRFS is 5.5X/4.5X/1.3X faster than
g - S ~ native with class B/C/D inputs
= ext3 lustre nfs ‘Ext3: CRFSis 2.8X/2.2X /1.1X faster than

(c) LUD.128 native with class B/C/D inputs

OHIO
T T T

Checkpoint Time (MPICH2)

B W Native W Using CRFS % : .
S B3s B B Native B Using CRFS
$ E 18.5=
E’ m e e e e e e e e e e e e e e e e E
E e 2
.E D -f
g 5o |
% = — ,..-.--_-:-_.._..-x.;,'..; %
S 11 X 5
oI T [REETIPPPOTRRPPOS ooy URH & =
° [.8s ' E 3
% o L . . R dé‘ o
z ext3 lustre nfs g
=
[El) LU.B.128 (b) LU.C.128
B Native B Using CRFS

157.3 s

150
|

100
|

* Lustre: CRFS is 11X /9.3X/1.3X faster than
native with class B/C/D inputs

Ext3: CRFSis 7X/8X/6.9X faster than native
with class B/C/D inputs

Average local checkpoint time (seconds)

ext3 lustre nfs

(c) LU.D.128

OHIO
. ————esswG 2o

Checkpoint Time (OpenMPI)

m Native ®m Using CRFS
1775

B Native B Using CRFS
273s

a 2]
= 2
Q
g 2w
8, _ g9 -
[®
= ER -
€ =
Eo k<
g 8+]
[&] hd
2 2o
3 52
%D — - 25 © = 04 07s
g %D — ...
=~ ext3 lustre nfs o)
< % ext3 lustre nfs
a) LU.B.128
(@) (by LU.C.128
B Native B Using CRFS

w
-
c
o
3
)
E
=
=
c
o
a
=
3]
@
=
]
©
3]
o
i)
o
@©
Ll
)
>
<

1633 s

100 150
| |

50
|

* Lustre: CRFS is 11.5X/1.4X faster than native
& ~ with class B/D inputs
ext3 lustre nfs eEXt3: CRFS is 5.5X/5.2X/1.6X faster than

(c) LUD.128 native with class B/C/D inputs

T T 77 TS

CRFS: Multiplexing Scalability

Bl Native Lustre B CRFS over Iz_guas;re

10 15 20 25

(seconds)

Verage local checkpoint time
)

<Z-TT ~29.6 % -
T St 1 S<\\\
Number of nodes x Number of processes per node
~30% reduction
LU.D, vary number of processes per node. in ckpt time

*‘Run with MVAPICH2-1.6
*Checkpoint to Lustre w/o CRFS

v'CRFS effectively reduces node-level 10 multiplexing contention
v'Diminish checkpoint writing overhead

OHIO
) —————sswe T 2p

Checkpoint Completion Time

Wide variation of
LU.C.64 completion time

- - Nafive ext3
+— CRFS over ext3

6
|

Cumulative Write Time
2
|

per process (seconds)
4
]

0O
|

| | |
1e+00 1e+02 1e+04
Write size (bytes)
v'CRFS diminishes 10 contentions
v'Reduce the completion waiting = faster resumption of execution

OHIO
) ——————sswe T 23

NETWORK-BASED
COMPUTING
LABORATORY

Outline

 Conclusions and Future Work

OHIO
SIATE

Conclusions

« Checkpoint Writing incurs intensive 1O overhead
— Sheer amount of data, contentions from concurrent writes, wide
variation of write completion
« Existing optimizations are not portable, not generic

« CRFS: a user-level filesystem

v' Portable: a user-level filesystem, work with any MPI stacks
without any modifications

» High Performance: write aggregation, reduced contention,
asynchronous bulk 10

v Generic: Optimizations inside filesystem, can work with any
MPI stacks / 1O intensive applications

OHIO
) —————sswG o5

Future Work

* How to optimize inter-node concurrent |O
using CRFS

* How to extend CRFS to benefit other
generic |0 intensive applications

OHIO
) —————sswe T 2

Thank you!

e

==— MIVAPICH

-

e

http://mvapich.cse.ohio-state.edu

{ouyangx, rajachan, besseron, wangh, huangjia,
panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

OHIO
) ————sswe o7

Related Work

 PLFS [1] (Parall Log Filesystem)
— deal with N-1 sceanrio, cannot handle MPI system
level checkpoint (N-N)
* Optimizations inside MPI library:
— [2]: write aggregation at MPI and BLCR library

* require modifications in kernel module, not portable

— [3]: node-level buffering of data
 specific to only one MPI stack

[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint
filesystem for parallel applications,” in Proc. of SC ’09, 2009.

[2] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating Checkpoint Operation by Node-Level Write
Aggregation on Multicore Systems,” ICPP 2009.

[3] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The design and implementation of checkpoint/restart process fault
tolerance for open mpi,” in 12th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems, 2007.

OHIO
) ——————sswe T og

