
Accelerating Checkpoint Operation by
Node-Level Write Aggregation on

Multicore Systems

Xiangyong Ouyang, Karthik Gopalakrishnan
and Dhabaleswar K. (DK) Panda

Department of Computer Science &
Engineering

The Ohio State University

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation
• Conclusions and Future Work

Motivation

• Mean-time-between-failures (MTBF) is getting smaller as
clusters continue to grow in size
– Checkpoint/Restart is becoming increasingly important

• Multi-core architectures are gaining momentum
– Multiple processes on a same node checkpoint simultaneously

• Existing Checkpoint/Restart mechanisms do’t scale well
with increasing job size
– Multiple streams intersperse their concurrent writes
– A low utilization of the raw throughput of the underlying file

system

Checkpointing a Parallel MPI
Application

• Berkeley Lab’s Checkpoint/Restart (BLCR) solution is
used by many MPI implementations
– MVAPICH2, OpenMPI, LAM/MPI

• Checkpointing a parallel MPI job includes 3 phases
– Phase 1: Suspend communication between all processes

– Phase 2: Use the checkpoint library (BLCR) to checkpoint the
individual processes

– Phase 3: Re-establish connections between the processes and
continue execution

• Phase 2 involves writing a process’ context and
memory contents to a checkpoint file

• Usually this phase dominates the total time to
do a checkpoint

• File system performance depends on data I/O
pattern
– Writing one large chunk is more efficient than multiple

writes of smaller size

Phase 2 of Checkpoint Restart

Problem Statement

• What’s the checkpoint data writing pattern
of a typical MPI application using BLCR?

• Can we optimize the data writing path to
increase the Checkpoint performance?

• What are the costs of the optimizations?

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation
• Conclusions and Future Work

• High Performance MPI Library for InfiniBand and

10GE
– MVAPICH (MPI-1) and MVAPICH2 (MPI-2)

– Used by more than 975 organizations in 51 countries

– More than 32,000 downloads from OSU site directly

– Empowering many TOP500 clusters

• 8th ranked 62,976-core cluster (Ranger) at TACC

– Available with software stacks of many IB, 10GE and server vendors

including Open Fabrics Enterprise Distribution (OFED)

– http://mvapich.cse.ohio-state.edu/

MVAPICH/MVAPICH2 Software

8

Initial Profiling
• MVAPICH2 Checkpoint/Restart framework

– BLCR was extended to provide profiling information
• Intel Clovertown cluster

– Dual-socket Quad core Xeon processors, 2.33GHz
– 8 processor per node, nodes connected by InfiniBand

DDR
– Linux 2.6.18

• NAS parallel Benchmark suite version 3.2.1
– Class C, 64 processes
– Each process on one processor
– Each process writes checkpoint data to a separate file

on a local ext3 file system

Profiled Results
Basic checkpoint writing information
(class C, 64 processes, 8 processes/node)

Sizes of File Write Operations

• The profiling revealed some characteristics of
checkpoint writing
– Most of file writes are associated with small data size

• 60% of writes < 4KB, contribute 1.5% of total data,
consume 0.2% of total write time

– A few large writes
• 0.8% of writes > 512KB, contribute 79% of all data,
 consume 35% of total write time

– Some medium writes in between
• 38% of all writes, contribute 20% of all data,
 consume 65 % of all time

Checkpoint Writing Profile for
LU.C.64

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation
• Conclusions and Future Work

Methodology
• Classify checkpoint writes into 3 categories

• Small writes
– Frequent calls of vfs_write() with small size cause heavy

overhead
– Solution: Aggregate small writes in a local buffer

• Large writes
– Memory copy cost becomes close to file write cost
– Has to consider memory usage
– Solution: Flush large writes directly to checkpoint files

• Medium writes
– Depends on memory-copy cost vs. file write cost
– Solution: Search a threshold

• Size <= threshold: Aggregate in local buffer
• Size > threshold: Flush directly to checkpoint files

Memory-copy vs. File write

• Without aggregation, checkpoint data write overhead
comes from
– Vfs_write to move data to page cache
– Move data from page cache to storage device

• With aggregation, checkpoint data write overhead comes
from
– Memory copy to local buffer
– Vfs_write to move data from local buffer to page cache
– Move data from page cache to storage device

Memory-copy vs. File write
Performance

• Memory-copy cost very low at small size
• Memory-copy cost becomes close to vfs_write at certain size
• A threshold should be determined by

• Relative cost
• Total Memory usage

Write-Aggregation Scheme

• Each node has one IO process (IOP), many
application processes (AP)

• Each AP has a local buffer (for small writes
aggregation)

• A large buffer shared by all APs (for medium
writes aggregation)

Write-Aggregation Scheme

• Small writes (< 512B)
– AP puts it to local buffer

• Medium writes (< threshold)
– AP grabs a free chunk from shared buffer, copy to the chunk

• All writes >= threshold
– AP directly flushes it to checkpoint file

• IOP periodically flushes data in shared buffer to a data
file

• Experiment indicates 64KB to be a good threshold for
current generation platforms

Free bufferdata being writtendata ready to be flushed

Write-Aggregation Design

Circular buffer

Restart

• Each write is encapsulated into a chunk

• At restart,
• Unpack data from the data files
• Rebuild checkpoint file for each AP
• AP calls BLCR library to restart

• Restarts are infrequent, thus slight overhead is OK

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation
• Conclusions and Future Work

Experiments setup

• System setup
– Intel Clovertown cluster

• Dual-socket Quad core Xeon processors, 2.33GHz
• 8 processor per node, nodes connected by InfiniBand
• Linux 2.6.18

– NAS parallel Benchmark suite version 3.2.1
• LU/BT/CG, Class C, 64 processes
• Each process on one processor
• 8 nodes are used
• Each process writes checkpoint data to a separate file on a

local ext3 file system
– MVAPICH2 Checkpoint/Restart framework, with

BLCR 0.8.0 extended with Write-Aggregation Design

Time Cost Decomposition into 3
Phases

• Phase 1: Suspend communication • Phase 2: Checkpoint individual process

• Phase 3: Re-establish connections (Time in milli-seconds)

Overall Checkpoint Time with Write-
Aggregation

At Threshold=16K,64K,
256K,512K, reductions of
checkpoint time are:

• LU.C.64: 10.0%, 13.3%,
26.4%, 30.8%

• BT.C.64: 9.7%, 12.2%,
18.0%, 32.5%

• CG.C.64: 9.4%, 14.1%,
25.0%, 27.5%

Memory Usage at Different
Threshold

Memory Usage in MB

Software Distribution

• Current MVAPICH2 1.4 supports basic Checkpoint-
Restart
• Downloadable from http://mvapich.cse.ohio-state.edu

• The proposed aggregation design will be available in
MVAPICH2 1.5

http://mvapich.cse.ohio-state.edu/

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation
• Conclusions and Future Work

Conclusions

• Write-Aggregation can improve Checkpoint
efficiency in multi-core systems
– Significantly reduces the cost of checkpoint write

• Improvement depends on varied threshold
values
– Larger threshold yields better improvements, but

requires extra amount of memory usage

Future Work

• Larger scale test on different multi-core
platforms
– Study the effectiveness of Write-Aggregation on

platforms with 16/24-cores
– Search the optimal threshold values at given buffer

size, with different memory bandwidth

• Inter-node Write Aggregation
• Usage of emerging Solid State Drive (SSD) to

accelerate Checkpoint-Restart

Thank you !

{ouyangx, gopalakk, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://mvapich.cse.ohio-state.edu

	Accelerating Checkpoint Operation by Node-Level Write Aggregation on Multicore Systems
	Outline
	Motivation
	Checkpointing a Parallel MPI Application
	Slide 5
	Problem Statement
	Slide 7
	MVAPICH/MVAPICH2 Software
	Initial Profiling
	Profiled Results
	Sizes of File Write Operations
	Checkpoint Writing Profile for LU.C.64
	Slide 13
	Methodology
	Memory-copy vs. File write
	Memory-copy vs. File write Performance
	Write-Aggregation Scheme
	Write-Aggregation Scheme
	Write-Aggregation Design
	Restart
	Slide 21
	Experiments setup
	Time Cost Decomposition into 3 Phases
	Overall Checkpoint Time with Write-Aggregation
	Memory Usage at Different Threshold
	Software Distribution
	Slide 27
	Conclusions
	Future Work
	Thank you !

