
Design and Implementation of
Open MPI over Quadrics/Elan4

W. Yu, T.S. Woodall+,
R.L. Graham+ and D.K. Panda

Dept of Computer Sci. and Engg.
The Ohio State University

{yuw,panda}@cse.ohio-state.edu

Los Alamos National Laboratory+

Computer and Computation Science.
{twoodall,rlgraham}@lanl.gov

• Motivation
• Communication Requirements and Objectives
• Design Challenges and Implementation
• Performance Evaluation
• Conclusions

Presentation Outline

• Parallel computing architecture
– Evolving into tens of thousands of processors
– More high performance interconnects

• MPI and MPI-2
– The de facto industry standard
– MPI-2 extends MPI with dynamic process management, IO,

one-side communication, more collectives, language bindings, etc

Cluster Computing

Open MPI

• A new implementation of MPI-2
– Component-based dynamic architecture
– Dynamic, fault tolerant process management
– Concurrent communication over multiple

networks
– Dual-mode communication progress

• Motivation
• Communication Requirements and Objectives
• Design Challenges and Implementation
• Performance Evaluation
• Conclusions

Presentation Outline

Open MPI Communication
• First implemented over TCP/IP

– Able to aggregate messages over multiple NICs
– Delivers comparable performance

• Communication stacks on top of two layers:
– Point-to-point message management layer (PML)

• Message fragmentation and assembly
• Ordered reliable delivery
• Scheduling and striping

– Point-to-point message transport layer (PTL)
• Network specific, managing network status and communication
• Presents communication support to PML

Communication Architecture

collective

Point-to-point

PML

Base PTL-TCP PTL-Elan4

Ethernet Quadrics

Flow of Open MPI Communication

PML PMLPTL PTL
schedule

data/rendezvous
match

matched

update
update

Ack

update

update

update

update
Send

Send

schedule

completecomplete

--shortshort --

PML Requirements to PTL
Communication Support

• Fault-tolerance
– Dynamic joining and disjoining of PTLs
– Communication state monitoring and synchronization

• Concurrent communication
– PML provides abstraction to handle semantics differences

between networks

• Communication progress
– Non-blocking polling-mode and thread-based asynchronous

mode

Overview of Quadrics/Elan4
• Quadrics Network: QsNetII

– Tport (MPI oriented) and SHMEM libraries
– Static communication model between processes
– Hardware-based collectives

• broadcast, barrier

• Communication mechanisms
– Queue-based model

• for messages up to 2KB
– Remote DMA

• Arbitrary size messages. RDMA write/read
– Event mechanism

• Completion notification

Objectives

• Support MPI-2 dynamic processes over Quadrics
• Incorporate Quadrics RDMA capabilities
• Support dual-mode communication progress

• Motivation
• Communication Requirements and Objectives
• Design Challenges and Implementation
• Performance Evaluation
• Conclusions

Presentation Outline

Design Challenges

• Dynamic MPI-2 process model
– Communication Initialization and finalization

• Integrating RDMA Capabilities
– Memory semantics compatibility
– Protocol mapping

• Communication Progress
– How to support asynchronous progress?

Dynamic MPI-2 Process Pool

• Communication Initialization and
finalization
– Break the coupling of MPI Rank and VPID
– Remove the reliance on Global virtual

memory
– Allocate a capability with more contexts
– Support dynamic and synchronized joining

and disjoining of processes

Integrating RDMA Capabilities

• Memory Descriptor
– Right now, an expansion with Elan4_Addr

• Communication and Completion notification
– Using RDMA write/read
– FIN with RDMA write
– FIN_ACK with RDMA read

• Optimization
– Chains the control message with RDMA
– Provides fast, automatic transmission of control messages

RDMA Write
PML PMLPTL PTL

schedule
Data/rendezvous

match

matched

update

update

update

update
Ack

RDMA Write

FIN

schedule

completecomplete

RDMA Read
PML PMLPTL PTL

schedule
Data/rendezvous

match

matched

update

update

update

RDMA Read

FIN_ACK completecomplete

Communication Progress

• Non-blocking Polling Mode
– PML iteratively checks all outstanding send

and receive queues

• Thread-base asynchronous communication
– Two thread based Communication Progress

• One for the local completion of DMA descriptors
• Another for the completion of incoming QDMA messages

– One thread-based communication progress
• QDMA messages + local DMA completion to a combined queue

• RDMA completion can only be detected with
a separated event.

• The event mechanism
– Supports the completion of N DMA operations

with a count N
– Cannot have one thread per RDMA descriptor

Challenges in Asynchronous
Progress with RDMA

Chained Event
• Is it possible to use events with a count N for

shared completion?

Possible Race Condition?

Chained Event + QDMA

• Motivation
• Communication Requirements and Objectives
• Design Challenges and Implementation
• Performance Evaluation
• Conclusions

Presentation Outline

• Experimental Testbed:
– A Quadrics cluster: QS-8A switch, Elan4 cards
– Dual-SMP Intel Xeon 3.0GHz Processors
– PCI-X 133MHz/64bit
– 533MHz FSB
– 1GB SDRAM memory

• Experimental Results
– Performance with different numbers of completion queues
– Communication cost in different layers
– Threading cost

– Overall performance66MHz/64bit PCI bus

Performance Evaluation

Basic Performance with
RDMA Read and Write

• RDMA read performs better than RDMA write
• Rendezvous Message without inline data improves performance
• memcpy() is replacing the sophisticated datatype engine for

Performance with Chained DMA
and Completion Queues

• Chain DMA provides little performance improvement
• ~1us penalty for shared completion queue
• No performance difference with one-Queue or two Queue

Measuring Communication Cost

PML

PTL

Sender Receiver

Network
abb a

L1

L2

• L1: PML cost
• L2: PTL latency

Communication Cost in
Different Layers

oo PML has about 0.5us overheadPML has about 0.5us overhead
oo Compared to QDMA, PTL/Elan4 has virtually no overheadCompared to QDMA, PTL/Elan4 has virtually no overhead

for 0-byte messages.for 0-byte messages.

Thread-Based Progress

Performance Analysis of Thread-based Progression
(in us)

47.7232.8027.1615.25RDMA-Read
 (4KB)

27.5022.7614.703.87RDMA-Read
(4B)

Two-ThreadsOne-ThreadInterruptBasicMesg Length

oo Open MPI Open MPI w/ w/ PTL/Elan4 thread-based progression hasPTL/Elan4 thread-based progression has
18us18us overhead overhead

oo ~1us~1us due to shared completion queue due to shared completion queue
oo ~9us~9us due to interrupts, ~8us due to interrupts, ~8us due to threading due to threading

Overall Performance
- Latency

oo Open MPI Open MPI w/ w/ PTL/Elan4 achieves similar latency for largePTL/Elan4 achieves similar latency for large
messages, compared to messages, compared to MPICH-QsNetMPICH-QsNet

oo For small messages, Open MPI For small messages, Open MPI w/ w/ PTL/Elan4PTL/Elan4 hashas higherhigher
cost due to its host-based receive queue and tag matchingcost due to its host-based receive queue and tag matching

Overall Performance
- Bandwidth

oo Open MPI Open MPI w/ w/ PTL/Elan4 has slightly lower PTL/Elan4 has slightly lower bandwithbandwith
compared to compared to MPICH-QsNet MPICH-QsNet for small and large messagesfor small and large messages

oo For medium messages, Open MPI For medium messages, Open MPI w/ w/ PTL/Elan4PTL/Elan4 hashas
significant bandwidth because it does no pipeliningsignificant bandwidth because it does no pipelining

• Motivation
• Communication Requirements and Objectives
• Design Challenges and Implementation
• Performance Evaluation
• Conclusions

Presentation Outline

Conclusions
• Designed and implemented Open MPI over

Quadrics/Elan4
• Integrated Quadrics RDMA capabilities
• Provided dual-mode communication progress
• Support dynamic MPI-2 process model over Quadrics

Web Pointers

Homepage: http://nowlab.cis.ohio-state.edu

NBC-LAB

