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• Parallel computing architecture
– Evolving into tens of thousands of processors
– More high performance interconnects

• MPI and MPI-2
– The de facto industry standard
– MPI-2 extends MPI with dynamic process management, IO,

one-side communication, more collectives, language bindings, etc

Cluster Computing



Open MPI

• A new implementation of MPI-2
– Component-based dynamic architecture
– Dynamic, fault tolerant process management
– Concurrent communication over multiple

networks
– Dual-mode communication progress
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Open MPI Communication
• First implemented over TCP/IP

– Able to aggregate messages over multiple NICs
– Delivers comparable performance

• Communication stacks on top of two layers:
– Point-to-point message management layer (PML)

• Message fragmentation and assembly
• Ordered reliable delivery
• Scheduling and striping

– Point-to-point message transport layer (PTL)
• Network specific, managing network status and communication
• Presents communication support to PML



Communication Architecture
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Flow of Open MPI Communication
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PML Requirements to PTL
Communication Support

• Fault-tolerance
– Dynamic joining and disjoining of PTLs
– Communication state monitoring and synchronization

• Concurrent communication
– PML provides abstraction to handle semantics differences

between networks

• Communication progress
– Non-blocking polling-mode and thread-based asynchronous

mode



Overview of Quadrics/Elan4
• Quadrics Network: QsNetII

– Tport (MPI oriented) and SHMEM libraries
– Static communication model between processes
– Hardware-based collectives

• broadcast, barrier

• Communication mechanisms
– Queue-based model

• for messages up to 2KB
– Remote DMA

• Arbitrary size messages. RDMA write/read
– Event mechanism

• Completion notification



Objectives

• Support MPI-2 dynamic processes over Quadrics
• Incorporate Quadrics RDMA capabilities
• Support dual-mode communication progress
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Design Challenges

• Dynamic MPI-2 process model
– Communication Initialization and finalization

• Integrating RDMA Capabilities
– Memory semantics compatibility
– Protocol mapping

• Communication Progress
– How to support asynchronous progress?



Dynamic MPI-2 Process Pool

• Communication Initialization and
finalization
– Break the coupling of MPI Rank and VPID
– Remove the reliance on Global virtual

memory
– Allocate a capability with more contexts
– Support dynamic and synchronized joining

and disjoining of processes



Integrating RDMA Capabilities

• Memory Descriptor
– Right now, an expansion with Elan4_Addr

• Communication and Completion notification
– Using RDMA write/read
– FIN with RDMA write
– FIN_ACK with RDMA read

• Optimization
– Chains the control message with RDMA
– Provides fast, automatic transmission of control messages



RDMA Write
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RDMA Read
PML PMLPTL PTL

schedule
Data/rendezvous

match

matched

update

update

update

RDMA Read

FIN_ACK completecomplete



Communication Progress

• Non-blocking Polling Mode
– PML iteratively checks all outstanding send

and receive queues

• Thread-base asynchronous communication
– Two thread based Communication Progress

• One for the local completion of  DMA descriptors
• Another for the completion of incoming QDMA messages

– One thread-based communication progress
• QDMA messages + local DMA completion to a combined queue



• RDMA completion can only be detected with
a separated event.

• The event mechanism
– Supports the completion of N DMA operations

with a count N
– Cannot have one thread per RDMA descriptor

Challenges in Asynchronous
Progress with RDMA



Chained Event
• Is it possible to use events with a count N for

shared completion?



Possible Race Condition?



Chained Event + QDMA
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• Experimental Testbed:
– A Quadrics cluster: QS-8A switch, Elan4 cards
– Dual-SMP Intel Xeon 3.0GHz Processors
– PCI-X 133MHz/64bit
– 533MHz FSB
– 1GB SDRAM memory

• Experimental Results
– Performance with different numbers of completion queues
– Communication cost in different layers
– Threading cost

– Overall performance66MHz/64bit PCI bus

Performance Evaluation



Basic Performance with
RDMA Read and Write

• RDMA read performs better than RDMA write
• Rendezvous Message without inline data improves performance
• memcpy() is replacing the sophisticated datatype engine for



Performance with Chained DMA
and Completion Queues

• Chain DMA provides little performance improvement
• ~1us penalty for shared completion queue
• No performance difference with one-Queue or two Queue



Measuring Communication Cost
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• L1: PML cost
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Communication Cost in
Different Layers

oo PML has about 0.5us overheadPML has about 0.5us overhead
oo Compared to QDMA, PTL/Elan4 has virtually no overheadCompared to QDMA, PTL/Elan4 has virtually no overhead

for 0-byte messages.for 0-byte messages.



Thread-Based Progress

Performance Analysis of Thread-based Progression
(in us)

47.7232.8027.1615.25RDMA-Read
 (4KB)

27.5022.7614.703.87RDMA-Read
(4B)

Two-ThreadsOne-ThreadInterruptBasicMesg Length

oo Open MPI Open MPI w/ w/ PTL/Elan4 thread-based progression hasPTL/Elan4 thread-based progression has
18us18us overhead overhead

oo ~1us~1us due to shared completion queue due to shared completion queue
oo ~9us~9us due to interrupts, ~8us due to interrupts, ~8us due to threading due to threading



Overall Performance
- Latency

oo Open MPI Open MPI w/ w/ PTL/Elan4 achieves similar latency for largePTL/Elan4 achieves similar latency for large
messages, compared to messages, compared to MPICH-QsNetMPICH-QsNet

oo For small messages, Open MPI For small messages, Open MPI w/ w/ PTL/Elan4PTL/Elan4  hashas  higherhigher
cost due to its host-based receive queue and tag matchingcost due to its host-based receive queue and tag matching



Overall Performance
- Bandwidth

oo Open MPI Open MPI w/ w/ PTL/Elan4 has slightly lower PTL/Elan4 has slightly lower bandwithbandwith
compared to compared to MPICH-QsNet MPICH-QsNet for small and large messagesfor small and large messages

oo For medium messages, Open MPI For medium messages, Open MPI w/ w/ PTL/Elan4PTL/Elan4  hashas
significant bandwidth because it does no pipeliningsignificant bandwidth because it does no pipelining
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Conclusions
• Designed and implemented Open MPI over

Quadrics/Elan4
• Integrated Quadrics RDMA capabilities
• Provided dual-mode communication progress
• Support dynamic MPI-2 process model over Quadrics



Web Pointers

Homepage: http://nowlab.cis.ohio-state.edu
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