
Swapping to Remote Memory over InfiniBand: An 
Approach using a High Performance 

Network Block Device

Shuang Liang, Ranjit Noronha, D.K. Panda

Department of Computer Science and Engineering
The Ohio State University

Email: {liangs,noronha,panda}@cse.ohio-state.edu



Presentation Outline

• Introduction
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusions and Future Work



Application Trends

• Applications are becoming increasingly data 
intensive with high memory demand
– Larger working set for a single application, such 

as data warehouse application, scientific 
simulation, etc.

– Memory resources in a single node of a cluster 
system may not be able to accommodate the 
working set in memory, while some other node 
may host plenty of memory unused



Utilizing Remote Memory

• Can we utilize those remote memory 
to improve the applications 
performance?
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Motivation
• Emergence of commodity high performance 

network such as InfiniBand
– Offloaded transport protocol stack
– User-level communication bypass OS
– Low latency 
– High bandwidth comparable to local memcpy performance
– Novel hardware features such as Remote Direct Memory 

Access (RDMA) with minimal host overhead
• Can we utilize these features to boost sequential 

data intensive applications? And how?



Approaches
• Global memory management [Feeley95]

– Close integration with virtual memory 
management

– Implementation Complexity and poor portability
• User level run-time libraries [Koussih95]

– Application aware interface
– Additional management layer in user space

• Remote paging[Markatos96]
– Flexible
– Moderate implementation effort
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Problem Statement
• Enable InfiniBand cluster to take 

advantage of remote memory by remote 
paging
– Enhance the local memory hierarchy 

performance 
– Deliver high performance
– Enable application to benefit transparently

• Evaluate the network performance impact
– Comparisons of remote paging with GigE, IPoIB

and InfiniBand native communication
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Design Choices
• Kernel Level Design

– Pros: 
• Transparency to 

applications
• Beneficial to processes 

in the system
• Take advantage of 

virtual memory system 
management for page 
management

– Cons:
• Dependency on OS
• Not easy to debug

• User Level Design
– Pros:

• Portable across 
different OSes

• Easier to debug

– Cons
• Not completely 

transparent to 
application

• Beneficial only to 
application using the 
user-level library

• High overhead with 
user-level signal 
handling



Network Block Device
• A software mechanism to utilize remote block 

based resources over network
– Examples: NBD, ENBD, DRBD, GNBD, etc.
– Often used to export remote disk resources to provide 

storage, such as RAID device, mirror device, etc.
• Use Ramdisk based Network Block Device as 

swapping device 
– Seamless integration with VM for remote paging
– NBD — a TCP implementation of Network Block Device 

within default kernel source tree can be used for 
comparison study

– An InfiniBand based Network Block Device needs to 
designed



Architecture of the remote 
paging system
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Design Issues

• Memory registration 
and buffer 
management
– Registration is a costly 

operation compared with 
memcpy for small 
buffers

– Pre-registration out of 
the critical path needs 
registration for all 
memory pages

– Paging messages are 
upper bounded by 128KB 
in Linux
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Design Issues (cont’d)

• Dealing with message completions
– Polling based synchronous completion wastes CPU 

cycles 
– None preemptive in kernel mode
– InfiniBand supports event based completion by 

registering asynchronous event handler
• Thread safety

– There could be multiple instances of the driver 
running, mutual exclusion is needed for shared data 
structures

• Reliability issues



Our Design
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Our Design (cont’d)
• Registered buffer pool management

– Use pre-register a buffer pool for page copy 
before communication

• Hybrid completion handling
– Register an event handler with InfiniBand 

transport
– Both client and server block, when there is no 

traffic
– Use polling scheme for bursty incoming 

requests



Our Design (cont’d)
• Reliable communication

– Using RC services

• Flow control
– Use credit based flow 

control

• Multiple server 
support
– Distribute block across 

multiple servers in 
linear mode
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Experiment Setup

• Xeon 2.66GHZ Cluster with 2G DDR 
Memory; 40GB ST340014A Hard disk; 
InfiniBand Mellanox MT23108 HCA

• Memory size configuration:
– 2G for local memory test scenario
– 512M for swapping scenario

• Swapping area setup
– Use Ram disk on memory server as swap area



Latency Comparison
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Micro-benchmark: 
Execution Time
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Quicksort – Execution time
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than swapping to disk



Barnes – Execution time
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Two processes of Quicksort
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Quicksort with multiple 
servers
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Conclusions
• Remote paging is an efficient way to enable 

sequential applications to take advantage 
of remote memory

• Using InfiniBand for remote paging can 
improve the performance, compared with 
GigE and IPoIB. And it is comparable to 
system with enough local memory

• As network speed increase, host overhead 
becomes more critical for further 
performance improvement



Future Work

• Achieve zero copy along the 
communication path to reduce host 
overhead along the critical path

• Dynamic management of idle cluster 
memory for swap area allocation
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