
Swapping to Remote Memory over InfiniBand: An
Approach using a High Performance

Network Block Device

Shuang Liang, Ranjit Noronha, D.K. Panda

Department of Computer Science and Engineering
The Ohio State University

Email: {liangs,noronha,panda}@cse.ohio-state.edu

Presentation Outline

• Introduction
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusions and Future Work

Application Trends

• Applications are becoming increasingly data
intensive with high memory demand
– Larger working set for a single application, such

as data warehouse application, scientific
simulation, etc.

– Memory resources in a single node of a cluster
system may not be able to accommodate the
working set in memory, while some other node
may host plenty of memory unused

Utilizing Remote Memory

• Can we utilize those remote memory
to improve the applications
performance?

Network

Node 1 Node 2
CPU

MEM

NIC
page

CPU

MEM

NIC
page

Motivation
• Emergence of commodity high performance

network such as InfiniBand
– Offloaded transport protocol stack
– User-level communication bypass OS
– Low latency
– High bandwidth comparable to local memcpy performance
– Novel hardware features such as Remote Direct Memory

Access (RDMA) with minimal host overhead
• Can we utilize these features to boost sequential

data intensive applications? And how?

Approaches
• Global memory management [Feeley95]

– Close integration with virtual memory
management

– Implementation Complexity and poor portability
• User level run-time libraries [Koussih95]

– Application aware interface
– Additional management layer in user space

• Remote paging[Markatos96]
– Flexible
– Moderate implementation effort

Presentation Outline

• Background
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusions and Future Work

Problem Statement
• Enable InfiniBand cluster to take

advantage of remote memory by remote
paging
– Enhance the local memory hierarchy

performance
– Deliver high performance
– Enable application to benefit transparently

• Evaluate the network performance impact
– Comparisons of remote paging with GigE, IPoIB

and InfiniBand native communication

Presentation Outline

• Background
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusion and Future Work

Design Choices
• Kernel Level Design

– Pros:
• Transparency to

applications
• Beneficial to processes

in the system
• Take advantage of

virtual memory system
management for page
management

– Cons:
• Dependency on OS
• Not easy to debug

• User Level Design
– Pros:

• Portable across
different OSes

• Easier to debug

– Cons
• Not completely

transparent to
application

• Beneficial only to
application using the
user-level library

• High overhead with
user-level signal
handling

Network Block Device
• A software mechanism to utilize remote block

based resources over network
– Examples: NBD, ENBD, DRBD, GNBD, etc.
– Often used to export remote disk resources to provide

storage, such as RAID device, mirror device, etc.
• Use Ramdisk based Network Block Device as

swapping device
– Seamless integration with VM for remote paging
– NBD — a TCP implementation of Network Block Device

within default kernel source tree can be used for
comparison study

– An InfiniBand based Network Block Device needs to
designed

Architecture of the remote
paging system

Application Application

Virtual Memory Management

Swap
device

Local Disk HPBD

User space

Kernel space

InfiniBand
Network

Memory ServerMemory ServerMemory Server

HCA HCA

Design Issues

• Memory registration
and buffer
management
– Registration is a costly

operation compared with
memcpy for small
buffers

– Pre-registration out of
the critical path needs
registration for all
memory pages

– Paging messages are
upper bounded by 128KB
in Linux

0

50

100

150

200

250

300

350

400

1 2 4 8 1 6 32 6 4 1 2 8
2 56
5 1 2
10 24
2 048
4 0 96
8 192
1 6 38 4
32 768
6 553 6
1 E+05

Memcpy
Registration-Kernel
Registration-UserM

icro second

Size in Bytes
Memory copy is more than 12 times faster

than memory registration for one page

Design Issues (cont’d)

• Dealing with message completions
– Polling based synchronous completion wastes CPU

cycles
– None preemptive in kernel mode
– InfiniBand supports event based completion by

registering asynchronous event handler
• Thread safety

– There could be multiple instances of the driver
running, mutual exclusion is needed for shared data
structures

• Reliability issues

Our Design

Client Memory
Server

Page in request

RDMA Write

Page out request

RDMA Read

Request Ack

Request Ack

• RDMA based server design

Our Design (cont’d)
• Registered buffer pool management

– Use pre-register a buffer pool for page copy
before communication

• Hybrid completion handling
– Register an event handler with InfiniBand

transport
– Both client and server block, when there is no

traffic
– Use polling scheme for bursty incoming

requests

Our Design (cont’d)
• Reliable communication

– Using RC services

• Flow control
– Use credit based flow

control

• Multiple server
support
– Distribute block across

multiple servers in
linear mode

Server 1 Server 2 Server 3

Swap area

1 n 2n ……

Presentation Outline

• Background
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusions and Future Work

Experiment Setup

• Xeon 2.66GHZ Cluster with 2G DDR
Memory; 40GB ST340014A Hard disk;
InfiniBand Mellanox MT23108 HCA

• Memory size configuration:
– 2G for local memory test scenario
– 512M for swapping scenario

• Swapping area setup
– Use Ram disk on memory server as swap area

Latency Comparison

0
200
400
600
800

1000
1200
1400

1 4 16 64 256

1024

4096

16384

65536
Memcpy

IB

IPoIB

GigE

M
icro second

Size in Bytes

InfiniBand native communication latency for one page is 4
times faster than IPoIB and 8 times faster than GigE and 2.4

times slower than memcpy

Micro-benchmark:
Execution Time

0

5

10

15

20

Memory

HPBD

NBD-IPoIB

NBD-GigE

Local-Disk

second

Network Overhead is approximately 30% for IPoIB. Using server based
RDMA further improves the performance for HPBD

Quicksort – Execution time

0

100

200

300

400

500

600

700

Memory

HPBD

NBD-IPoIB

NBD-GigE

Local-Disk

second

HPBD is 1.4 times slower than enough local memory and 4.7 times faster
than swapping to disk

Barnes – Execution time

0
100
200
300
400
500
600
700

Memory HPBD NBD-
IPoIB

NBD-GigE Local-
Disk

second

For slightly oversized working set, HPBD is still 1.4 times faster than
swapping to disk

Two processes of Quicksort

0
2000
4000
6000
8000

10000
12000
14000
16000

process1 process2

512MB memory with
disk swapping

512MB memory with
3*512MB HPBD
Servers

1GB memory with
2*512MB HPBD
Servers

2GB memory

second

Concurrent instances of quicksort run up to 21 times faster than
swapping to disk

Quicksort with multiple
servers

0
50

100
150
200
250
300
350
400

1 server-GigE

1 Server-IPoIB

1 Server

2 Server

4 Servers

8 Servers

16 Servers

second

Maintaining multiple connections does not degrade performance up to 12
servers

Presentation Outline

• Background
• Problem Statement
• Design Issues
• Performance Evaluation
• Conclusions and Future Work

Conclusions
• Remote paging is an efficient way to enable

sequential applications to take advantage
of remote memory

• Using InfiniBand for remote paging can
improve the performance, compared with
GigE and IPoIB. And it is comparable to
system with enough local memory

• As network speed increase, host overhead
becomes more critical for further
performance improvement

Future Work

• Achieve zero copy along the
communication path to reduce host
overhead along the critical path

• Dynamic management of idle cluster
memory for swap area allocation

Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

• Current Equipment donations by

{liangs, noronha, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cis.ohio-state.edu/

Thank You!

