
Designing Multi-Leader based Allgather
Algorithms for Multi-core Clusters

Krishna Kandalla, Hari Subramoni, Gopal
Santhanaraman, Matthew Koop and Dhabaleswar.

K. Panda

Computer Science & Engineering Department
The Ohio State University

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

Introduction and Background
•  MPI is the de-facto programming model for HPC
•  Multi-core clusters are becoming increasingly

common
•  Modern interconnects like InfiniBand offer high-

bandwidth and low-latency
•  The collective communication primitives

consume a significant amount of time
•  Necessary to have multi-core aware collective

designs

Allgather Communication
•  Each process broadcasts a vector data to every other

process in the group
•  Commonly used algorithms :
 • Recursive Doubling (RD) Algorithm for small messages
 tcomm = ts * log(p) + tw * (p -1) * m
 • Ring Algorithm for large messages
 tcomm = (ts + tw * m) * (p -1)
tcomm - Total Communication cost
 ts - Communication start-up cost
 tw - Cost of sending a byte of data
 p - Number of processes
 m - Message Size.

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

Recursive Doubling (RD) Algorithm on
Multi-cores

0
 4
 3
 1
1
 2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 Ring Algorithm on Multi-cores

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Scaling on Multi-cores :
Recursive Doubling Algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

32 64 128 256 512 1024 2048 4096

La
te

nc
y

(u
se

c)

Message Size (Bytes)
 Recursive Doubling (RD) scales poorly with

increasing core counts

16 Cores/Node
8 Cores/Node

Scaling on Multi-cores :
Ring Algorithm

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

8192 16384 32768 65536 131072 262144

La
te

nc
y

(u
se

c)

Message Size (Bytes)
 Ring Algorithm scales as expected with increasing

core counts

16 Cores/Node
8 Cores/Node

Scaling on Large Scale Multi-core
clusters (Recursive Doubling)

0

10000

20000

30000

40000

50000

60000

64 128 256 512 1024 2048 4096 8192

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Recursive Doubling (RD) scales poorly for large

system size

128 Processes

256 Processes

512 Processes

1024 Processes

Scaling on Large Scale Multi-core
clusters (Ring Algorithm)

0

200000

400000

600000

800000

1000000

1200000

16384 32768 65536 131072 262144

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Ring Algorithm scales as expected for

large system sizes

128 Processes
256 Processes
512 Processes
1024 Processes

Problem Statement

•  Is it possible to design an algorithm to :
 - be Multi-core and NUMA aware to achieve

better performance and scalability as core-
counts and system sizes increase?

 - fully exploit the differential memory access costs
in NUMA based Multi-core systems?

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

Collective Design Framework

 Collective Algorithms

Conventional
Schemes

 Pt2pt

Single Leader
Schemes

 Pt2pt Shmem

Existing Multi-core aware
Algorithms

•  Single Leader approaches :
 Aggregation – Distribution .
 Step 1 : Data aggregation at the leader on each node
 Step 2 : Inter leader exchanges
 Step 3 : Data distribution within each node

 Steps 1 and 3 are intra-node operations.
 → Point-to-point MPI calls
 → Shared memory buffer visible to all the processes

 within a node

Single Leader Algorithms : Step1
 intra-node (pt2pt)

 * * *

Single Leader Algorithms : Step2
inter-node (pt2pt)

 * * *

Single Leader Algorithms : Step 3
intra-node (pt2pt)

 * * *

Single Leader Algorithms : Step1
 intra-node (shmem)

 * * *

Single Leader Algorithms : Step1
intra-node (shmem)

 * * *

Single Leader Algorithms : Step2
 inter-node (pt2pt)

 * * *

Single Leader Algorithms : Step 3
intra-node (shmem)

 * * *

Single Leader Algorithms : Step3
intra-node (shmem)

 * * *

Performance of Single Leader
Schemes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

32 64 128 256 512 1024 2048

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Single Leader schemes show potential for

improvement

Single Leader pt2pt
Single Leader shmem
Conventional(RD)

Performance of Single Leader
Schemes

0

5000

10000

15000

20000

25000

1024 2048 4096 8192 16384

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Conventional Ring Algorithm performs better for

larger messages

Single Leader pt2pt
Single Leader shmem
Conventional(Ring)

Performance of Single Leader
Schemes

0

50000

100000

150000

200000

250000

300000

350000

400000

16384 32768 65536 131072 262144

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Conventional Ring Algorithm performs better for larger

messages

Single Leader pt2pt
Conventional(Ring)

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

AMD Barcelona Architecture

 Node
C1 C2

C3 C4

 Socket 1

Mem

HT Links

Mem Mem

Mem

C1 C2

C3 C4

 Socket 2

C1 C2

C3 C4

 Socket 4

C1 C2

C3 C4

 Socket 3

Single Leader algorithms on the AMD
Barcelona Architecture

 Shared Memory buffer
 Leader Process

C1 C2

C3 C4
 Socket 1

Mem

HT Links

Mem Mem

Mem

C1 C2

C3 C4
 Socket 2

C1 C2

C3 C4
 Socket 4

C1 C2

C3 C4
 Socket 3

Proposed Collective Design Framework

 Collective Algorithms

Conventional
Schemes

 Pt2pt

Single Leader
Schemes

 Pt2pt Shmem

Multi Leader
Schemes

 Pt2pt Shmem

Multi-Leader based Algorithms

• Number of leader processes per node
•  Intra-socket and Inter-leader exchange

algorithms.

Multi-Leader based Algorithms(Step 1)

N1
S1

*

S2

 *

S3

 *

S4

 *

N2

 N4 N3
 * * * *

 * * * *

 * * * *

Multi-Leader based Algorithms(Step 2)

N1
S1

*

S2

 *

S3

 *

S4

 *

N2

N4 N3
 * * * *

 * * * *

 * * * *

Multi-Leader based Algorithms(Step 3)

N1
S1

 *

S2

 *

S3

 *

S4

 *

N2

N4 N3
 * * * *

 * * * *

 * * * *

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

Experimental Test-bed

•  Each node of our testbed has 16 AMD Opteron
1.95 Ghz processors with 512 KB L2 cache. We
used 8 nodes.

•  Each node has 16 GB memory and PCI-Express
bus, 2 MT25418 DDR HCAs with PCI-Ex
interfaces.

•  24-port Mellanox switch is used to connect all
the nodes.

•  RedHat Enterprise Linux Server 5. �

Performance of Multi-Leader pt2pt

0
500

1000
1500
2000
2500
3000
3500
4000
4500

32 64 128 256 512 1024 2048

La
te

nc
y

(u
se

c)

Message Size (Bytes)
4-Leader scheme does about 20% better than Single

Leader scheme and 50% better than RD

1 Leader pt2pt
2 Leader pt2pt
4 Leader pt2pt
8 Leader pt2pt
Conventional(RD)

Performance of Multi-leader : Shared
Memory

0

500

1000

1500

2000

2500

3000

3500

4000

4500

32 64 128 256 512 1024 2048

La
te

nc
y

(u
se

c)

Message Size (Bytes)
4-Leader scheme performs better than 1-Leader
scheme by about 25% and 70% better than RD

1 Leader shmem
2 Leader shmem
4 Leader shmem
8 Leader shmem
Conventional(RD)

Performance of Multi-Leader Schemes
(pt2pt Vs Shared Memory)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

32 64 128 256 512 1024 2048

La
te

nc
y

(u
se

c)

Message Size (Bytes)
4-Leader Shared Memory approach performs better
than 4-Leader Point-to-point scheme by about 40%

4-Leader pt2pt
4-Leader shmem
Conventional(RD)

Performance of Multi-Leader schemes on
large scale Multi-cores

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

La
te

nc
y

(u
se

c)

Message Size (Bytes)
4-Leader Point-to-point scheme outperforms the

recursive doubling method on 1024 processes on the
TACC Ranger

1-Leader pt2pt
2-Leader pt2pt
4-Leader pt2pt
8-Leader pt2pt
Conventional(RD)

Performance of Multi-Leader schemes
on large scale Multi-cores

0

20000

40000

60000

80000

100000

120000

140000

160000

1024 2048 4096 8192 16384

La
te

nc
y

(u
se

c)

Message Size (Bytes)
Conventional Ring Algorithm performs better for

larger messages

1-Leader pt2pt
2-Leader pt2pt
4-Leader pt2pt
8-Leader pt2pt
Conventional(Ring)

Proposed Unified Scheme

Intra-Node
Mechanism

Inter-Leader
Algorithm

Design

Small Messages Point-to-Point Recursive
Doubling

Hierarchical

Medium
Messages

Shared
Memory

Recursive /
Ring

Hierarchical

Large Messages Point-to-Point Ring Conventional

Outline

•  Introduction and Background
•  Motivation
•  Related Work
•  Multi-Leader based Algorithms
•  Experimental evaluation
•  Conclusions and Future Work

Conclusions & Future Work

•  Single Leader schemes are limited by scalability and
memory contention. Proposed Multi-Leader schemes
perform show significant performance benefits.

•  Future work:
 - Examine the benefits of using kernel based zero-copy

intra-node exchanges for large messages.
 - A frame-work that can choose leaders in an optimal

manner for emerging multi-core systems.
 - Evaluate the impact of such designs on real-world

applications.

45

http://mvapich.cse.ohio-state.edu

Thank you !

{kandalla, subramon, santhana, koop,
panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

