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Introduction and Background

 MPI is the de-facto programming model for HPC

* Multi-core clusters are becoming increasingly
common

* Modern interconnects like InfiniBand offer high-
bandwidth and low-latency

* The collective communication primitives
consume a significant amount of time

* Necessary to have multi-core aware collective
designs
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Allgather Communication

« Each process broadcasts a vector data to every other
process in the group

« Commonly used algorithms :
« Recursive Doubling (RD) Algorithm for small messages
tcomm =ts *log(p) +tw * (p -1) *m
* Ring Algorithm for large messages
tfcomm = (ts +tw *m) * (p -1)

tcomm - Total Communication cost
ts - Communication start-up cost
tw - Cost of sending a byte of data
p - Number of processes
m - Message Size.
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Scaling on Multi-cores :
Recursive Doubling Algorithm
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Scaling on Multi-cores :
Ring Algorithm
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Scaling on Large Scale Multi-core
clusters (Recursive Doubling)
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Problem Statement

 |s it possible to design an algorithm to :

- be Multi-core and NUMA aware to achieve
better performance and scalability as core-
counts and system sizes increase?

- fully exploit the differential memory access costs
iIn NUMA based Multi-core systems?
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Existing Multi-core aware
Algorithms

« Single Leader approaches :
Aggregation — Distribution .
Step 1: Data aggregation at the leader on each node
Step 2 : Inter leader exchanges
Step 3 . Data distribution within each node

Steps 1 and 3 are intra-node operations.
— Point-to-point MPI calls

— Shared memory buffer visible to all the processes
within a node
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Single Leader Algorithms : Step1 o
intra-node (pt2pt)
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Single Leader Algorithms : Step 3

intra-node (pt2pt)
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Single Leader Algorithms : Step1 o
iIntra-node (shmem)
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Single Leader Algorithms : Step1 o
intra-node (shmem)
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Single Leader Algorithms : Step 3
intra-node (shmem)
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AMD Barcelona Architecture
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Single Leader algorithms on the AMD
Barcelona Architecture
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Proposed Collective Design Framework
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Multi-Leader based Algorithms

 Number of leader processes per node

* Intra-socket and Inter-leader exchange
algorithms.

OHIO
SIATE



PUTING
LA BORATORY

Multi-Leader based Algorithms(Step 1)
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Multi-Leader based Algorithms(Step 2)
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Multi-Leader based Algorithms(Step 3)
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Experimental Test-bed

« Each node of our testbed has 16 AMD Opteron
1.95 Ghz processors with 512 KB L2 cache. We
used 8 nodes.

 Each node has 16 GB memory and PCI-Express
bus, 2 MT25418 DDR HCAs with PCI-EXx
Interfaces.

« 24-port Mellanox switch is used to connect all
the nodes.

 RedHat Enterprise Linux Server 5.
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Performance of Multi-Leader schemes
on large scale Multi-cores
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Conclusions & Future Work

« Single Leader schemes are limited by scalability and
memory contention. Proposed Multi-Leader schemes
perform show significant performance benefits.

 Future work:

- Examine the benefits of using kernel based zero-copy
intra-node exchanges for large messages.

- A frame-work that can choose leaders in an optimal
manner for emerging multi-core systems.

- Evaluate the impact of such designs on real-world
applications.
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