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Introduction and Background 
•  MPI is the de-facto programming model for HPC 
•  Multi-core clusters are becoming increasingly 

common 
•  Modern interconnects like InfiniBand offer high-

bandwidth and low-latency 
•  The collective communication primitives 

consume a significant amount of time 
•  Necessary to have multi-core aware collective 

designs 



Allgather Communication 
•  Each process broadcasts a vector data to every other 

process in the group 
•  Commonly used algorithms :  
      •  Recursive Doubling (RD) Algorithm for small messages 
              tcomm = ts * log(p) + tw * (p -1) * m 
      •  Ring Algorithm for large messages 
             tcomm  = (ts  + tw * m) * (p -1) 
tcomm     - Total Communication cost 
   ts          -  Communication start-up cost 
   tw         -   Cost of sending a byte of data 
   p           -  Number of processes 
   m          -  Message Size.  
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Recursive Doubling (RD) Algorithm on  
Multi-cores 
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 Ring  Algorithm on Multi-cores 
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Scaling on Multi-cores : 
Recursive Doubling Algorithm 
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Scaling on Multi-cores : 
Ring Algorithm 
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Message Size (Bytes) 
 Ring Algorithm scales as expected with increasing 

core counts 
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Scaling on Large Scale Multi-core 
clusters (Recursive Doubling) 
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Message Size (Bytes) 
Recursive Doubling (RD) scales poorly for large 

system size 
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Scaling on Large Scale Multi-core 
clusters (Ring Algorithm) 
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Message Size (Bytes) 
Ring Algorithm scales as expected for 

large system sizes 
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Problem Statement 

•  Is it possible to design an algorithm to : 
 -  be Multi-core and NUMA aware to achieve 

better performance and scalability as core-
counts and system sizes increase?  

 -  fully exploit the differential memory access costs 
in NUMA based Multi-core systems? 
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Collective Design Framework 
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Existing Multi-core aware 
Algorithms 

•  Single Leader approaches :   
     Aggregation – Distribution .  
    Step 1 :   Data aggregation at the leader on each node 
    Step 2 :   Inter leader exchanges 
    Step 3 :  Data distribution within each node 

    Steps 1 and 3 are intra-node operations.  
     →  Point-to-point MPI calls 
     →  Shared memory buffer visible to all the processes 

 within a node 



Single Leader Algorithms : Step1  
 intra-node (pt2pt) 

   *    *      * 



Single Leader Algorithms : Step2 
inter-node (pt2pt) 

   *     *   * 



Single Leader Algorithms : Step 3 
intra-node (pt2pt) 

 *     *  * 



Single Leader Algorithms : Step1 
 intra-node (shmem) 

 *  *  * 



Single Leader Algorithms : Step1  
intra-node (shmem) 

 *  *  * 



Single Leader Algorithms : Step2 
 inter-node (pt2pt) 

 *   *  * 



Single Leader Algorithms : Step 3 
intra-node (shmem) 

 *  *  * 



Single Leader Algorithms : Step3 
intra-node (shmem) 

 *  *  * 



Performance of Single Leader 
Schemes 
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Message Size (Bytes) 
Single Leader schemes show potential for 

improvement 
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Performance of Single Leader 
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Conventional Ring Algorithm performs better for 

larger messages  

Single Leader pt2pt 
Single Leader shmem 
Conventional(Ring) 



Performance of Single Leader 
Schemes 
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Message Size (Bytes) 
Conventional Ring Algorithm performs better for larger 

messages  
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AMD Barcelona Architecture 
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Single Leader algorithms on the AMD 
Barcelona Architecture 
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Proposed Collective Design Framework 
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Multi-Leader based Algorithms 

• Number of leader processes per node 
•  Intra-socket and Inter-leader exchange 

algorithms.  



Multi-Leader based Algorithms(Step 1) 
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Multi-Leader based Algorithms(Step 2) 
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Multi-Leader based Algorithms(Step 3) 
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Experimental Test-bed 

•  Each node of our testbed has 16 AMD Opteron 
1.95 Ghz processors with 512 KB L2 cache. We 
used 8 nodes. 

•  Each node has 16 GB memory and PCI-Express 
bus, 2 MT25418 DDR HCAs with PCI-Ex 
interfaces.  

•  24-port Mellanox switch is used to connect all 
the nodes. 

•  RedHat Enterprise Linux Server 5. �



Performance of Multi-Leader pt2pt 
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Message Size (Bytes) 
4-Leader scheme does about 20% better than Single 

Leader scheme and 50% better than RD 
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Performance of Multi-leader : Shared 
Memory 
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Message Size (Bytes) 
4-Leader scheme performs better than 1-Leader 
scheme by about 25% and 70% better than RD 
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Performance of Multi-Leader Schemes 
(pt2pt Vs Shared Memory) 
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Message Size (Bytes) 
4-Leader Shared Memory approach performs better 
than 4-Leader Point-to-point scheme by about 40% 

4-Leader pt2pt 
4-Leader shmem 
Conventional(RD) 



Performance of Multi-Leader schemes on 
large scale Multi-cores 
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Message Size (Bytes) 
4-Leader Point-to-point scheme outperforms the 

recursive doubling method on 1024 processes on the 
TACC Ranger 
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Performance of Multi-Leader schemes 
on large scale Multi-cores 
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Conventional Ring Algorithm performs better for 

larger messages  
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Proposed Unified Scheme 
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Conclusions & Future Work 

•  Single Leader schemes are limited by scalability and 
memory contention. Proposed Multi-Leader schemes 
perform show significant performance benefits. 

•   Future work:  
   - Examine the benefits of using kernel based zero-copy  

intra-node exchanges for large messages.  
   - A frame-work that can choose leaders in an optimal 

manner for emerging multi-core systems. 
   - Evaluate the impact of such designs on real-world 

applications. 
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