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Introduction

• Scientific research being driven by multi-cores and high-

speed networks

• Supercomputers typically comprise of hundreds of 

thousands of compute cores

• The power consumed by such systems has also 

increased sharply

• “Power” is deemed as one of the major challenges in 

designing next generation exascale systems
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Average Power Consumption of Current 

Generation Supercomputers

• Based on the power measurements of LINPACK benchmark, as 

reported on the Top500 site
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Introduction

• Modern architectures offer fine grained schemes  for 

saving power during idle periods – Frequency, Voltage 

Scaling(DVFS) and CPU Throttling

• Power conservation techniques are typically associated 

with a “delay” leading to performance overheads

• Broad Challenge: Is it possible to design software and 

middleware stacks in a power-aware manner to minimize 

the overall system power consumption, with negligible 

performance overheads? 
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Power Saving Innovations in Current 

Generation Processors and Networks
• Processors (Intel “Nehalem”)

– DVFS 

• Dynamically scale the Frequency and Voltage of the CPU

• Core-level DVFS

• CPU Frequency range [1.6 – 2.4] GHz

– CPU Throttling

• Insert brief idle periods to save power

• Socket-level CPU Throttling

• Multiple Throttling states (T0 – T7) 

– T0 - 100% CPU activity

– T7 - 12% CPU activity

• Networks (InfiniBand)

– Allow offloading significant parts of communication

– Offer “polling” and “blocking” modes of message progression 
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State-Of-The-Art in Power Conservation 

Techniques

• Where can we conserve power?

– Communication phases

• Cameron et al, have proposed and demonstrated the 

utility of PowerPack

• Lowenthal et al - dynamically detect communication 

phases and scale the CPU frequency to save power

• Liu et al, studied power consumption with RDMA based 

networks comparing “blocking” and “polling” modes
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Collective Communication in MVAPICH2

• Scientific parallel applications spend a considerable 

amount of time in collective communication operations

• Multi-core aware and network topology-aware algorithms 

optimize the communication costs

• Current power saving methods treat communication 

phases  as a “black-box” and use DVFS

• Is it possible to re-design collective communication 

algorithms to deliver fine-grained power savings with 

very little performance overheads?
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• Shared memory algorithms significantly improves performance

• Many cores remain idle during collective operations

• Not power efficient
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• Performance in 8-way (4 nodes) configuration 50% worse than the 

4-way (8-nodes) with the same system size
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• Performance in 8-way (4 nodes) configuration 50% worse than the 

4-way (8-nodes) with the same system size

Performance hit when more cores simultaneously involved in 

network transfer
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Problem Statement

• Existing designs use DVFS to save power without 

considering  the nature of the collective algorithms

• Modern architectures  allow DVFS and CPU Throttling 

operations to be performed within a few micro-seconds

• Can we re-design collective communication algorithms in 

a power-aware manner taking into consideration the 

nature of the collective operation? 

• What is the impact on performance? 

• What architectural features can allow for more power 

savings with smaller performance overheads? 
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Design Space of Power-Aware Algorithms

Default (No Power Savings): Run each core at peak 

frequency/throttling state. 

Frequency Scaling Only: Dynamically detect communication 

phases. Treat them as a black-box and scale the CPU 

frequency

Proposed: Consider the communication characteristics of 

different collectives, intelligently use both DVFS and CPU 

Throttling to deliver fine-grained power-savings
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Proposed Approach

• Apply DVFS to scale down the frequency of all cores to 

the lowest  level at the start of the collective operation 

• Look for opportunities within the algorithms to use CPU 

Throttling to specific sets of cores of save more power

• Reset the state of the cores to the normal power settings 

while exiting collective operations
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• Core-level CPU throttling would allow leaving leader 

core at high power state

• Lesser performance overhead 
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• Only half the cores communicate at one time

• CPU throttling leads to better power savings 
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Experimental Setup

• Compute platforms
– Intel Nehalem

• Intel Xeon E5530 Dual quad-core processors operating at 2.40 GHz

• 12GB RAM, 8MB cache

• PCIe 2.0 interface

• Network Equipments
– MT26428 QDR ConnectX HCAs

– 36-port Mellanox QDR switch used to connect all the nodes

• Red Hat Enterprise Linux Server release 5.3 (Tikanga)

• OFED-1.4.2

• MASTECH MS2205 Clamp Power Meter to measure 

instantaneous power consumption
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Experimental Setup (Cont)

• MVAPICH2 – A High Performance MPI implementation 

over InfiniBand and other RDMA networks  (v1.5.1)

– http://mvapich.cse.ohio-state.edu/

– Used by more than 1255 organizations world-wide

• Benchmarks

– Micro-Benchmarks: OSU Microbenchmark Suite

– Application Benchmarks: CPMD and NAS

• Estimated power savings with applications based on 

observations with micro-benchmarks. 
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Blocking mode performs worse than polling mode for Alltoall
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NAS FT (Class C) 32 and 64 Processes
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Conclusions & Future Work
• Proposed and designed novel power-aware collective algorithms

• Designs deliver fine-grained power savings with little performance 

overheads 

– 33% savings in instantaneous power consumption with micro-benchmarks 

– Overall estimated energy savings of up to 8% with applications

• Core-level CPU throttling could potentially lead to better power-savings 

with smaller performance overheads

• Extend these designs to other collective operations and study the 

potential for saving power at larger scales

• These designs will be made available in future MVAPICH2 releases
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Thank you!

{kandalla, mancini, surs, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory,

Ohio State University
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