NETWORK-BASED
I NerwoRKBasED [

LABORATORY

UPC Queues for Scalable Graph Traversals:
Design and Evaluation on InfiniBand Clusters

Jithin Jose, Sreeram Potluri, Miao Luo,
Sayantan Sur & D. K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

OHIO
SIAIE

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

OHIO
SIAIE

N 101 2a5en
Introduction

 PGAS languages getting more & more popular
— Ease of programmability
— Control of data layout

— Shared memory abstraction on distributed memory
systems

« UPC - one of the most popular PGAS language
« Graphs — ubiquitous model in analytical workloads

« Graph Benchmarks
— Graph500 (http://www.graph500.0rQ)
— Unbalanced Tree Search (UTS)

« We focus on “UPC for Graph Algorithms / Irregular
Applications”

3

OHIO
_

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

OHIO
SIAIE

1 - 1.05/c2ASED
COMPUTING

Motivation

« Graphs — powerful representations of relations,
process dynamics

— Used in a variety of Scientific & Engineering fields

— Basic graph algorithms are key components in many real-
life applications

 Irregular Communication Characteristics
— Uses load balancing - work stealing, work sharing
— Producer-Consumer relationship exists

 How to express producer-consumer relationships in
UPC?

5

OHIO
_

1 - 1.05/c2ASED
COMPUTING

. LABORATORY
Expressing Producer-Consumer
Relationships in UPC
 UPC Locks

— upc_lock()/upc_unlock() to provide mutual exclusion

— Easy to use

— Lock contention

— Each transaction translates to 3 messages over network

* Replicating Resources
— Consumers keep dedicated receive buffers for each producer
— Better performance than locks
— Polling overhead, Increased memory requirement O(N)

nmmm

UPC Locks 135 610 2610
Replicating Resources 6 31 138 610
Average Transaction Time (us) 6

OHIO
SIAIE

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

OHIO
SIAIE

NETWORK-BASED
I — nerwoRCBASED [

LABORATORY

Problem Statement

What are the challenges involved in implementing
producer-consumer relationships in UPC?

How can these be addressed?

* How to redesign applications using new schemes?
What would be the impact on performance?

OHIO
SIATE

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

OHIO
SIAIE

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Overview of UPC Queues

* Provides an easy way to express producer-consumer
relationships

* Producer just puts data onto the consumer queue
« Better programmability

« Optimized network utilization

« Suits well for irregular applications

10
OHIO
SIATE

1 - 1.05/c2ASED
COMPUTING

LABORATORY

UPC Queues — Operations

®* upc_dgqueue create()
— Collective call, initializes queue
— Input arguments to enable/disable coalescing, configure bucket size

— Returns a handle to be used
in subsequent queue operations

e upc queue_endqueue()/upc_queue dequeue()
— Enqueues/dequeues queue item
— Buffer/Send queue item based on coalescing option
e upc _queue flush()
— Used only if coalescing is enabled
— Flushes out local buffers

* upc_dqueue_destroy()
— Collective call

— Releases any resources allocated for the queue
11

OHIO
_

1 - 1.05/c2ASED
COMPUTING

UPC Queues - Design

CRmmesytm
UPCR API | Proposed |
« Key design characteristics Lt
— Programmability Y
— Scalability (Active Message9) e Sopport)
— Low latency GASNet Communication System
— Portability Network Hardware

* Implemented in UPC Runtime (UPCR) layer
« Coalescing for better network utilization (optional)
« Buckets for ‘true’ consumers

« Uses Active Messages for sending queue items
— Implemented over ‘medium’ active message

« Can be used with any network conduit
12

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

UPC Queues — Operation

UPC App upc_queue enqueue(Tj data) éupc_queue_dequeue(&data)

1
uPC P
Runtime —
n-
(Buckets for buffering)
GASNet @ s
System
(UPC Thread i) : E (UPC Thread j)

(1) Enqueue Operation — (Buffering)
(2) Sending out the queue item over Active Message
(3) Buffering at Receiver Side

(4) Dequeue Operation — dequeues from buffer 13

OHIO
SIAIE

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

14
OHIO
SIAIE

NETWORK-BASED
I — nerwoRCBASED [

LABORATORY

Redesigning Graph Benchmarks using
UPC Queues

* Graph500
« Unbalanced Tree Search

15
OHIO
SIATE

1 - 1.05/c2ASED
COMPUTING
LABORATORY

« Set of benchmarks to evaluate scalability of
supercomputing clusters

— Data Intensive & Irregular communication pattern
— http://www.graph500.org/

— Announced at ISC’10 & first ranking appeared at SC’10

« 3 Comprehensive benchmarks
— Search, Optimization & Edge Oriented
— Sequential, OpenMP, XMT and MPI implementations available

* Developed UPC version of Concurrent Search benchmark

— First UPC implementation (to the best of our knowledge)

— Based on Graph500 Specification v1.2
16

OHIO
_

1 - 1.05/c2ASED
COMPUTING

UPC Implementation

« Concurrent Search kernel
— Breadth First Search traversal
— Graph generated in Compressed Sparse Row (CSR) format
— CSRis distributed among UPC threads

 Visited vertices need to be given to Owner’ UPC
threads for traversing successor vertices

* Level synchronization

* Design Evaluations
— Replication of Resources (replicate resource)

— UPC Queues (queues) o

OHIO
_

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Unbalanced Tree Search (UTS)

Exhaustive Search on an Tree with dynamic load

balancing
— http://barista.cse.ohio-state.edu/wiki/index.php/UTS

— UPC, Shmem, MPI, OpenMP, Pthreads, Chapel, X10 versions
available

Tree constructed on the fly
Variation in the sizes of subtrees at different nodes

— Load balancing required

Work-stealing and work-sharing versions available

18

OHIO
_

N 101 2a5en
UTS Enhancement

« Used ‘uts _upc_enhanced’ benchmark as reference
— |dle UPC threads request for work

— Request made using a shared resource protected using
upc_lock()
— Response by updating a shared resource
* New design using Queues
— Uses Queues for requests/response
* Design Evaluations
— Release Version 1.1 of ‘uts_upc_enhanced’ (base version)

— New implementation using Queues (queue)

19

OHIO
_

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

20
OHIO
SIAIE

NETWORK-BASED
I — nerwoRCBASED [

LABORATORY

Performance Evaluation

« Experimental Setup
 Microbenchmark Evaluations

« Evaluation using Graph Benchmarks
— Graph500
— Unbalanced Tree Search (UTS)

21
OHIO
SIATE

1 - 1.05/c2ASED
COMPUTING

Experimental Platform

* Intel Westmere Cluster
— 144 Compute nodes

— Each node has 8 processor cores on 2 Intel Xeon 2.67 GHz Quad-
core CPUs

— 12 GB main memory, 160 GB hard disk

- MT26428 QDR ConnectX HCAs (36Gbps)
— Red Hat Enterprise Linux Server 5.4 (Tikanga)

* Berkeley UPC 2.12.2
~ GASNet-IBV
~ GASNet-UCR

 MVAPICH (v1.2) library used in microbenchmark
evaluations

22

OHIO
_

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Unified Communication Runtime (UCR)

Aims to unify communication runtimes of different parallel

programming models

— J.Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes:
Experience with MVAPICH, (PGAS’10)

* Design of UCR evolved from MVAPICH/MVAPICHZ2 software
stacks (http://mvapich.cse.ohio-state.edu/)

« UCR provides interfaces for Active Messages as well as one-
sided put/get operations

* Multi-end point design

— M. Luo, J. Jose, S. Sur and D. K. Panda, Multi-threaded UPC Runtime with
Network Endpoints: Design Alternatives and Evaluation on Multi-core
Architectures, (HIPC’11)

UCR in Data Center domain

— J. Jose, H. Subramoni, M. Luo, S. Sur, D. K. Panda, et al., Memcached Design
on High Performance RDMA Capable Interconnects, (ICPP’11)

23
OHIO
SIATE

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Performance Analysis - Latency

Size (bytes)

8 16 32 64 128 256 512 1K 2K

(Latency - 128 procs)
OHIO
SIAITE

80 —=®=UPC(queue) ==MPI 700 -~ L
_f;jUPC(resource replication) “**UPC(locks) 600 - f
00 7 Mg 500 -
340 400 -
=10 -
E 300 -
20 - t 200 7 P
326 g 32,03 R
1 2 4 8 16 32 64 128 256 512 1K 2K 0" 4 8 16 32 64 128 256 512 1K 2K
Size (bytes) Size (bytes)
1600 -
1400 - . e
Ll

1200 | *=
1000 - UPC Queues perform better than other
800 - schemes

600 - For 128 process run

p e - 54% improvement over replication of
200 1 - - = il - -

e e resources

- 16% improvement than MPI
24

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Performance Analysis - Scalabilty

3000 -
=0=UPC(queue)
2500 - “E=MP
2000 - UPC (notification array)

=»e=UPC (locks)

Time (us)
=
[9)]
o
o
|

1000 - Even better

than MPI
500 - '

= a a
8

16 32 64 128 256
Number of processes

(Scalability Analysis - 128 byte queue item)

* UPC Queues scales well
* For 256 process run
- 55% improvement over resource replication
- 23% improvement over MPI 25

OHIO
SIAIE

1 - 1.05/c2ASED
COMPUTING

Graph500 Results

10
g M UPC (replicate resources) [ibv]
A
g - M UPC (replicate resources) [ucr]
7 - H UPC (queue) [ibv] 30%
6 B UPC (queue) [ucr]
3
@ S
£
=
4
3
2
1
0
64 128 256 512 1024
No. of processes (8per node)
« Workload — Scale:24, Edge Factor:16 (16 million vertices, 256 million edges)
* 44% Improvement over base version for 512 UPC-Threads
« 30% Improvement over base version for 1024 UPC-Threads 26

OHIO
SIAIE

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Unbalanced Tree Search

M UPC (base version) [ibv]

180

160 -
M UPC (base version) [ucr] $ 10%

S UPC (queue) [ibv]

M UPC (queue) [ucr]

64 128 256 512 1024
No. of processes (8per node)

« Workload - T1WL (270 billion nodes)
* 14% Improvement over base version for 512 UPC-Threads

* 10% Improvement over base version for 1024 UPC-Threads 21
OHIO
SIAIE

| /0% <5450 [
LABORATORY
Outline

e |ntroduction

e Motivation

e Problem Statement

e UPC Queues

e Redesigning Applications using UPC Queues
e Performance Evaluation

e Conclusion & Future Work

28
OHIO
SIAIE

1 - 1.05/c2ASED
COMPUTING

LABORATORY

Conclusion & Future Work

* Introduced UPC Queues concept
— Suits for producer-consumer relationship implementations
— Least overhead & Highly Scalable
— Easy to use API’s

« Performance Improvements

— Graph500 - 44% and 30% for 512 & 1024 UPC-thread runs
respectively

— UTS - 14% and 10% for 512 & 1024 UPC-thread runs
respectively
* |n this work, we accentuate on the concept, not the API
syntax
— Queue API's can be molded to match UPC style

— Use of efficient compiler translation techniques possible
29

OHIO
_

NETWORK-BASED
COMPUTING
LABORATORY

Thank Youl!

{jose, potluri, luom, surs, panda}@cse.ohio-state.edu

ased
P

£
7

N N
4 =— MVAPICH

Laboratoty N

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

OHIO
SIATE

