

Supporting iWARP Compatibility and Features for Regular Network Adapters

P. Balaji

H. –W. Jin

K. Vaidyanathan

D. K. Panda

Network Based Computing Laboratory (NBCL)

Ohio State University

Ethernet Overview

- Ethernet is the most widely used network infrastructure today
- Traditionally Ethernet has been notorious for performance issues
 - Near an order-of-magnitude performance gap compared to other networks
 - Cost conscious architecture
 - Most Ethernet adapters were regular (layer 2) adapters
 - Relied on host-based TCP/IP for network and transport layer support
 - Compatibility with existing infrastructure (switch buffering, MTU)
 - Used by 42.4% of the Top500 supercomputers
 - Key: Reasonable performance at low cost
 - TCP/IP over Gigabit Ethernet (GigE) can nearly saturate the link for current systems
 - Several local stores give out GigE cards free of cost!
- 10-Gigabit Ethernet (10GigE) recently introduced
 - 10-fold (theoretical) increase in performance while retaining existing features

Ethernet: Technology Trends

- Broken into three levels of technologies
 - Regular Ethernet adapters [feng03:hoti, feng03:sc, balaji04:rait]
 - Layer-2 adapters
 - Rely on host-based TCP/IP to provide network/transport functionality
 - Could achieve a high performance with optimizations
 - TCP Offload Engines (TOEs) [balaji05:hoti, balaji05:cluster]
 - Layer-4 adapters
 - Have the entire TCP/IP stack offloaded on to hardware
 - Sockets layer retained in the host space
 - iWARP-aware adapters [jin05:hpidc, wyckoff05:rait]
 - Layer-4 adapters
 - Entire TCP/IP stack offloaded on to hardware
 - Support more features than TCP Offload Engines
 - No sockets! Richer iWARP interface!
 - E.g., Out-of-order placement of data, RDMA semantics

Current Usage of Ethernet

Problem Statement

- Regular Ethernet adapters and TOEs are completely compatible
 - Network level compatibility (Ethernet + IP + TCP + application payload)
 - Interface level compatibility (both expose the sockets interface)
- With the advent of iWARP, this compatibility is disturbed
 - Both ends of a connection need to be iWARP compliant
 - Intermediate nodes do not need to understand iWARP
 - The interface exposed is no longer sockets
 - iWARP exposes a much richer and newer API
 - Zero-copy, asynchronous and one-sided communication primitives
 - Not very good for existing applications
- Two primary requirements for a wide-spread acceptance of iWARP
 - Software Compatibility for Regular Ethernet with iWARP capable adapters
 - A common interface which is similar to sockets and has the features of iWARP

Presentation Overview

- Introduction and Motivation
- **TCP Offload Engines and iWARP**
- Overview of the Proposed Software Stack
- Performance Evaluation
- Conclusions and Future Work

What is a TCP Offload Engine (TOE)?

iWARP Protocol Suite

Courtesy iWARP Specification

More details provided in the paper or in the iWARP Specification

Presentation Overview

- Introduction and Motivation
- ↑ TCP Offload Engines and iWARP
- **Overview of the Proposed Software Stack**
- Performance Evaluation
- Conclusions and Future Work

Proposed Software Stack

- The Proposed Software stack is broken into two layers
 - Software iWARP implementation
 - Provides wire compatibility with iWARP-compliant adapters
 - Exposes the iWARP feature set to the upper layers
 - Two implementations provided: User-level iWARP and Kernel-level iWARP
 - Extended Sockets Interface
 - Extends the sockets interface to encompass the iWARP features
 - · Maps a single file descriptor to both the iWARP as well as the normal TCP connection
 - Standard sockets applications can run WITHOUT any modifications
 - Minor modifications to applications required to utilize the richer feature set

Software iWARP and Extended Sockets Interface

Regular Ethernet Adapters

TCP Offload Engines

iWARP compliant Adapters

Designing the Software Stack

- User-level iWARP implementation
 - Non-blocking Communication Operations
 - Asynchronous Communication Progress
- Kernel-level iWARP implementation
 - Zero-copy data transmission and single-copy data reception
 - Handling Out-of-order segments
- Extended Sockets Interface
 - Generic Design to work over any iWARP implementation

Non-Blocking and Asynchronous Communication

User-level iWARP is a multi-threaded implementation

Zero-copy Transmission in Kernel-level iWARP

- Memory map user buffers to kernel buffers
- Mapping needs to be in place till the reliability ACK is received
- Buffers are mapped during memory registration
 - Avoids mapping overhead during data transmission

Handling Out-of-order Segments

- Data is retained in the Socket buffer even after it is placed!
- This ensures that TCP/IP handles reliability and not the iWARP stack

Presentation Overview

- Introduction and Motivation
- ↑ TCP Offload Engines and iWARP
- ① Overview of the Proposed Software Stack
- **Performance Evaluation**
- Conclusions and Future Work

Experimental Test-bed

- Cluster of Four Node P-III 700MHz Quad-nodes
- 1GB 266MHz SDRAM
- Alteon Gigabit Ethernet Network Adapters
- Packet Engine 4-port Gigabit Ethernet switch
- Linux 2.4.18-smp

Ping-Pong Latency Test

Uni-directional Stream Bandwidth Test

Software Distribution

- Public Distribution of User-level and Kernel-level Implementations
 - User-level Library
 - Kernel module for 2.4 kernels
 - Kernel patch for 2.4.18 kernel
 - Extended Sockets Interface for software iWARP
- Contact Information
 - {panda, balaji}@cse.ohio-state.edu
 - http://nowlab.cse.ohio-state.edu

Presentation Overview

- Introduction and Motivation
- ↑ TCP Offload Engines and iWARP
- Overview of the Proposed Software Stack
- Performance Evaluation
- **©** Conclusions and Future Work

Concluding Remarks

- Ethernet has been broken down into three technology levels
 - Regular Ethernet, TCP Offload Engines and iWARP-compliant adapters
 - Compatibility between these technologies is important
- Regular Ethernet and TOE are completely compatible
 - Both the wire protocol and the ULP interface are the same
 - iWARP does not share such compatibility
- Two primary requirements for a wide-spread acceptance of iWARP
 - Software Compatibility for Regular Ethernet with iWARP capable adapters
 - A common interface which is similar to sockets and has the features of iWARP
- We provided a software stack which meets these requirements

Continuing and Future Work

- The current Software iWARP is only built for Regular Ethernet
 - TCP Offload Engines provide more features than Regular Ethernet
 - Needs to be extended to all kinds of Ethernet networks
 - E.g., TCP Offload Engines, iWARP-compliant adapters, Myrinet 10G adapters
- Interoperability with Ammasso RNICs
 - Modularized approach to enable/disable components in the iWARP stack
- Simulated Framework for studying NIC architectures
 - NUMA Architectures on the NIC for iWARP Offload
- Flow Control/Buffer Management Features for Extended Sockets

Acknowledgments

Web Pointers

NBCL

Website: http://www.cse.ohio-state.edu/~balaji

Group Homepage: http://nowlab.cse.ohio-state.edu

Email: balaji@cse.ohio-state.edu

