
Efficient Intra-node Communication on
Intel MIC Clusters

 Sreeram Potluri Akshay Venkatesh Devendar Bureddy

 Krishna Kandalla Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University

1

2

Outline

•  Introduction

•  Problem Statement

•  Hybrid MPI Communication Runtime

•  Performance Evaluation

•  Conclusion and Future Work

Many Integrated Core (MIC) Architecture

•  Hybrid system architectures with graphics processors have become common -
high compute density and high performance per watt

•  Intel introduced Many Integrated Core (MIC) architecture geared for HPC

•  X86 compatibility - applications and libraries can run out-of-the-box or with
minor modifications

•  Many low-power processor cores, hardware threads and wide vector units

•  MPI continues to be a predominant programming model in HPC

3

Single Core Dual Core Quad Core Oct Core Twelve Core

Hybrid Architectures

Programming Models on Clusters with MIC

4

Xeon Xeon Phi

Multi-core Centric

Many-core Centric

MPI
Program

MPI
Program

Offloaded
Computation

MPI
Program

MPI
Program

MPI
Program

Host-only

Offload

Symmetric

MIC-only

•  Xeon Phi, the first commercial product based on MIC architecture

•  Flexibility in launching MPI jobs on clusters with Xeon Phi

PCIe

Intel Xeon Phi

Intel Xeon

IB HCA

Host-to-MIC MIC-to-Host

Intra-MIC

MPI Communication on Node with a Xeon Phi

Intra-Host

•  Various paths for MPI communication on a node with Xeon Phi

5

Symmetric Communication Stack with MPSS

•  MPSS – Intel Manycore Platform Software Stack
–  Shared Memory

–  Symmetric Communication InterFace (SCIF) – over PCIe

–  IB Verbs – through IB adapter

–  IB-SCIF – IB Verbs over SCIF 6

PCI-E

IB-HCA

SCIF

IB IB-SCIF SHM

Xeon Phi

SCIF

IB IB-SCIF SHM

Host/Xeon Phi

IB Verbs SCIF
API

POSIX
Calls IB Verbs SCIF

API
POSIX
Calls

Problem Statement

What are the performance characteristics of different communication
channels available on a node with Xeon Phi?

How can an MPI communication runtime take advantage of the different
channels?

Can a low latency and high bandwidth hybrid communication channel be
designed, leveraging the all channels?

What is the impact of such a hybrid communication channel on
performance of benchmarks and applications?

7

Outline

•  Introduction

•  Problem Statement

•  Hybrid MPI Communication Runtime

•  Performance Evaluation

•  Conclusion and Future Work

8

•  High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and
RDMA over Converged Enhanced Ethernet (RoCE)

–  MVAPICH (MPI-1), MVAPICH2 (MPI-3.0), available since 2002M

–  MVAPICH2-­‐X	
 (MPI	
 +	
 PGAS),	
 Available	
 since	
 2012PI + PGAS), Available since 2012

–  Used by more than 2,000 organizations (HPC Centers, Industry and Universities) in
70 countries

–  More than 165,000 downloads from OSU site directly

–  Empowering many TOP500 clusters
•  7th ranked 204,900-core cluster (Stampede) at TACC

•  14th ranked 125,980-core cluster (Pleiades) at NASA

•  and many others
–  Available with software stacks of many IB, HSE and server vendors

including Linux Distros (RedHat and SuSE)

–  http://mvapich.cse.ohio-state.edu

•  Partner in the U.S. NSF-TACC Stampede (9 PFlop) System

MVAPICH2/MVAPICH2-X Software

9

Intra-MIC Communication
•  Shared Memory Interface (CH3-SHM)

–  POSIX Shared Memory API

–  Small Messages: pair-wise memory
regions between processes

–  Large Messages: buffer pool per
process, data is divided into chunks
(8KB) to pipeline copy in and copy out

–  MPSS offers two implementations of memcpy

–  multi-threaded copy

–  DMA-assisted copy: offers low latency for large messages

–  We use 64KB chunks to trigger the use of DMA-assisted copies for large
messages

MVAPICH2

SCIF-CH3

Xeon Phi

SHM-CH3

SCIF

CH3

10

Intra-MIC Communication
•  SCIF Channel (CH3-SCIF)

–  Control of DMA engine to the user

–  API for remote memory access:
•  Registration: scif_register

•  Initiation: scif_writeto/readfrom

•  Completion: scif_fence_signal

–  We use a write-based rendezvous
protocol

•  Sender sends Request-To-Send (RTS)

•  Receiver responds with Ready-to-Receive (RTR) with registered buffer offset and flag
offset

•  Sender issues scif_writeto followed by scif_fence_signal

•  Both processes poll for flag to be set
11

MVAPICH2

SCIF-CH3

Xeon Phi

SHM-CH3

SCIF

CH3

Host-MIC Communication

MVAPICH2

OFA-IB-CH3 SCIF-CH3

SCIF

IB-HCA

IB-Verbs

PCI-E

Xeon Phi

MVAPICH2
Host

OFA-IB-CH3

SCIF

IB-Verbs

SCIF-CH3

mlx4_0 scif0 scif0 mlx4_0

•  IB Channel (OFA-IB-CH3)
–  Uses IB verbs

–  Selection of IB network interface to switch between IB and IB-SCIF

•  SCIF-CH3
–  Can be used for communication between Xeon Phi and Host 12

Host-MIC Communication: Host-Initiated SCIF

•  DMA can be initiated by host or Xeon
Phi

•  But performance is not symmetric

•  Host-initiated DMA delivers better
performance

•  Host-initiated mode takes advantage
of this

–  Write-based from Host-to-Xeon Phi

–  Read-based transfer from Xeon Phi-to-Host

13

HOST

MIC

HOST

MIC

Symmetric Host-Initiated

Host-to-MIC

MIC-to-Host

Host-to-MIC

MIC-to-Host

•  Symmetric mode to maximize resource utilization on host and Xeon Phi

Outline

•  Introduction

•  Problem Statement

•  Hybrid MPI Communication Runtime

•  Performance Evaluation

•  Conclusion and Future Work

14

Experimental Setup

15

•  TACC Stampede Node
–  Host

•  Dual-socket oct-core Intel Sandy Bridge (E5-2680 @ 2.70GHz)

•  CentOS release 6.3 (Final)

–  MIC

•  SE10P (B0-KNC)

•  61 cores @ 1085.854 MHz, 4 hardware threads/core

•  OS 2.6.32-279.el6.x86_64, MPSS 2.1.4346-16

–  Compiler: Intel Composer_xe_2013.2.146

–  Network Adapter: IB FDR MT 4099 HCA

–  Enhanced MPI based on MVAPICH2 1.9

Intra-MIC Point-to-Point Communication

16

0
2000
4000
6000
8000

10000
12000

4K 16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0

2000

4000

6000

8000

4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (Bytes)
osu_latency osu_bw

0
2000
4000
6000
8000

10000

4K 16K 64K 256K 1M 4M B
i-B

an
dw

id
th

 (M
B

/s
ec

)

Message Size (Bytes)
osu_bibw

•  Default chunk size severely limits
performance
•  Tuned block size alleviates it but shm
performance still low
•  Using SCIF works around these
limitations – 75% improvement in
latency, 4.0x improvement in b/w over
SHM-TUNED

B
etter B

et
te

r

B
et

te
r

Host-MIC Point-to-Point Communication

17

0
10
20
30
40
50
60

0 2 8 32 128 512 2K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)
osu_latency : small messages osu_latency : large messages

0
500

1000
1500
2000
2500
3000

4K 16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

•  IB provides a low-latency path – 4.7usec for 4Byte messages
•  IB-SCIF overheads due to SCIF and additional software layer
•  SCIF designs are already hybrid, use IB for small messages
•  SCIF outperforms IB for large messages – 72% improvement for 4MB messages
•  Host-Initiated SCIF takes advantage of faster DMA – 33% improvement over SCIF for
64KB messages

B
etter

B
etter

Host-MIC Point-to-Point Communication

18

osu_bw: mic-to-host

0

2000

4000

6000

8000

4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (Bytes)

0

2000

4000

6000

8000

4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (Bytes)
osu_bw: host-to-mic

0

2000

4000

6000

8000

10000

4K 16K 64K 256K 1M 4M B
i-B

an
dw

id
th

 (M
B

/s
ec

)

Message Size (Bytes)
osu_bibw

•  IB bandwidth limited mic-to-host due to
peer-to-peer limitation on Sandy Bridge
•  SCIF works around this, Host-initiated
DMA delivers better bandwidth too –
6.6x improvement over IB

•  Host-initiated SCIF worse than SCIF in
bibw due to wasted resources

B
etter B

et
te

r

B
et

te
r

Collective Communication

19

•  16 processes on host + 16 processes on MIC

•  Host-initiated SCIF or symmetric SCIF based on the communication pattern and
message size, collective level selected
•  Gather, rooted collective uses host-initiated SCIF – 75% improvement in at 1MB

•  All-to-all uses symmetric SCIF – 78% improvement at 1MB

0

2000

4000

6000

8000

10000

4K 16K 64K 256K 1M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)
osu_gather: root on host

0
50000

100000
150000
200000
250000
300000
350000

4K 16K 64K 256K 1M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

osu_alltoall

B
etter

B
etter

Performance of 3D Stencil Communication
Benchmark

20

•  Near-neighbor communication – upto 6 neighbors – 64KB messages

•  67% improvement in time per step

B
etter

0

2

4

6

4+4 8+8 16+16

Ti
m

e
pe

r
St

ep
 (m

se
c)

Processes Count (Host + MIC)

67%

Performance of P3DFFT Library

21

•  (MPI + OpenMP) version of popular library for 3D Fast Fourier Transforms - test performs
forward transform and a backward transform in each iteration

•  2 processes on Host (8 threads/process) + 8 processes on MIC (8 threads/process)

•  Uses symmetric SCIF because of the MPI_Alltoall

•  Upto 19% improvement using SCIF-ENHANCED

B
etter

0

2

4

6

8

256x256x256 512x512x512

Ti
m

e
pe

r
L

oo
p

(s
ec

)

Problem Size

19%

16%

Conclusion and Future Work
•  A hybrid communication runtime to optimize intranode MPI communication

on clusters with Xeon Phi

•  Take advantage of SCIF in addition to standard channels like shared memory

and IB

•  Upto 75% improvement in latency and 6x improvement in unidirectional

bandwidth for MIC-Host Communication

•  Upto 78% improvement in MPI_Alltoall performance

•  Considerable improvements with 3DStencil and P3DFFT kernels

•  Focus on optimizations for shared memory based communication

•  Working on designs for inter-node communication on clusters with Xeon Phi
22

 Thank You!
{potluri, akshay, bureddy, kandalla, panda} @cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/�

23

