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Many Integrated Core (MIC) Architecture 

•  Hybrid system architectures with graphics processors have become common -  
high compute density and high performance per watt  

•  Intel introduced Many Integrated Core (MIC) architecture geared for HPC 

•  X86 compatibility - applications and libraries can run out-of-the-box or with 
minor modifications 

•  Many low-power processor cores, hardware threads and wide vector units 

•  MPI continues to be a predominant programming model in HPC 
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Programming Models on Clusters with MIC 
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•  Xeon Phi, the first commercial product  based on MIC architecture 

•  Flexibility in launching MPI jobs on clusters with Xeon Phi  
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•  Various paths for MPI communication on a node with Xeon Phi 
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Symmetric Communication Stack with MPSS 

•  MPSS – Intel Manycore Platform Software Stack 
–  Shared Memory 

–  Symmetric Communication InterFace (SCIF) – over PCIe 

–  IB Verbs – through IB adapter 

–  IB-SCIF – IB Verbs over SCIF 6 
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Problem Statement 

What are the performance characteristics of different communication 
channels available on a node with Xeon Phi?  

How can an MPI communication runtime take advantage of the different 
channels?  

Can a low latency and high bandwidth hybrid communication channel be 
designed, leveraging the all channels?  

What is the impact of such a hybrid communication channel on 
performance of benchmarks and applications? 
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•  High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and 
RDMA over Converged Enhanced Ethernet (RoCE) 

–  MVAPICH (MPI-1), MVAPICH2 (MPI-3.0), available since 2002M 

–  MVAPICH2-­‐X	
  (MPI	
  +	
  PGAS),	
  Available	
  since	
  2012PI + PGAS), Available since 2012 

–  Used by more than  2,000 organizations  (HPC Centers, Industry and Universities) in 
70 countries 

–  More than 165,000 downloads from OSU site directly 

–  Empowering many TOP500 clusters 
•  7th ranked 204,900-core cluster (Stampede) at  TACC 

•  14th ranked 125,980-core cluster (Pleiades) at NASA 

•  and  many others 
–  Available with software stacks of many IB, HSE and server vendors 

including Linux Distros (RedHat and SuSE) 

–  http://mvapich.cse.ohio-state.edu 

•  Partner in the U.S. NSF-TACC Stampede (9 PFlop) System 

MVAPICH2/MVAPICH2-X Software 
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Intra-MIC Communication 
•  Shared Memory Interface (CH3-SHM) 

–  POSIX Shared Memory API 

–  Small Messages: pair-wise memory 
regions between processes 

–  Large Messages: buffer pool per 
process, data is divided into chunks 
(8KB) to pipeline copy in and copy out  

–  MPSS offers two implementations of memcpy  

–  multi-threaded copy 

–  DMA-assisted copy: offers low latency for large messages 

–  We use 64KB chunks to trigger the use of DMA-assisted copies for large 
messages 
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Intra-MIC Communication 
•  SCIF Channel (CH3-SCIF) 

–  Control of DMA engine to the user 

–  API for remote memory access: 
•  Registration: scif_register 

•  Initiation: scif_writeto/readfrom 

•  Completion: scif_fence_signal 

–  We use a write-based rendezvous 
protocol 

•  Sender sends Request-To-Send (RTS) 

•  Receiver responds with Ready-to-Receive (RTR) with registered buffer offset and flag 
offset 

•  Sender issues scif_writeto followed by scif_fence_signal                               

•  Both processes poll for flag to be set 
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Host-MIC Communication 
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•  IB Channel (OFA-IB-CH3) 
–  Uses IB verbs 

–  Selection of IB network interface to switch between IB and IB-SCIF 

•  SCIF-CH3 
–  Can be used for communication between Xeon Phi and Host 12 



Host-MIC Communication: Host-Initiated SCIF 

•  DMA can be initiated by host or Xeon 
Phi 

•  But performance is not symmetric 

•  Host-initiated DMA delivers better 
performance 

•  Host-initiated mode takes advantage 
of this 

–  Write-based from Host-to-Xeon Phi 

–  Read-based transfer from Xeon Phi-to-Host 
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•  Symmetric mode to maximize resource utilization on host and Xeon Phi 
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Experimental Setup 
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•  TACC Stampede Node 
–  Host 

•  Dual-socket oct-core Intel Sandy Bridge (E5-2680 @ 2.70GHz)  

•  CentOS release 6.3 (Final) 

–  MIC 

•  SE10P (B0-KNC)  

•  61 cores @ 1085.854 MHz, 4 hardware threads/core 

•  OS 2.6.32-279.el6.x86_64, MPSS 2.1.4346-16 

–  Compiler: Intel Composer_xe_2013.2.146 

–  Network Adapter: IB FDR MT 4099 HCA 

–  Enhanced MPI based on MVAPICH2 1.9 



Intra-MIC Point-to-Point Communication 
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•  Default chunk size severely limits 
performance  
•  Tuned block size alleviates it but shm 
performance still low 
•  Using SCIF works around these 
limitations – 75% improvement in 
latency, 4.0x improvement in b/w over 
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Host-MIC Point-to-Point Communication 
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•  IB provides a low-latency path – 4.7usec for 4Byte messages 
•  IB-SCIF overheads due to SCIF and additional software layer 
•  SCIF designs are already hybrid, use IB for small messages 
•  SCIF outperforms IB for large messages – 72% improvement for 4MB messages 
•  Host-Initiated SCIF takes advantage of faster DMA – 33% improvement over SCIF for 
64KB messages  
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Host-MIC Point-to-Point Communication 
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•  IB bandwidth limited mic-to-host due to 
peer-to-peer limitation on Sandy Bridge 
•  SCIF works around this, Host-initiated 
DMA delivers better bandwidth too – 
6.6x improvement over IB 

•  Host-initiated SCIF worse than SCIF in 
bibw due to wasted resources 

B
etter B

et
te

r 

B
et

te
r 



Collective Communication 
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•  16 processes on host + 16 processes on MIC  

•  Host-initiated SCIF or symmetric SCIF based on the communication pattern and 
message size, collective level selected 
•  Gather, rooted collective uses host-initiated SCIF – 75% improvement in at 1MB 

•  All-to-all uses symmetric SCIF – 78% improvement at 1MB 
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Performance of 3D Stencil Communication 
Benchmark 
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•  Near-neighbor communication – upto 6 neighbors – 64KB messages  

•  67% improvement in time per step 
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Performance of P3DFFT Library 
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•  (MPI + OpenMP) version of popular library for 3D Fast Fourier Transforms - test performs 
forward transform and a backward transform in each iteration 

•  2 processes on Host (8 threads/process) + 8 processes on MIC (8 threads/process) 

•  Uses symmetric SCIF because of the MPI_Alltoall 

•  Upto 19% improvement using SCIF-ENHANCED 
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Conclusion and Future Work 
•  A hybrid communication runtime to optimize intranode MPI communication 

on clusters with Xeon Phi 

•  Take advantage of SCIF in addition to standard channels like shared memory 

and IB  

•  Upto 75% improvement in latency and 6x improvement in  unidirectional 

bandwidth for MIC-Host Communication 

•  Upto 78% improvement in MPI_Alltoall performance 

•  Considerable improvements with 3DStencil and P3DFFT kernels 

•  Focus on optimizations for shared memory based communication  

•  Working on designs for inter-node communication on clusters with Xeon Phi 
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{potluri, akshay, bureddy, kandalla, panda} @cse.ohio-state.edu  

Network-Based Computing Laboratory 
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MVAPICH Web Page 
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