

Abstract— Petascale simulations are needed to understand
the rupture and wave dynamics of the largest earthquakes at
shaking frequencies required to engineer safe structures
(> 1 Hz). Toward this goal, we have developed a highly scal-
able, parallel application (AWP-ODC) that has achieved
“M8”: a full dynamical simulation of a magnitude-8 earth-
quake on the southern San Andreas fault up to 2 Hz. M8 was
calculated using a uniform mesh of 436 billion 40-m3 cubes to
represent the three-dimensional crustal structure of Southern
California, in a 800 km by 400 km area, home to over 20 mil-
lion people. This production run producing 360 sec of wave
propagation sustained 220 Tflop/s for 24 hours on NCCS
Jaguar using 223,074 cores. As the largest-ever earthquake
simulation, M8 opens new territory for earthquake science
and engineering—the physics-based modeling of the largest
seismic hazards with the goal of reducing their potential for
loss of life and property.

Keywords—SCEC, computational seismology, earthquake
ground motions, parallel scalability, extreme I/O, M8

I. INTRODUCTION
Earthquake system science seeks to provide society with

better predictions of earthquake causes and effects. To-
ward this goal, the Southern California Earthquake Center
(SCEC) conducts a collaborative, inter-disciplinary re-
search program within its Community Modeling Environ-
ment (CME) [25] that makes extensive use of large-scale,
physics-based, numerical modeling of earthquake phe-
nomena on TeraGrid and INCITE resources. The capabil-
ity computing activities of the CME collaboratory—that is,
our largest and computationally most demanding efforts—
have been facilitated by the development of a highly scal-
able application called AWP-ODC. This paper describes
for the first time AWP-ODC design and capabilities, fo-
cusing on the optimization techniques that have allowed
the code to run efficiently on petascale supercomputers.
The development of this scalable application as a commu-
nity platform exemplifies the collaborative research now
possible using petascale architectures. In particular, AWP-

ODC now provides the capability to simulate the largest
earthquakes anticipated on California’s San Andreas Fault
(SAF) system at the high shaking frequencies (> 1 Hz)
required to understand seismic risk. SCEC’s scientific goal
is to apply this new tool in system-level efforts to mitigate
life and property losses that could be caused by future
earthquakes in California and elsewhere.

We demonstrate the scalability of AWP-ODC by simu-
lating a magnitude-8 earthquake that ruptures the entire
southern SAF from Cholame, in central California, to the
Salton Sea, near the Mexican border—a total fault length
of 545 km. This ‘wall-to-wall’ scenario, hereafter referred
to as M8, required the computation of high-frequency
ground motions throughout a very large simulation volume
(810 km × 405 km × 85 km). The complex three-
dimensional geologic structure of this vast region was de-
rived from the SCEC Community Velocity Model V.4
(CVM4) and represented on a uniform mesh with 40-meter
resolution, comprising a total of 436 billion cubic elements
(Fig. 1). The source was calculated using a fully dynamic,
spontaneous-rupture model that has been shown to pro-
duce ground motion levels in close agreement with ground
motion prediction equations [39][41].

Scalable Earthquake Simulation on Petascale
Supercomputers

Y. Cui1, K.B. Olsen2, T. H. Jordan3, K. Lee1, J. Zhou1, P. Small3, D. Roten2, G. Ely3,
D.K. Panda4, A. Chourasia1, J. Levesque5, S. M. Day2, P. Maechling3

1San Diego Supercomputer Center, 2San Diego State University,
3University of Southern California, 4The Ohio State University, 5Cray Inc.

Fig. 1. Topographic location map for M8. The rectangle depicts the
model area, the dashed line is the 545-km long stretch of the SAF that
ruptured during M8, and the red/yellow/white shading shows the depth
to the isosurface of a shear-wave velocity of 2.5 km/s.

© 2010 IEEE Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or pro-
motional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted compo-
nent of this work in other works must be obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-
7558-2/10/$26.00

 2

To our knowledge, M8 is the largest earthquake simula-
tion ever conducted. It presented tremendous computa-
tional and I/O challenges that required collaboration of
more than 30 seismologists and computational scientists.
M8 was executed as a 24-hr production run on 223,074
cores of the Jaguar Cray XT5 at the National Center for
Computational Sciences, which currently ranks first
among the ‘Top 500’ of supercomputers [34].

Section 2 of this paper outlines the numerical method
behind AWP-ODC. Section 3 details the implementation
and components of AWP-ODC. Section 4 introduces some
key tuning techniques we used for performance optimiza-
tion. Section 5 demonstrates the parallel efficiency and
summarizes the sustained performance achieved on petas-
cale supercomputers. Section 6 reviews the SCEC mile-
stone capability simulations based on AWP-ODC. Finally,
Section 7 presents the ground-breaking scientific results of
the M8 simulation on the Jaguar system at ORNL.

II. AWP-ODC ALGORITHM DESCRIPTION
A variety of numerical methods are available for model-

ing 3D modeling earthquake motion, including finite dif-
ference (FD), finite element, spectral element, and finite
volume methods. While all of these computational tech-
niques are capable of modeling spontaneous-rupture and
wave propagation, the FD method provides the best trade-
off in terms of accuracy, computational efficiency, and
ease of implementation on massively parallel supercom-
puters.

AWP-ODC, which is an abbreviation of Anelastic Wave
Propagation by Olsen, Day & Cui, is based on the FD code
originally developed by Kim Bak Olsen at University of
Utah [36]. The AWP-ODC code solves the 3D velocity-
stress wave equations with the explicit staggered-grid FD
scheme. This scheme is fourth-order accurate in space and
second-order accurate in time. The code has undergone
many developments and enhancements, which have trans-
formed it from a ‘personal’ research code into a SCEC
community modeling platform for capability simulations.
The key components of the code include capabilities for
spontaneous-rupture dynamic modeling on a vertical, pla-
nar fault (led by S. Day) as well as simulation of wave
propagation (led by K. Olsen), with overall integration and
enhancements for capability simulations led by Y. Cui.

A. Governing Equations
AWP-ODC solves a coupled system of partial differen-

tial equations. Let

€

ν = υx,υy,υz()
	

denote the particle velocity vector, and
	

€

σ =

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

	

be the symmetric stress tensor. The governing elastody-

namic equations can be written as
	

€

∂tν =
1
ρ
∇⋅ σ (1a)

€

∂tσ = λ(∇⋅ν)Ι+ µ(∇ν +∇νΤ) (1b)
	

where λ and µ are the Lamé coefficients and ρ is the
density. Decomposing (1a) component-‐wise leads to
three scalar-valued equations for the velocity vector
components and six scalar-valued equations for the stress
tensor components.

Seismic waves suffer anelastic losses in the Earth, and
such attenuation must be included in realistic simulations
of wave propagation. Anelastic attenuation can be quanti-
fied by quality factors for S waves (Qs) and P waves (Qp).
Early implementations of attenuation models include
Maxwell solids (e.g., [23]) and standard linear solid mod-
els (e.g., [6]). Day [17] and Day & Bradley [18] signifi-
cantly improved the accuracy of the stress relaxation
schemes by using a coarse-grained implementation of the
memory variables, and this efficient technique has been
implemented in AWP-ODC. This method closely ap-
proximates frequency-independent Q by incorporating a
large number of relaxation times (eight in our calculations)
into the relaxation function without sacrificing computa-
tional or memory efficiency [37].

B. Staggered-Grid Finite Difference Equations
The nine governing scalar equations are approximated

by finite differences on a staggered grid in both time and
space. Time derivatives are approximated by the following
central difference equations

€

∂tυ(t) ≈
υ(t + Δt

2)−υ(t − Δt
2)

Δt
 (2a)

€

∂tσ (t +
Δt
2
) ≈ σ (t + Δt) −σ (t)

Δt
 (2b)

For the spatial derivatives, let Φ denote a generic velocity
or stress component, and h be the equidistant mesh size.
The FD approximation to

€

∂xΦ at grid point (i,j,k) is

€

∂xΦi, j,k ≈ Dx
4 (Φ)i, j ,k =

c1(Φi+ 12, j,k
−Φi− 12, j ,k

)+ c2 (Φi+ 3
2, j,k

−Φi− 32, j ,k
)

h
 (3)

with c1=9/8 and c2=-1/24. This equation is used to ap-
proximate each spatial derivative for each velocity and
stress component.

C. Staggered-Grid Split-Node Algorithm for Dynamic
Fault Rupture Modeling
A highly scalable dynamic fault rupture boundary con-

dition has been integrated into AWP-ODC by Dalguer and
Day. It is based on the accurate, and verified staggered
grid, split-node (SGSN) scheme [14]. In this method, the
fault divides the computational domain into two sub-
regions (see Fig. 2), that are denoted as (+) and (-). Each
side of the fault plane has its own set of 3 governing dif-
ferential equations. Split nodes are introduced on the fault
plane in order to account for velocity and stress disconti-

 3

nuities. The velocity or stress measured at a split node is
labeled according to fault side on which it resides. In es-
sence, the SGSN method calculates the traction that inter-
acts between the two surfaces of the fault, and solves the
equation of motion governing each side of this surface.
The SGSN scheme can accommodate quite general friction
laws and fault geometry, though AWP-ODC is currently
limited to simulation of rupture on planar faults using a
slip-weakening friction law.

Whereas time derivatives for the SGSN method remain
centered 2nd-order accurate, the approximation of spatial
derivatives depends on the proximity to the fault plane.
The SGSN FD equations match the (4th-order accurate)
staggered grid FD equations for points that are at least two
spatial increments from the fault plane. For points less
than two grid points from the fault plane, the accuracy of
the FD equations is reduced to 2nd-order. Split nodes are
introduced for certain stress and velocity components. As-
suming that the fault plane is located at y=j0, the following
FD approximations to ∂y are used for an arbitrary velocity
or stress component Φ:

€

∂yΦi, j0+ 3
2,k
≈
c1(Φi, j0+2,k −Φi, j0+1,k)+ c2 (Φi, j0+3,k −Φi, j0 ,k

+)
h

 (4a)

€

∂yΦi, j0+1,k ≈
Φi, j0+ 3

2,k
−Φi, j0+ 1

2,k

h
 (4b)

€

∂yΦi, j0+ 12,k
≈
Φi, j0+1,k −Φi, j0 ,k

+

h
 (4c)

On the fault plane, spatial derivatives of velocity and
shear stress components are computed by one-sided FD
operators conforming to the traction continuity conditions.

D. External Boundary Conditions
Truncation of the 3D modeling domain on a computa-

tional mesh inevitably generates undesirable reflections.
Absorbing boundary conditions (ABCs) are designed to
reduce these reflections to the level of the numerical noise.
AWP-ODC includes two different types of ABCs. The
most efficient is the Perfectly Matched Layers (PML)
scheme. PMLs were originally introduced for modeling of
electromagnetic waves [2][3] and later adapted to elas-
todynamic waves on a staggered grid [30]. The PML
ABCs can be formulated through a simple time-domain,
equation-splitting procedure, where each wavefield equa-
tion is split into perpendicular and parallel components,
with a damping term added to the perpendicular compo-
nent. An example is wave propagation in the x-direction.
Starting from (1a) and (1b), we split

€

∇ into normal and
tangential operators

€

∇⊥x and

€

∇||x . If the velocity vector and
stress tensor are similarly decomposed into normal and
tangential components

€

ν⊥x ,

€

ν ||x ,

€

σ ⊥x and

€

σ ||x , the following
decoupled partial differential equations are obtained:

€

∂tν
⊥x ⋅σ =

1
ρ
∇⊥x ⋅σ (5a)

€

∂tν
||x ⋅σ =

1
ρ
∇||x ⋅σ (5b)

€

∂tσ
⊥x = λ(∇⊥x ⋅ν)Ι+ µ(∇⊥xν +∇⊥xνΤ) (5c)

€

∂tσ
||x = λ(∇||x ⋅ν)Ι+ µ(∇||xν +∇||xνΤ) (5d)

Damping is applied to the wavefield components perpen-
dicular to the boundary via a damping function d(x), re-
sulting in the updated equations:

€

∂tν
⊥x + d(x)ν⊥x =

1
ρ
∇⊥x ⋅σ (6a)

€

∂tσ
⊥x + d(x)σ ⊥x = λ(∇⊥x ⋅ν)Ι+ µ(∇⊥x ⋅ν +∇⊥xνΤ) (6b)

Since the PML ABCs were introduced, Meza-Fajardo
and Papageorgiou [32] developed the multi-axial PMLs
(M-PMLs), which add efficiency by applying the damping
separately for wavefields propagating parallel and perpen-
dicular to the boundary. The M-PMLs were implemented
on the sides and bottom of the grid in AWP-ODC, ap-
proximated with central differencing in both space and
time. PML ABCs are efficient in both memory usage and
computation time. Moreover, PMLs preserve the charac-
teristics of nearest-neighbor interaction associated with the
FD method, making it suitable for implementation on a
massively parallel SIMD (single instruction, multiple data)
computer.

Although efficient, the split-equation PMLs (and M-
PMLs) are known to be numerically unstable in the pres-
ence of strong gradients of the media parameters inside the
boundaries (e.g., [30]). In such cases, AWP-ODC imple-
ments a second kind of ABCs based on simple ‘sponge
layers’ [9]. These ABCs apply a damping term to the full
(un-split) wavefield inside the sponge layer and are un-
conditionally stable. However, the ability of the sponge
layers to absorb reflections is poorer than PMLs. For our

Fig. 2. Staggered-grid split-node geometry, illustrated for grid cells
adjacent to the fault in the velocity-stress staggered-grid scheme. The
fault plane grid points for ux, uy, σxx, σyy, and σxy are split into plus and
minus sides. The finite difference equations of motion are partitioned to
form separate elastic restoring forces (R) acting on the two halves. The
two halves of a split velocity node interact only through shear tractions
(T) at that node point [14].

 4

M8 simulation we successfully used M-PMLs with a width
of 10 grid points.

E. Free Surface Boundary Condition
At the top of our model we apply a zero-stress boundary

condition, to simulate the (flat) free surface of the Earth.
AWP-ODC uses the free surface boundary condition FS2
[22] that is defined at the vertical level of the σxz and σyz
stresses.

F. Verification of AWP-ODC
AWP-ODC has been successfully verified by comparing

dynamic rupture and wave propagation results to those
from other numerical methods. For example, Fig. 3 shows
the nearly identical peak ground velocities (PGVs) from
three different 3D codes (one of which is AWP-ODC) for
a simulation of a M7.8 earthquake (‘ShakeOut’) on the
southern SAF [5]. Such verification is crucial during opti-
mization and other code updates.

III. IMPLEMENTATION AND INTEGRATION OF AWP-ODC
COMPONENTS

 The AWP-ODC software package has been designed in
a modular fashion, aiming at providing efficient solvers for

dynamic rupture and wave propagation at petascale com-
putational levels. The implementation was developed with
scalable mesh generation and partitioning in mind, with
workflows applicable to diverse architectures. Although
the development of an efficient FD code was a key chal-
lenge for AWP-ODC, input and output processing tools
turned out to be equally important components for large-
scale application. The final package was composed of pre-
processing tools (Mesh Generator CVM2MESH, Petascale
Mesh Partitioner PetaMeshP, Dynamic Source Generator
dSrcG, Dynamic Source Partitioner PetaSrcP), solvers
(Dynamic Fault Rupture Solver DFR, Wave Propagation
Model AWM), and post-processing scripts (Validation
Toolkit aVal, and derived Products dPDA, iRODS inges-
tion tool PIPUT). The I/O components are particularly
critical for generating a high-resolution mesh and source,
and delivering sub-mesh/source to hundreds of thousands
of nodes. We have developed an end-to-end workflow
package (E2EaW) to effectively consolidate distinct AWP-
ODC modules. E2EaW contains a variety of tools and
techniques that streamline the dynamic utilization of mul-
tiple components (Fig. 4).

A. AWM and DFR Modules
The AWP-ODC FD scheme is designed for a structured

grid in a Cartesian coordinate system. Communication in
the code is performed through the Message Passing Inter-
face (MPI) incorporating 3D domain decomposition. Data
parallelism is the most efficient mechanism for parallel
finite difference codes. Each processor is responsible for
performing stress and velocity calculations within its own
subgrid of the simulation volume. The processors allocated
at the external edges of the volume must also process ab-
sorbing boundary conditions. Ghost cells, which occupy a
two-cell padding layer, manage the most recently updated
wavefield parameters exchanged from the edge of the
neighboring subgrids (see Fig. 5 illustrated by M8).

The integration of AWM and DFR is illustrated in Fig.
6. The AWM and DFR algorithms begin with updates to
the velocity vector at interior and boundary locations. Each
processor then shares its locally updated velocity with its
physically adjacent processors in all directions. The stress
tensor is then updated in a similar way. Since wavefield
information along the boundaries of the non-major axes is
arranged into a large number of small non-contiguous
chunks, intermediate staging buffers are introduced to ac-
cumulate and disseminate this information at the source

Fig. 3. PGVs for the ShakeOut simulation of a M7.8 scenario on the
SAF using 3 independent codes. Top: finite-element (CMU); middle: FD
(URS); bottom: AWP-ODC. The URS results were computed in a model
smaller than that used by the other two studies.

Fig. 4. Components of AWP-ODC

Fig. 5: (left) Decomposition of the M8 simulation region with 810
km long, 405 km wide and 85 km deep; (right) communication be-
tween neighboring subgrids

 5

and destination, respectively.

B. Parallel Mesh Generator (CVM2MESH)
 CVM2MESH is a software package containing a variety

of mesh generation tools developed by Patrick Small and
others at SCEC. The software supports both the SCEC
CVM4 (rule-based interpolation approach) and Harvard
CVM (CVM-H, static database at three resolutions)
through a scalable parallel algorithm to extract material
properties for the mesh at the required grid spacing. The
program partitions the mesh region into a set of slices
along the z-axis as illustrated in Fig. 7. Each slice is as-
signed to an individual core for extraction from the under-
lying CVM. This scheme achieves effective parallelization
of the partitioning and extraction process. The cores inter-
act only indirectly with the file system when the slices are
merged into the final mesh file. Each core contributes its
slice to the final mesh by computing the offset location of
the slice within the mesh file, and uses efficient MPI-IO
file operations to seek that location and write the slices.
The parallel version of CVM2MESH has reduced the ex-
traction time from hundreds of hours to minutes.

C. Petascale Mesh Partitioner (PetaMeshP)
CVM2MESH creates a single, global mesh file for the

entire computational domain. A scalable and efficient
mesh partitioning technique has been one of the critical
challenges to prepare petascale seismic simulations on
hundreds of thousands of processors, in particular when
dealing with highly fragmented I/O data. Mesh partition-
ing aggregates regular but highly fragmented chunks of
sub-mesh data and writes them back to per-process local
contiguous files (pre-partitioning) or sends them to the
dedicated processors (on-demand partitioning). Conse-
quently, we have implemented two I/O models to deal
with these issues: (1) serial I/O with input pre-partitioning,
and (2) on-demand partitioning through MPI-IO [27] (Fig.
8).

The serial I/O model requires input partitioning prior to
the simulation. Although many per-core partitioned small
files are generated, this model provides efficient data lo-
cality and guarantees extensive use of the system I/O
bandwidth. Unfortunately, such a per-processor file ap-
proach may encounter system-level issues by incurring
excessive metadata operations and file system contention.

The MPI-IO model, on the other hand, allows all proc-
esses to issue parallel I/O accesses through the well-
defined MPI-IO library. In general, the MPI-IO library
provides good bandwidth and scalability when the input
requests are well organized according to the system topol-
ogy. Our PetaMeshP tools should theoretically work flaw-
lessly on all systems. However, when dealing with hun-
dreds of thousands of files, highly fragmented and scat-
tered accesses can cause multiple unexpected system-level
I/O issues on some file systems. Consequently, we try to
minimize the fragmentation and scattering of the requests
by restructuring the I/O scheme. First, a portion of proces-
sors (‘readers’) read highly contiguous big chunks of the
mesh data with MPI-IO to maximize the I/O throughput.
Second, the retrieved data are redistributed with point-to-
point communication to the destination cores (‘receivers’)
(see Fig. 9).

It is essential to minimize the average physical commu-
nication distance in the MPI-IO model. In the current im-
plementation, each XY plane is read in parallel (based on
MPI topology) and distributed to the associated receivers
that require sub-XY layers to build a full local cube. We
found that the communication overhead is highly tolerable
using this approach, and the I/O performance and scalabil-
ity are significantly enhanced. To further resolve potential

Fig. 6. Flow diagram showing the separation of AWP-ODC into a dy-
namic rupture modeling path (‘SGSN mode’) as well as a wave propaga-
tion path (‘wave mode’).

Fig. 7. The 3-D mesh region is partitioned into slices along the z-axis.
Each slice is assigned to a core in the MPI job, and each core queries the
underlying CVM for the points in its slice only.

Fig. 8. (left) Serial approach to mesh partitioning; (right) parallel ap-
proach to mesh partitioning.

 6

scalability problems caused by the excessive memory re-
quirement on each reader (which can easily exceed the
amount of usable memory of each core), a single XY plane
can be subdivided along the Y-axis by a factor of n. This
approach allows n times more readers to participate in
reading sub-partitioned contiguous chunks of data (Fig. 9).
Many experiments have been performed to test the
performance of PetaMeshP on both GPFS and LUSTRE
file systems. While the direct I/O model is good for the
systems that have strong MDS tolerance, the advanced
MPI-IO model works best for systems that provide highly
scalable collective MPI file accesses.

D. Kinematic Source Generator (dSrcG) and Parti-
tioner (PetaSrcP)
The AWM requires a kinematic source description for-

mulated as moment rate time histories at a finite number of
points (sub-faults). The moment rate time histories are
stored in a file generated by the dSrcG (Kinematic Source
Generator) tool. Once the moment-rate file is created, the
Source Partitioner (PetaSrcP) distributes the source de-
scription to the associated processors. PetaSrcP incorpo-
rates an approach similar to parallel mesh partitioning.
Special consideration must be taken for the irregular dis-
tribution of the source information. In general, the sources
are highly clustered, and tens of thousands of sources can
be concentrated in a given grid area, resulting in hundreds
of gigabytes of source data assigned to a single core. To fit
the large data into the processor memory, we further de-
compose the spatially partitioned source files by time. The
scheme with both temporal and spatial locality signifi-
cantly reduces the system memory requirements.

E. Parallel Output
Storing simulation results can be a significant bottleneck

for large-scale FD simulations. AWP-ODC uses MPI-IO,
allowing the velocity output to be concurrently written to a
single file. To obtain efficient MPI-IO performance, we
define new indexed data types at the initialization stage
that represent segmented output blocks, and set logical file
views for individual processors participating in file I/O.
Instead of using individual file handles and associated off-
sets, we use explicit displacements to perform data ac-
cesses at the specific locations for all the participating
processors [12]. By avoiding the use of file pointers, we
save most of the I/O interactions.

As part of the MPI-2 standard, MPI-IO specifies the
syntax and semantics of parallel I/O routines. However, an
MPI-IO implementation is architecture dependent. Until a
few years ago, AWP-ODC was one of the few data-
intensive applications incorporating MPI-IO. Our experi-
ence from AWP-ODC has provided the opportunity to
help compiler developers and system vendors, such as
IBM, resolve multiple MPI-IO and GPFS related prob-
lems. To reduce I/O overhead, we set up a run-time envi-
ronment that controls the frequency of I/O transactions at
their lowest level. Consequently, the required velocity
results are aggregated in memory buffers as much as pos-
sible before being flushed. This scheme works effectively
in practice; in most cases, we have reduced the I/O over-
head from 49% to less than 2%. The I/O aggregation is
one of the critical features for scalability of the code and is
particularly beneficial when many processors are involved.

We separate the generation of volume and surface ve-
locity outputs for the convenience of data analysis and
visualization. To track and verify the integrity of the simu-
lation data collections, we generate MD5 checksums in
parallel at each processor for each mesh sub-array. The
parallelized MD5 approach substantially decreases the
time needed to generate the checksums for several tera-
bytes of data.

F. Checkpointing
A large-scale seismic simulation can take tens of hours

to complete. For such cases, application level tolerance
against various kinds of system failures is critical and should
be dealt with by providing checkpoint/restart capabilities. All
simulation states consisting of all the internal state vari-
ables on each processor are periodically saved into reliable
storage where each processor is responsible for writing
and updating its own checkpoint data. We use the system-
level checkpointing library on BG/L, and incorporated
IBM application assisted checkpoint/restart library calls
into the application to synchronize all tasks and write the
states of all processors to disk when needed. This approach
helps restart in the case of unexpected termination.

Our current checkpoint approach, while an essential
component of the program, may introduce a significant
amount of overhead into some file systems. A more ad-
vanced application-based fault-tolerance checkpoint/restart
feature is thus being developed [11]. Our fault tolerance
framework is different in the sense that the surviving ap-
plication processes will not be automatically aborted if
only a small number of application processes fail. Instead,
all non-failing processes will continue to run and the pro-
gram environment adapts to the previous failures.

G. Adaptation of Algorithms Supporting Different Ar-
chitectures
Careful coordination is required to handle each system’s

distinct characteristics including memory architectures,
file systems, interconnects, and compilers. Our experience

Fig. 9. (left) Cubes and (center) planes for contiguous burst reading and
efficient data distributing; (right) high performance I/O with data redis-
tribution

 7

indicates that application performance can be significantly
affected by determination of fundamental system attributes
[13]. Consequently, special algorithms have been imple-
mented to adapt AWP-ODC to different architectures. A
unique feature facilitates a run-time simulation configura-
tion that is able to determine architecture-dependent han-
dling to maximize our solver and/or I/O performance. The
configuration specifies a memory buffer allocation for
buffer aggregation. The optimizations are adjusted at run-
time and depend on memory usage, I/O bandwidth, inter-
connect and other architectural characteristics. Alternative
options also include selection of cache blocking size,
communication models (asynchronous, comput-
ing/communication overlap), the selection of spatial and
temporal decimation of outputs, serial pre-partitioned or
parallel on-demand I/O, the inclusion of parallel check-
sums, and collection of performance characteristics.

H. Automated Verification (aVal)
The AWP-ODC code has been continuously updated as

new capabilities improved efficiency and new platform
adjustments are required. Acceptance testing of the up-
dated software is therefore mandatory. We have developed
a multi-step process of configuring a reference problem,
running a simulation, and comparing results against a ref-
erence solution. This test uses a simple least-squares (L2
norm) fit of the waveforms from the new simulation and
the 'correct' result in the reference solution [29].

I. End-to-End Workflow (E2EaW)
Typical large-scale seismic simulations use up to hun-

dreds of thousands of cores that require terabytes of input
and produce tens of terabytes of output. A large fraction of
the output must be transferred to an archival storage and
utilized for intensive analysis. These tasks challenge most
computing and storage systems and they require coordina-
tion and an automated workflow. We have developed an
end-to-end workflow that executes the simulation and

automates archival to the SCEC digital library. The
workflow uses GridFTP for high performance data transfer
between sites and does not require human intervention
[45]. Execution of the workflow is distributed across sev-
eral TeraGrid machines and is controlled remotely. Fig. 10
depicts the automated end-to-end workflow procedures.

The Globus toolkit is used to remotely spawn multiple
parallel processes for MD5 checksum generation of all
data files and places them in the destination machine.
Once these tasks are completed, the verification of MD5
checksums is pipelined and performed in parallel. The
parallel implementation significantly reduces the transfer
time. The average transfer rate is above 200 MB/sec. In
the event of file transfer failures, the transaction records
are maintained to allow automatic recovery and retransfer.

Our 200 TB digital collection of science-based simula-
tions [20] is managed through iRODS (integrated Rule
Oriented Data System) [24]. We use our own toolkit
(PIPUT) to ingest data into the SCEC digital library at an
aggregated transfer rate of up to 177 MB/sec [45], more
than ten times faster than direct use of single iRODS
iPUT. These capabilities allow the modeler to access the
files registered into the data grid, with associated integrity
(MD5 checksum) and replica information. The workflow
has been enhanced through the incorporation of derived
data analysis products (dPDA) and our advanced vector
visualization techniques [31].

IV. PERFORMANCE TUNING
AWP-ODC has undergone extensive fine-tuning over

the past 6 years. While some of the results have been ad-
dressed in the previous section (e.g., I/O), we especially
highlight the recent performance optimizations in this sec-
tion.

TABLE 1
COMPUTERS USED BY MODEL FOR PRODUCTION RUNS

Computer Location Processor Interconnect Peak
Gflops

Cores
used

DataStar
Power4

SDSC 1.5/1.7Ghz
IBM
Power4

Custom
Fat Tree

6.0/6.8 2K

Ranger
Sun Const.

TACC 2.3-Ghz
AMD
Barcelona

InfiniBand
Fat Tree

9.2 60K

BGW
BG/L

IBM
Watson

700-Mhz
PowerPC

3D Torus 2.8 40K

Intrepid
BG/P

ANL 850-Mhz
PowerPC

3D Torus 3.4 128K

Kraken
Cray XT5

NICS 2.6-Ghz
Istanbul

SeaStar2+
3D Torus

10.4 96K

Jaguar
Cray XT5

ORNL 2.6-Ghz
Istanbul

SeaStar2+
3D Torus

10.4 223K

Table 1 summarizes the key characteristics of the ma-
chines used in our study. The Jaguar system is the most
powerful of those listed above. Jaguar’s compute node
contains two hex-core AMD Opteron processors, 16GB of
memory, and a SeaStar 2+ router with a peak bandwidth of
57.6GB/s. The routers are connected in a 3D torus topol-

Fig. 10. Workflow E2EaW illustration: data partitioning on Kraken,
solver simulation on Jaguar and data archival on Kraken HPSS.

 8

ogy that provides an interconnect with very high band-
width, low latency, and good scalability in its interconnect
[34].

A. Communication
AWP-ODC partitions the simulation volume into

smaller sub-domains where the total number of subdo-
mains matches the number of processors used in the simu-
lation. In the partitioned space, wave propagation informa-
tion must be shared among neighbors. The fourth-order FD
scheme requires a two-cell padding for the outside of each
sub-grid to correctly propagate waves. The number of
variables to be propagated and the number of surrounding
neighbors determine the amount of communication. To
propagate waves from one end of the computational do-
main to the other, long linear communication links can be
formed causing severe communication latency.

Generally, communication latency between cores is
highly dependent on their physical interconnect distance
and the node topology in NUMA (Non-Uniform Memory
Architecture) systems. The link among cores in a node
may also be asymmetrical, causing further latency varia-
tions. TACC Ranger, NCCS Jaguar, and ANL Intrepid
systems are some of the largest systems that incorporate
NUMA architecture.

AWP-ODC’s main loop is composed of many computa-
tional, communication and I/O procedures. To ensure con-
sistency, barriers are inserted. However, the local nature of
computation and I/O within a subdomain makes many of
the barriers unnecessary. Global synchronization created
by barriers is redundant.

Originally, AWP-ODC adopted a synchronous
communication model. In this model, the communication
path is cascaded through multiple mpi_send/mpi_recv call
pairs and latency is accumulated along the path. This
makes the accrued latency on each core highly dependent
on the number of cores in the communication path. The
synchronous communication model is not a particular
issue on single-socket based 3D torus architectures found
on BG/L and Cray XT4. However, in NUMA systems, the
number of sockets accessing the 3D torus network tends to
increase the communication latency. For example, we ob-
served a drop of parallel efficiency from 96% on BG/L to
40% on BG/P on 40K cores.

To deal with this NUMA architecture scalability issue,
we redesigned the communication model with asynchro-
nous communication. This change effectively reduces
communication overhead caused by unnecessary interde-
pendence among communication nodes. To use MPI asyn-
chronous communication calls, a mechanism is needed to
synchronize the overall communication flow. The former
synchronous code was directly converted to an asynchro-
nous code with unique tagging to avoid source/destination
ambiguity. This new model allows out-of-order arrival and
the unique tags maintain data integrity (Fig. 11). This
scheme significantly reduces the latency caused by fine-

grained arrival/departure order control and the redundant
synchronization mechanism.

The extreme communication overhead inherent in the
synchronous model on NUMA architectures causes critical
performance and scalability degradation of the code. The
asynchronous communication model effectively removes
the interdependency among nodes that do not show any
temporal dependence, resulting in highly balanced and low
latency communication. The optimized communication
code run on Ranger with 60K cores reduced the total time
to 1/3 of that consumed by the synchronous version of
code [26]. The parallel efficiency increased from 28% to
75%.

In addition to the asynchronous communication im-
provement, we removed redundant communication. Dur-
ing the communication, six stress tensor components (xx,
xy, xz, yy, yz, zz) and three velocity components (u, v, w)
need to be updated at each time step. Consider the follow-
ing Fortran code.

	

For the stress tensor component xx, only xx(i,j,k),
xx(i+1,j,k), xx(i-1,j,k) and xx(i-2,j,k) are needed to calcu-
late the updated u(i,j,k). This implies that we only need to
update xx in the x direction rather than in all three direc-
tions. By sending two plane faces of xx information to the
left neighbor and one plane to the right neighbor only in
the x direction, we can reduce the xx message communica-
tion by 75%, achieving an additional 15% in wall clock
time for the full-scale Jaguar execution.

B. Single-CPU Optimization
We used performance tools IPM and CrayPAT to ana-

lyze single CPU performance and find “hot spots” where
most of the execution time is spent. The profiling results
show that seven computing-intensive subroutines account
for about 40% of the total application execution time.

Initially, the focus was to reduce expensive division op-
erations in frequently used formulas. The Lamé parameter
arrays mu and lam are computed once and remain un-

Fig. 11. Round-trip communication latency in the asynchronous model.

u(i,j,k)=u(i,j,k)+(dth/d)*(
 +c1*(xx(i,j,k)-xx(i-1,j,k))+
 +c2*(xx(i+1,j,k)-xx(i-2,j,k))+
 +c1*(xy(i,j,k)-xy(i,j-1,k))+
 +c2*(xy(i,j+1,k)-xy(i,j-2,k))+
 +c1*(xz(i,j,k)-xz(i,j,k-1))+
 +c2*(xz(i,j,k+1)-xz(i,j,k-2)))

 9

changed during the entire simulation. Elements in the ar-
rays mu and lam are used in the forms mu(i,j,k) and
1./mu(i,j,k), but only the reciprocal form is used in fre-
quently invoked subroutines [35]. For this reason, we store
the reciprocals of mu and lam rather than the arrays them-
selves throughout the solver.

The critical subroutines share the same three nested-
loop structure. Each node executes the loop with its proc-
essor’s local mesh, which achieves good memory access
behavior. However, the cache utilization rate is very low,
primarily due to the requirement of assessing values in
multiple 3D arrays with varying second or third indices.
When one of these values is accessed, the whole cache line
containing the value is fetched into the L1 cache. Since the
number of variables in the inner loops is large, a cache line
is usually evicted from the L1 cache right after being ref-
erenced. To improve cache utilization, we need to access
as many values per cache lines loaded as possible.

The cache blocking technique provides better cache
utilization. A 3D difference algorithm can be extremely
limited in memory bandwidth, and the number of variables
that must be fetched from memory is relatively high given
the computation performed. If the required operands are in
cache, the effectiveness of cache reuse in the difference
code is low since the amount of data during the computa-
tion of an entire plane will exceed the size of the L1 and
L2 caches. Consider the following code for calculating the
harmonic mean of the Lamé parameter lam:

For any reasonably sized grid, the lines containing the
variables from the j-1 and k-1 planes will not be located in
cache when the difference equation is performed on the
next plane. If the grid is subdivided into smaller sub-grids,
the operands from the j-1 and k-1 planes may still be in
cache as the computation progresses. This can be accom-
plished by forming a memory block for the k and j loops as
described in the following Fortran code:

The values of kblock and jblock are chosen to guarantee
that the operands on subsequent planes are still in cache
while those planes are computed, so that each grid point
will be accessed eight times. If the cache blocking is per-
fect, then a variable will only be fetched from memory
once and the other seven fetches will be from the L1 or L2
cache. The values of kblock and jblock are dependent upon
the number of operands accessed within the DO loop. For
a typical loop length of 125, the optimal solution was
found to be 16/8. The variation between different combi-
nations is around 3%.

We also use explicit loop unrolling techniques to im-
prove cache utilization, even though some compilers
automatically incorporate this form of optimization. Since
the number of registers on a processor is limited, over-
unrolling could deteriorate loop performance. Empirical
studies prove that unrolling by 2 iterations gives the best
performance for the computing-intensive subroutines xyq
and xzq.

We implemented additional manual transformations of
the major computational subroutines that cannot be vector-
ized automatically. For example, we eliminated a mod
function from the innermost computing loop by replacing
it with itx = 3 - itx, where the value of itx alternates be-
tween 1 and 2. Removal of the mod enabled the compiler
to vectorize the arithmetic in the compute-intensive loop.

In summary, the benefit of the proper restructuring of
the computational intensive routines is significant. On
Jaguar, for instance, we obtained a performance gain of
40% at full system scale, with contributions of 31% from
arithmetic optimization, 2% from loop unrolling and 7%
from cache blocking.

C. Communication and Computation Overlap
Most of the communication in AWP-ODC is point-to-

point between nearest neighbors, making the performance
of AWP-ODC heavily dependent on system interconnect
bandwidth. DK Panda and his team at The Ohio State Uni-
versity (OSU) have developed non-blocking two-sided
computation and communication overlap to further im-
prove the parallel efficiency of AWP-ODC [42].

The velocity and stress exchange routines account for
most of the MPI time in our application. The velocity and
stress variables are composed of large amounts of small
non-contiguous chunks in memory. To enhance the overall
communication throughput, each process accumulates
these chunks into contiguous staging buffers and the corre-
sponding neighbor disseminates the received data. The
computations of different velocity vector and stress tensor
components are independent of one-another. Hence, we
divide computation and communication per component
and interleave them with each other. For example, velocity
computation and exchange are split into three parts based
on the u, v and w components. While the value of v is
computed, the exchange of u can be performed simultane-
ously to provide efficient computation/communication

do k = nzb,nze
 do j = nyb,nye
 do i = nxb,nxe
 o o o
 xl=8./(lam(i,j,k)+lam(i+1,j,k) +
 + lam(i,j-1,k)+lam(i+1,j-1,k) +
 + lam(i,j,k-1)+lam(i+1,j,k-1) +
 + lam(i,j-1,k-1)+lam(i+1,j-1,k-1))
 o o o

do kk = nzb,nze,kblock
 do jj = nyb,nye,jblock
 do 20 k= kk,min(kk+kblock-1,nze)
 do 20 j= jj,min(jj+jblock-1,nye)
 do i=nxb,nxe
 o o o
 xl=8./(lam(i,j,k)+lam(i+1,j,k) +
 + lam(i,j-1,k)+lam(i+1,j-1,k) +
 + lam(i,j,k-1)+lam(i+1,j,k-1) +
 + lam(i,j-1,k-1)+lam(i+1,j-1,k-1))
 o o o

 10

overlap. Similarly the exchange of v is overlapped with
computation of w. For each component, non-blocking two-
sided calls are used to initiate exchange of each velocity
component and then wait on the completion of all these
transfers using MPI_Waitall calls in the end after the ex-
change of w is initiated. A similar process is employed for
the stress tensor components.

With this overlap implementation, we obtained an
elapsed time performance gain of 11% and 21% on 65,610
cores on XT5 with PGI and Cray compilers, respectively.
However, the performance was limited by the skew cre-
ated by the load imbalance between the boundary and inte-
rior areas at full machine scale. For this reason, we com-
bined the cache blocking technique with overlap to get
consistent performance gains independent of processor
counts. This was largely due to more efficient computation
resulting in reduction of the skew. The OSU group has
further used MPI-2 one-sided semantics with finer grained
overlap to achieve additional performance gains for AWP-
ODC on MVAPICH2-based TACC Ranger [42]. Unfortu-
nately, the current MPI library of XT5 does not support
MPI-2 one-sided operations and thus cannot take advan-
tage of this optimization.

D. Load Balancing by Exploiting Hybrid Multithreads
By analyzing AWP-ODC with performance tools, we

were able to reduce the load imbalance by more than 35%
at full machine scale. This was achieved by incorporating
an MPI/OpenMP hybrid approach. Such an approach can
effectively resolve the load balancing issue and reduce
memory traffic, independent of the architecture. In the
hybrid method, multiple OpenMP threads, spawned from a
single MPI process, directly access shared memory space
within a node. On a NUMA architecture, hybrid methods
can synchronize at memory requests instead of barriers,
and reduce memory latency and data movement within a
node by thread and data collocation. Hybrid methods also
eliminate fine-grained intra-node domain decomposition.

We produced an MPI/OpenMP hybrid implementation
of AWP-ODC to exploit the performance gain over the
pure MPI implementation. While the hybrid approach re-
duces the load imbalance, it introduced significant idle
thread overhead. When the processor count approaches the
arithmetic limits of the subdomain decomposition, this
overhead may offset the entire performance gain. Espe-
cially for the large-scale runs where communication and
synchronization overhead dominate the simulation time,
the pure MPI code still performs better than the
MPI/OpenMP hybrid code. We will continue to investigate
this issue as MPI thread support evolves.

E. Lustre I/O Optimization
At a large core count, per-process serial I/O performance

can be hindered by the collection of metadata operations or
file system contention. On BG/P, for example, the simultane-
ous reading of the pre-partitioned mesh at more than 100K

cores failed due to the aforementioned problems. To mini-
mize the impact of this issue, we implemented a simple
I/O approach by constraining the number of synchronously
opened files to control the number of concurrent requests
hitting the metadata servers. This approach has also been
applied to the checkpointing scheme to improve the
read/write performance of checkpoint files or pre-
partitioned velocity data at large core counts. Not only
does the method avoid system contention, but it also im-
proves the I/O rate. We observed a significant enhance-
ment in aggregated I/O throughput to more than 20 GB/s
on Jaguar.

File striping within the file system can also improve I/O
performance. On Lustre file systems, we use the lfs set-
stripe command to distribute the given file contents across
the maximally available object storage targets (OSTs).
This enables concurrent reading/writing and provides an
overall superior I/O rate. We place different classes of files
into different directories for easy setting of distinct striping
configurations. The stripe count is set to a manageable size
for the single large source and for the mesh files, which
are located in the input directory accessed by simultaneous
reads from multiple processors through MPI-IO. The stripe
size is set to unity for serial access of pre-partitioned input
files and checkpoints, while simulation outputs folders use
a large striping count that depends on the actual output
operations.

V. SCALABILITY
AWP-ODC exploits parallelism in various ways and at

various levels of granularity as the capabilities of the code
have evolved. Table 2 summarizes this evolution.

TABLE 2
 EVOLUTION OF AWP-ODC

Year

Code
ver-
sion

Simulations

Optimization

SCEC
alloc.
SUs

Sustain.
Tflop/s

2004 1.0 TeraShake-K MPI tuning 0.5M 0.04
2005 2.0 TeraShake-D I/O tuning 1.4M 0.68
2006 3.0 PN MQuake partition. mesh 1.0M 1.44
2007 4.0 ShakeOut-K incorp. SGSN 15M 7.29
2008 5.0 ShakeOut-D asynchronous 27M 49.9
2009 6.0 W2W single CPU opt 32M 86.7
2010 7.0

7.1
7.2

M8

overlap
cache blocking

reduced comm

61M

220

A. Parallel Efficiency
The execution time for each time step can be decom-

posed into five categories: computation, communication,
synchronization, re-initialization of the source, and output
generation:

€

Ttot =Tcomp +Tcomm +Tsync +γToutput +ϕTreini (7)

In this time-dependent expression, Ttot denotes total execu-
tion time, Tcomp is the pure computational time, Tsync and
Tcomm denote synchronization and communication times,

 11

respectively, Toutput is output time, and Treini refers to the re-
initialization time due to temporal partitioning of large-
sized dynamic sources. The parameters γ and ϕ indicate
the I/O operation rate, divided by the fixed number of it-
erations chosen before the simulation. Since reinitializa-
tion is performed infrequently, Treini is significantly smaller
than the other terms, due to the extremely fast local read-
ing of the pre-partitioned sources, allowing it to be safely
omitted (for M8 ϕ = 1/3000). For the M8 run, we aggre-
gate outputs in buffers and write output every 20K time
steps (γ = 1/20000), resulting in minimal I/O time per it-
eration. Reduction in total execution time through aggres-
sive computation, synchronization, and communication
optimization can positively impact the overall perform-
ance.

Minkoff [33] provided a useful estimate of communica-
tion cost that can be applied to AWP-ODC. To obtain a
speedup formula, we define the following two factors:
average latency denoted by α and average bandwidth de-
noted by 1/β. With this notation, the cost to send a single
message with k units of data is represented by α + kβ.
Since our 3D grid contains N = NX × NY ×NZ grid points
with a topology consisting of P = PX ×PY ×PZ proces-
sors, our speedup can be re-defined as:

€

T (N,1)
T (N, p)

=
Cτ ⋅N

Cτ ⋅
N
p + 4 ⋅ (3α + 8β NX⋅NY

PX⋅PY + 8β NX⋅NZ
PX⋅PZ + 8β NY ⋅NZ

PY ⋅PZ)
 (8)

where the factor C accounts for the number of floating
point operations, the FD stencil, and the fact that there are
nine output quantities to update (six stress tensor and three
velocity vector components), see section 2. τ stands for
machine computation time per flop. For example, on Jag-
uar, the following values were estimated: α = 5.5×10−6 s, β
= 2.5×10−10 s, and τ = 9.62×10−11 s. This calculation, com-
bining machine characteristics and our application code
performance, demonstrates a 2.20×105 speedup or 98.6%
parallel efficiency on 223K Jaguar cores. Our production
simulations at this scale display ideal speedup which is
consistent with the theoretical parallel efficiency calcula-

tions discussed here.
To further differentiate the parallel performance be-

tween the current version (v. 7.2) and the previous version
(v. 6.0) that lacks cache blocking and the reduced algo-
rithm-level communication, we collect the timing informa-
tion for the communication and synchronization phases.
Fig. 12 details Ttot spent for each fragment between 65,610
and 223,074 cores. I/O time is between 0.6% and 2% of
the total time, and Tcomp is heavily dependent on local float-
ing-point operations. This demonstrates a super-linear
speedup due to efficient cache utilization. As the problem
size per processor reduces, the core data set sufficiently
fitsinto L1/L2 cache, and the memory access time subse-
quently decreases. Our CrayPAT report indicated that the
cache blocking optimization directly contributed to the
reduction of Tcomp, while the reduced communication op-
timization caused a simultaneous decrease of Tcomm and
Tsync. Here, Tcomm includes the time spent at MPI_Waitall
calls, since pure point-to-point communication time is only
0.2% of the total execution time. Tsync is mostly composed
of a single MPI_Barrier call per iteration.

With regard to weak scaling, benchmarks on BG/L us-
ing a synchronous communication scheme demonstrated
ideal scaling up to 32,768 cores. On Jaguar, we measured
90% parallel efficiency for weak scaling between 200 and
204K processor cores. The primary factor responsible for
the degradation in performance was the load imbalance
caused by the variability between boundary and interior
computational loads and the increase of the communica-
tion-computation ratio.

The diverse optimizations of AWP-ODC significantly
improved parallel efficiency. On Jaguar at full system
scale, loop-level optimization improved the code perform-
ance by 40% (reduced division operations 31%, unrolling
2%, cache blocking 7%), computation/communication
overlap by 11% (not included in v. 7.2), and reduced algo-
rithm-level communication by 15% (see Fig. 13). Two
other outstanding improvements include the incorporation
of an asynchronous communication model (achieved more
than ~7x reduction in wall clock time on 223K Jaguar
cores) and reduction of I/O time from the original 49% to
less than 2% of the wall clock time. Finally, the simulta-
neous reading of the multi-terabytes mesh/source inputs by
thousands of processor cores has significantly reduced
initialization time to a few minutes. Fig. 14 details the
scalability improvements.

Fig. 12. Breakdown of execution time into computing, communication,
synchronization, and I/O time for the M8 settings on Jaguar at ORNL.
Execution time per step using (left) v. 6.0, and (right) v. 7.2 with cache
blocking and reduced algorithm-level communication.

Fig. 13. Reduction of time-to-solution per time step achieved for each
new version of AWP-ODC on NCCS Jaguar.

 12

B. Sustained Performance
We present two sustained performance estimates based

on 223,074 Jaguar cores. The first estimate is a 2,000 time-
step benchmark of a wall-to-wall scenario of dimensions
750 km × 375 km × 79 km with a spatial resolution of 25
meters and a maximum frequency of 2 Hz, discretized into
1.4 trillion mesh points. This benchmark was made in
preparation for our 2011 PRAC project on NCSA Blue
Waters, where we plan a slightly larger simulation. The
second estimate is the M8 simulation.

Both the benchmark and M8 runs produced remarkable
results. By documenting PAPI calls, we recorded the
benchmark and M8 simulations to run at sustained rates of
260 Tflop/s and 220 Tflop/s, respectively. The average
floating point operations per second is based on the report
by PAPI_FP_OPS divided by measured wall-clock time.
We emphasize that the sustained performance is based on
the 24-hour M8 production simulation with 6.9 TB input
and 4.5 TB output, not a benchmark run. Such perform-
ance results are particularly remarkable considering that
stencil computations typically achieve a low fraction of
theoretical peak performance.

VI. SCEC MILESTONE CAPABILITY SIMULATIONS USING
AWP-ODC

In this section, we review significant SCEC milestone
simulation efforts carried out in recent years based on the
AWP-ODC application (see Table 3). Table 5.1 shows
how the sustained performance of AWP-ODC increased as
the NSF computer allocations grew in the past 5 years. The
first important computational milestone obtained in 2004
was TeraShake-K (hereafter referred to as TS-K) [38],
which modeled the effects of a Mw7.7 earthquake on a
200-km stretch of the southern SAF up to 0.5 Hz in a 600
km × 300 km area of southern California using a 1.8-
billion grid point model. TS-K generated 53 TB of 3-D
volume data for scientific analysis and was a breakthrough
in computational seismology at the time. TS-K identified
the critical role of a sedimentary waveguide along the
southern border of the San Bernardino and San Gabriel
Mountains in channeling seismic energy into the heavily
populated San Gabriel and Los Angeles basin areas for
rupture on the southern SAF from SE to NW. In contrast,
NW-SE rupture on the same stretch of the SAF generated
orders-of-magnitude smaller peak motions in Los Angeles
(Fig. 15).

Fig. 14. Strong scaling of AWP-ODC on TeraGrid and DOE INCITE systems. Progressive improvements are illustracted for the following SCEC
milestone simulations: 1.8 billion grid-point TeraShake (version 1.0/2.0 on DatarStar w/o I/O tuning), 14.4 billion grid point ShakeOut (v. 5.0/6.0
on Intrepid w/o single-CPU optimization, v. 6.0 on Ranger, v. 4.0/5.0 on Kraken w/o asyncronous communication), and 436 billion grid point M8
(v. 6.0/7.2 on Jaguar w/o cache blocking and reduced algorithm-level communications). Solid lines are scaling after optimizations, square dotted
lines denote scaling before optimization, and dashed lines are ideal cases. Super-linear speedup occurs for M8 on NCCS Jaguar.

 13

The TS-K simulations used a kinematic source descrip-

tion based on observations of the 2002 M7.9 Denali earth-
quake rupture scaled to a magnitude 7.7. The TS-K source
was relatively smooth in its slip distribution and rupture
characteristics, owing both to resolution limits of the De-

nali source inversion and simplifications imposed by the
kinematic parameterization (see Fig. 16). Kinematic
source descriptions are often strong simplifications of the
earthquake rupture process, usually not constrained by
physical properties of faults and earthquake ruptures such
as friction laws and stress conditions.

In order to examine the effects of using a more complex,
physically-constrained source, the TeraShake-D (TS-D)
simulations were executed using dynamic rupture simula-
tions [41]. The dynamic rupture simulations generated by
TS-D were derived from a spontaneous rupture model with
small-scale stress-drop heterogeneity based on inferences
from the 1992 Landers earthquake (Fig. 16). The TS-D
source models show average slip, rupture velocity and slip
duration that are nearly the same as the corresponding val-
ues for the TS-K sources, but the ground motion predic-
tions for the two source types are significantly different. In
particular, the increased complexity of the TS-D sources
decreases the largest peak ground motions associated with
the wave guides and deep basin amplification by factors of
2-3. This general reduction in overall ground motion is
attributed to the less coherent wavefield radiated by the
TS-D sources.

Another notable characteristic feature in the TS-D
ground motion distributions is the ‘star burst’ pattern of
increased PGVs radiating out from the fault. These rays of
elevated ground motions are generated in areas of the fault
where the dynamic rupture pulse changes abruptly in
speed, direction, or shape (Fig. 17). For this reason, the
bursts of elevated ground motion are also correlated with
pockets of large, near-surface slip rates on the fault. This
pattern is absent from the PGV distributions for the TS-K
simulations owing to the limited variation in rupture speed
and constant shape of the source time functions. While
dynamic rupture-based source descriptions are more com-
putationally expensive to produce, they add important
physical constraints to the source that are usually missing
from kinematic descriptions.

TeraShake was followed by the ShakeOut simulations.
The Great Southern California ShakeOut was an earth-
quake preparedness exercise mounted by the USGS,
SCEC, and many other organizations to improve public
readiness for a catastrophic earthquake along the southern
SAF. The success of this exercise, which involved over 5
million people (the largest ever held in the United States),
was attributable in part to the physical realism of the simu-

Fig. 15. Maximum RMS PGVs for the TS-K ruptures. N50W seismo-
grams are superimposed at locations (from left to right) Westwood,
downtown Los Angeles, Montebello, Long Beach, and Irvine. (a) SE-
NW and (b) NW-SE scenarios. Modified after Olsen et al. [38].

TABLE 3
 SCEC SIMULATIONS BASED ON AWP-ODC BY NAME, MAXIMUM

FREQUENCY, SOURCE DESCRIPTION, AND YEAR CONDUCTED

Sim w/ AWP-ODC Description
TeraShake
240 DataStar cores
1024 IA-64 cores

TS-K: Mw7.7, 0.5Hz, kinematic source de-
scriptions based on the Denali (2002) event.
TS-D dynamic source based on 1992 Landers
initial stress conditions. (2005-2006)

Pacific Northwest
MegaThrust
6K SDSC BG/L
cores

Long period (0-0.5Hz) ground motion for
Mw8.5 and Mw9.0 earthquakes in a new 3D
Community Velocity model of the Cascadia
subduction zone. (2007)

ShakeOut
16K Ranger cores

SO-K, Mw7.8, 1.0Hz, kinematic source
based on geological observations (2007)
SO-D, SGSN-based dynamic source (2008)

FD3T
ANL BG/P

Full 3D tomography of TS using full physics
of 3D wave propagation (2008)

W2W
96K Kraken cores

Mw8.0, 1.0Hz, SGSN-based source, com-
bined Mw7.8 sources (2009)

M8
223K Jaguar cores

Mw8.0, 2.0-Hz, 40m spacing and 436 billion
mesh points, SGSN-based source, a new
record (2010)

Fig. 16. Snapshots of slip rate for dynamic (top, TS-D) and kinematic
(bottom, TS-K) rupture 27.5 sec after initiation. Modified after Olsen et
al. [39].

 14

lation used to drive the exercise. The M7.8 ShakeOut sce-
nario was based on geological data and cumulative strain
estimates from GPS records; the 300-km-long scenario
rupture initiated at the southern terminus of the SAF near
the Salton Sea and propagated unilaterally toward the
northwest into the western Mojave desert. Seven dynamic
source descriptions were used (Fig. 18) to assess the un-
certainty in the site-specific peak motions. The ShakeOut
project increased the upper frequency limit of the SCEC
CME simulations to 1 Hz.

In addition to these large simulations on the southern
SAF, AWP-ODC has been used for several other impor-
tant modeling projects conducted by the CME collabora-
tion. One of these projects produced 0-0.5 Hz simulations
of large, M8.5-9.0 megathrust earthquake scenarios in the
Pacific Northwest. This study demonstrated strong basin
amplification and ground motion durations up to 5 minutes
in metropolitan areas such as Seattle [40]. Another promi-
nent project is F3DT, an I/O intensive 3D waveform to-
mography to iteratively improve the CVM4 in southern
California. Here, AWP-ODC is used to calculate sensitiv-
ity kernels accounting for the full physics of 3D wave
propagation, generating updated velocity models with sub-
stantial better fit to data as compared to the starting models
[10]. Finally, preliminary wall-to-wall scenarios were car-

ried out with a grid spacing of 100 m, leading us to M8.

VII. M8 SIMULATION
M8 was motivated by the need to understand the seismic

hazard of the southern SAF, which has accumulated a sig-
nificant slip deficit since the most recent large ruptures of
this dangerous fault. The southernmost segments of the
southern SAF, between Cajon Creek and Bombay Beach,
have not participated a major earthquake since circa 1680,
implying a slip deficit of 5–6 meters [44]. Further north,
from the southern Mojave to Cholame, the most recent
large event was in 1857. Estimated recurrence intervals
between major events on the southern SAF from paleo-
seismic studies have recently been reduced to less than the
time elaspsed since this earthquake, indicating that the
entire southern San Andreas is “locked and loaded” [16].

There is no consensus from paleoseismic studies that a
magnitude-8 rupture extending from the Salton Sea to
Cholame (the ‘wall-to-wall’ event) has ever happened. In
the current Uniform California Earthquake Rupture Fore-
cast, in the 30-year probability of such a rupture is a mod-
est 3% [21]. However, the paleoseismolgical record is
consistent with such an event in the late 1400s, so ground
motions from this type of earthquake need to be investi-
gated.

We used the SGSN mode of AWP-ODC (Fig. 6) to gen-
erate a dynamic rupture model for M8. Since the SGSN
mode can only be applied for a planar fault, a two-step
method was employed. In a first step, we simulated a
spontaneous rupture on a planar, vertical fault that is 545
km long (from Cholame to Bombay Beach) and 16 km
deep. The source time histories obtained from the dy-
namic simulation were then transferred onto a segmented
approximation of the southern SAF, and the wave-
propagation for this source was solved with AWP-ODC.
Surface topography was not included in the rupture or
wave propagation models.

A. Source Description
We simulated the spontaneous rupture on a fault that is

embedded in a seismic geologic model representing the
average compressional-velocity, shear-velocity and density
along the SAF. Friction in our model followed a slip-
weakening law, with static (µs) and dynamic (µd) friction
coefficients of 0.75 and 0.5, respectively, and a slip-
weakening distance dc of 0.3 m. In the top 2 km of the
fault, we emulated velocity strengthening by forcing µd >
µs, with a linear transition between 2 km and 3 km, causing
the stress drop in this region to be negative. Additionally
dc was increased to 1 m at the free surface using a cosine
taper in the top 3 km. The initial shear stress on the fault
was derived from the assumption of depth-dependent nor-
mal stress [15]. Because the initial compressive normal
stress -τn increased with depth as a consequence of increas-
ing overburden, the frictional strength τf (and generally the

Fig. 17. PGVs for the TeraShake-D (2.1) simulation. White lines depict
fault traces and county lines. The dotted line depicts the part of the San
Andreas fault that ruptured in the TeraShake-D simulations. Modified
after Olsen et al. [39].

Fig. 18. Slip distributions for 4 of the 7 ShakeOut-D sources and Shake-
Out-K (V1.2). The white contours and contour labels depict the rupture
times. Modified after Olsen et al. [41].

 15

stress drop) increased as well. We also included cohesion
of 1 MPa on the fault.

To define the initial shear stress τ0 on the fault, we first
generated a random stress field using a Van Karman auto-
correlation function with lateral and vertical correlation
lengths of 50 km and 10 km, respectively. The random
stress field was then accommodated into the depth-
dependent frictional strength profile in such a way that the
minimum shear stress represented reloading from the re-
sidual shear stress after the last earthquake, and such that
the maximum shear stress reached the failure stress [15].
The initial shear stress τ 0 generally increases with depth,
despite the random component. The shear stress was ta-
pered linearly to zero at the surface from a depth of 2 km.
Rupture was initiated by adding a small stress increment to
a circular area near the nucleation patch, located ~20 km
from the northern end of the fault. We used a spatial dis-
cretization of 100 m and a temporal discretization of 6.25
ms. The extent of the rupture model included 40-km-wide
zones between the fault and the PML absorbing bounda-
ries on the sides and 24 km on the bottom. This discretiza-
tion of the rupture model is adequate for good numerical
resolution, as demonstrated by previous work [14][39]

[41].
The size of the computational domain was 629 × 80 ×

40 km3 (~2 billion nodes). The dynamic rupture was gen-
erated by dSrcG and PetaSrcP on NICS Kraken using
2160 cores during 7.5 hours, simulating 250 seconds of
rupture. The moment rate time histories were defined on
881,475 subfaults with 108,000 time steps (2.1 TB). The
source was further partitioned into 526 spatially separate
grids. In addition to the spatial locality, we enabled tempo-
ral locality by splitting the source into 36 loops (each re-
sponsible for 3000 time steps) to reduce memory require-
ments.

The final slip (Fig. 19a) reached 7.8 m on the fault and
5.7 m on the surface, with an average slip of 4.5 m and a
total seismic moment of 1.0 × 1021 Nm (Mw = 8.0). These
values are in general agreement with worldwide observa-
tions from magnitude ~8 events (e.g., [43]). Peak slip rates
were generally larger at depth, where they exceed 10 m/s
(0-2 Hz) in a few patches (Fig. 19b). The rupture propa-
gated both at sub-Rayleigh and super-shear speed until it
reached the opposite end of the fault after 135 seconds
(Fig. 19c). A large ~100 km patch of super-shear rupture
velocity was located between 30 and 130 km along-strike,
and smaller patches near 250 km, 500 km, and 540 km.

B. Wave Propagation
The spontaneous-rupture source was then inserted onto

a 47-segment approximation of the southern SAF after
applying temporal interpolation and a 4th-order low-pass
filter with a cut-off frequency of 2 Hz. The source was
imbedded in a 810 km × 405 km × 85 km volume ex-
tracted from the SCEC CVM 4 (see Fig. 20) using the
Universal Transversal Mercator (UTM) projection. The
volume was discretized into 436 billion 40-m3 cubes using
a minimum S-wave velocity (Vs) of 400 m/s.

P-wave and S-wave velocities and density values were
stored on this mesh, while quality factors (specifying ane-
lastic attenuation) were calculated on-the-fly (from an ap-
proximate empirical relationship - Qs = 50 Vs where Vs is

Fig. 19. Mw8’s source model obtained from spontaneous rupture simulation (left at NW, right at SE). (a) Final slip (b) horizontal peak slip rate, and (c)
rupture velocity normalized by the local shear-wave velocity. In (c), the yellow areas are dominated by sub-Rayleigh rupture velocities, while red and
blue patches indicate areas where the rupture propagates at super-shear speed. The black contours show the rupture time in intervals of 1 second.

Fig. 20. Perspective view of the M8’s 810 x 405 x 85 km model domain
for central and southern California, and northern Baja California. Sedi-
mentary basins are revealed by cutaway of material with S-wave velocity
less than 2.5 km/s (as defined by the SCEC CVM 4). Depth below the
surface is indicated by the red/yellow color scale.

 16

in units of km/s, and Qp = 2Qs). M8 mesh was pre-
partitioned into 223,074 files on Jaguar using PetaMeshP.
An alternative procedure (in case of hardware file system
failure) used direct contiguous MPI-IO imbedded into the
solver to directly read the single 4.8 TB mesh file by
21,600 readers, redistributing the partitioning to each
process at solver time. For the final production run, we
used the first approach to read in the pre-partitioned mesh
files in 4 minutes. To avoid file contention, we limited the
number of synchronous file open requests to 650 (maxi-
mum 670 OSTs on Jaguar) and as a result, achieved an
aggregate read performance of 20 GB/s. The simulation of
360 seconds of wave propagation took 24 hours on Jaguar

using 223,074 cores, sustained 220 Tflops, and produced
4.5 TB of surface synthetic seismograms. M8 consumed
thirty times the computational resources that were required
by each of the ShakeOut-D simulations (see section 6).

Checkpointing was not activated during the M8 produc-
tion simulation to avoid additional potential stress to the
file system writing the 49 TB checkpoint files at each time
step. M8 saved the ground velocity vector at every 20th
time step on an 80 m by 80 m grid (4.5 TB). Outputs were
aggregated at run-time and written every 20K time steps to
minimize I/O overhead. In total, M8 consumed 581 MB of
memory per core, with 285 MB by the solver, 46 MB by
buffer aggregation of outputs, 22 MB by the Earth model,

Fig. 21. PGVHs derived from M8 superimposed on the regional topography. N46E component seismograms are added at selected locations, with their
peak velocities (cm/s) listed along the traces.

 17

and 228 MB by the source after lowering the memory high
water mark into 36 segments through temporal partition-
ing.

C. Scientific Advances From M8
Several important scientific advances have been gained

from M8, primarily related to the increase of the largest
frequencies included (2 Hz), the vast computational do-
main (810 km by 405 km), and complex spontaneous-
rupture source description. Animations of the simulation
can be downloaded from [28]. Fig. 21 shows horizontal
peak ground velocities (PGVHs) calculated from M8 (as
the root sum of squares of the horizontal components),
along with synthetic seismograms at selected sites. The
PGVHs show patterns in agreement with results from the
previous TeraShake and ShakeOut-D simulations, includ-
ing large near-fault values and strong directivity effects,
and ‘sun-bursts’ radiating from the fault due to the com-
plexity of the spontaneous rupture propagation. Although
experiencing significant PGVHs on the order of 0.4 m/s,
downtown Los Angeles is not excited by the waveguide
amplification to the same extent as earthquake simulations
on the southern SAF with SE-NW rupture directions. The
NW-SE rupture direction for M8 is largely transverse to
the waveguides, avoiding the intense focusing effect ob-
served for NW-propagating TeraShake/ Shakeout ruptures.

Large near-fault ground motions were expected by M8
due to the strong directivity effects generally obtained
from long strike-slip earthquakes. The largest near-fault
peak velocities from M8 occurred immediately on top of
the fault trace, in isolated locations exceeding 10 m/s
(these most extreme velocities will be reduced when cor-
rected for nonlinear soil response, not yet incorporated into
the results). Some of largest near-fault PGVHs occur in

connection with patches of super-shear rupture for M8
(e.g., at distances of about 30 km, 480 km, and 530 km
from the northern end of the fault, Fig. 19). Previous
analyses of super-shear rupture propagation and ground
motions have focused on constant rupture velocities in
simple homogeneous or layered media (e.g., [1][4][19]).
These studies have shown that the Mach waves generated
by supershear rupture (as obtained for M8 in Fig. 22) carry
intense near-fault ground motions to much larger distances
from the fault than is the case for sub-shear ruptures. Fur-
thermore, the fault-parallel component of ground motion
tends to display similar or larger amplitude, as compared
to the fault-perpendicular component, which usually con-
tains the largest peak velocities for subshear rupture
propagation due to directivity. M8 shows similar wave-
field characteristics and extends the analysis to complex,
heterogeneous rupture models in 3D media. In particular,
some of the largest M8 PGVs along the fault tend to occur
where the rupture speed increases rapidly from sub-
Rayleigh to super-shear rupture speeds. The rapid increase
in rupture speed in these areas likely contribute to the ex-
ceptionally large ground motions.

The velocity time histories associated with the large
PGVHs on the fault are generally characterized by a sin-
gle, simple pulse, with a significant amount of energy be-
tween 1 and 2 Hz. In other cases, large near-fault shaking
may occur associated with longer periods. An example of
this is San Bernardino (see Fig. 21) where PGVHs reach 6
m/s. A spectral analysis shows that these peaks correspond
to periods of 2-4 s. San Bernardino, like Los Angeles and
Ventura, is built on top of a relatively deep sedimentary
basin (the San Bernardino Basin, SBB, is up to 2 km
deep). The combination of a location within kilometers of
the SAF, the SBB, and the strong directivity from the NW-
SE M8 rupture appears to be causing the large ground mo-
tions in San Bernardino. The Coachella Valley is another
sedimentary basin located along the fault experiencing
intense shaking from M8. Whether or not these large peak
motions can prevail during real earthquakes requires stud-
ies on nonlinear soil response and alternative friction mod-
els for the rupture. Such studies are currently underway in
SCEC.

In order to rank the ground motion levels from M8 rela-
tive to their expected frequency of occurrence for a generic
site and event (of the same magnitude), we have made
comparisons of the simulated PGVHs to those predicted
by recent Next Generation Attenuation (NGA) relations.
Such attenuation relations (ARs) are empirical regression
estimates attempting to quantify the statistical distribution
of ground motion amplitudes over all scenarios. We in-
clude the ARs proposed by Campbell and Bozorgnia [8]
and Boore and Atkinson [7]. Note that for these compari-
sons we use the geometric mean of the PGVHs, since this
measure is used by [8] and [7]. The geometric mean gen-
erates PGVHs typically 1.5-2 times smaller than those

Fig. 22. N46E component velocity snapshot at 23 s from M8 illustrating
super-shear wave propagation, with the Mach cone entering the ‘Big
Bend’ section of the SAF.

 18

values calculated from the root sum of squares, the meas-
ure used in Fig. 21. Since M8 calculates ground motions
up to 2 Hz, the PGVHs are not expected to be significantly
biased by the simulation bandwidth.
 Fig. 23 shows a comparison of horizontal geometric-
mean PGVHs for all rock sites in M8 at distances up to
200 km from the fault to the values predicted by the [8]
and [7]. The rock sites were defined by a surface Vs >
1000 m/s for M8 and a depth of 400 m to the Vs = 2500
m/s isosurface for [8] (and Vs30 = 760 m/sec). For most
distances from the fault, the median M8 and AR PGVs
agree very well, and the M8 median ± 1 standard deviation
are very close to the AR 16% and 84% probability of ex-
ceedance (POE) levels, respectively. The good agreement
provides independent evidence that the fault area (and
therefore the average stress drop) used for M8 are consis-
tent with a moment magnitude 8 event.

 The comparison in Figure 23 shows that, at sites where
region-specific propagation effects are relatively unimpor-
tant, M8 matches remarkably closely the ground motion
statistics encoded in the NGA empirical relationships. Of
course the empirical relationships, by their very nature
(i.e., since they are based on empirical fits to worldwide
data), cannot predict path-specific effects associated with
the southern California geological model that are captured
by M8, mainly in the sedimentary basins. Examples of
ground motions predicted by M8 that are high amplitude
(i.e., low POE relative to the corresponding generic NGA
predictions) can be seen in Fig. 22: Oxnard in the Ventura
basin with a PGVH of 33 cm/s (72 km from the fault, at
about 2% POE for [7]) and Downey in the Los Angeles
basin with a PGVH of 65 cm/s (65 km from the fault, at
about 0.13% POE for [7]). In particular, the large peak
ground motions simulated in the SBB fall well below 0.1%
POE levels for [7], illustrated by a PGVH of 430 cm/s at a

distance of 10 km from the fault. However, these extreme
ground motions, caused by complex source propagation
and 3D basin amplification effects, are not expected to be
captured by the ARs, which cannot replicate such geo-
graphically specific effects.

VIII. SUMMARY AND OUTLOOK
We have developed a highly scalable, parallel finite-

difference application (AWP-ODC) targeting petascale
earthquake hazard calculations. It combines the state-of-
the-art SGSN-based dynamic rupture simulations with
seismic wave propagation simulations in three dimensions.
AWP-ODC is an integral part of the Community Modeling
Environment at SCEC, and has been widely used in the
community for applied scientific research. Recent AWP-
ODC performance gains made it possible to simulate M8,
a great earthquake scenario on the SAF. M8 produced 368
s of 0-2 Hz ground motion in a 810 km × 405 km × 85 km
region within southern California using 3D structure prop-
erties from the SCEC Community Velocity Model V4.0
(CVM-4). M8 sustained 220 Tflop/s, at approximately
10% of peak performance, with nearly ideal scaling to the
entire Jaguar system of 223K cores. These values demon-
strate an unprecedented performance for an explicit, sten-
cil-based solver, and M8 is a breakthrough in seismology
both in terms of computational size and scalability. M8 is
the largest and most detailed physics-based ground motion
simulation of a large scenario earthquake thus far per-
formed.

Important new scientific insight was gained from M8
about the ground motion levels to be expected for a Great
earthquake on the SAF, in particular at the large popula-
tion centers within the model area. For example, M8 gen-
erates large amplification with peak ground velocities ex-
ceeding 300 cm/s at some locations in the Ventura basin.
Such large amplification was expected for SAF scenarios
with SE-NW rupture directions due to wave-guide chan-
neling of the seismic energy from the fault [41]. However,
M8 shows that directivity effects for a great SAF earth-
quake initiating near Cholame and propagating SE may
generate similar levels of amplification in the Ventura ba-
sin, despite the wave field enters almost perpendicularly to
the wave guide. On the other hand, the largest peak mo-
tions in the deeper LA basin reach about 120 cm/s, with
‘only’ 40 cm/s in downtown Los Angeles. San Bernardino
appears to be the area hardest hit by M8, due to directivity
effects coupled with basin amplification and proximity to
the fault.

M8 also provides new insight about the effects of super-
shear rupture propagation. In particular, M8 suggests that
exceptionally large ground motions can be generated along
the fault trace above locations where the earthquake rup-
ture transitions from sub-Rayleigh to super-shear speeds.
In addition, the reduced attenuation of the Mach waves
generated during the super-shear rupture NW of the ‘Big

Fig. 23. Comparison of PGVs from M8 to those calculated for Mw 8
events from C&B08 [8] and B&A08 [7] at rock sites. The rock sites
were defined by a surface Vs > 1000 m/sec for M8 and a depth of 400 m
to the Vs =2500 m/sec isosurface for [8] (and Vs30 = 760 m/sec). POE
stands for probability of exceedance.

 19

Bend’ of the SAF may be a contributing factor to the large
peak motions obtained in the Ventura area. Additional
near-future M8 rupture scenarios planned within SCEC
will include source descriptions with generally sub-shear
rupture speeds, to test whether the ground motions will be
characterized by less extreme directivity effects (and asso-
ciated coherent wave fields and extreme ground motions).
In addition, scenarios with different hypocentral locations
(i.e., SE-NW rupture propagation, bi-lateral rupture) in
several different CVMs will be carried out, to obtain an
estimate of the ground motion uncertainty related to a
Great SAF event.

Increased complexity with multicore NUMA architec-
tures has pushed the burden of obtaining good perform-
ance to the application level. In this paper we have ad-
dressed some critical technical issues regarding large-scale
earthquake simulations: careful design of efficient algo-
rithms and adaptive software packages, optimization of
message passing, effective communications, and in par-
ticular understanding the underlying characteristics of the
parallel file system and building highly customizable par-
allel I/O libraries at extreme scale. Further enhancements
of AWP-ODC are planned for the near future, including
development of a highly scalable algorithm-dependent
fault tolerance technique based on work by Dongarra et al.
[11], adding HDF5 and ADIOS features to allow changes
in the I/O external configuration files, and facilitating an
extremely large volume data analysis using our state-of-
the-art 4D vector visualization technique. Finally, we will
continue to port and re-engineer AWP-ODC to increas-
ingly larger computing platforms, such as the upcoming
NCSA Blue Waters through a Petascale Computing Re-
source Allocation (PRAC) award, sponsored by the NSF
PetaApps program.

The path to successful completion of SCEC milestone
simulations in recent years (with M8 as the most promi-
nent example) has demonstrated that optimization and
enhancement of major application codes are essential for
using large resources (i.e., number of processors, number
of CPU-hours, terabytes of data produced). M8 also
showed that multiple types of resources are needed for
large problems, namely initialization, run-time execution,
analysis resources, and long-term data collection manage-
ment. The development and improvements to AWP-ODC
leading to M8 have created a community code that has
been used by the wider SCEC community to perform
petascale earthquake simulations. In the future, well-
verified and validated simulations of ground motions using
realistic 3D structural models will provide better estimates
of strong ground motions at frequencies of interest to en-
gineering, emergency management, and seismological
communities.

ACKNOWLEDGMENT
The authors acknowledge the Office of Science of the

U.S. Department of Energy (DOE) for providing HPC
resources that have contributed to the research results re-
ported within this paper through an Innovative and Novel
Computational Impact on Theory and Experiment (IN-
CITE) program allocation award. Computations were per-
formed on Jaguar, which is part of the Oak Ridge Leader-
ship Facility at the Oak Ridge National Laboratory which
is supported by under DOE Contract No. DE-AC05-
00OR22725. This research used resources of the Argonne
Leadership Computing Facility at Argonne National Labo-
ratory, which is supported by the Office of Science of the
U.S. Department of Energy under contract DE-AC02-
06CH11357. This research was supported by an allocation
of advanced computing resources provided by the National
Science Foundation. Computations were performed on
Kraken (a Cray XT5) at the National Institute for Compu-
tational Sciences (www.nics.tennessee.edu). Computations
and data management were performed at San Diego
Supercomputer Center (www.sdsc.edu), where the iRODS
Data System was used (www.diceresearch.org). The Texas
Advanced Computing Center (TACC) at The University of
Texas at Austin (www.tacc.utexas.edu) provided HPC
resources that have contributed to the research results re-
ported within this paper. Computations for the work de-
scribed in this paper were supported by the University of
Southern California Center for High-Performance Com-
puting and Communications (www.usc.edu/hpcc). The
Ohio State University One-sided MPI Communication
research was supported through NSF HECURA-1 (CCF-
0833169/139/155). This research received technical and
user support through the Advanced Support for TeraGrid
Applications (ASTA) program (www.teragrid.org). This
research was supported by the Southern California Earth-
quake Center (www.scec.org). SCEC is funded by NSF
Cooperative Agreements EAR-0106924 and USGS Coop-
erative Agreement 02HQAG0008, and NSF awards EAR-
074493, EAR-0949443, OCI-0832698, and OCI-0832698.
The SCEC contribution number for this paper is 1443.

REFERENCES
[1] B.T. Aagaard and T.H. Heaton, “Near-Source Ground Motions

from Simulations of Sustained Intersonic and Supersonic Fault
Ruptures,” Bull. Seis. Soc. Am., vol. 94, no.6, 2004, pp. 2064-2078.

[2] J. Berenger, “A Perfectly Match Layer for the Absorption of Elec-
tromagnetic Waves,” J. Comput. Phys., vol. 114, no. 2, 1994, pp.
185-200.

[3] J. Berenger, “Three-Dimensional Perfectly Matched Layer for the
Absorption of Electromagnetic Waves,” J. Comput. Phys., vol. 127,
no. 2, 1996, pp. 363-379.

[4] P. Bernard and D. Baumont, “Shear Mach Wave Characterization
for Kinematic Fault Rupture Models with Constant Supershear
Rupture Velocity,” Geophys. J. Int’l, vol. 162, no. 2, 2005, pp. 431-
447, doi:10.1111/j.1365-246X.2005.02611.x.

[5] J. Bielak, R. Graves, K.B. Olsen, R. Taborda, L. Ramirez-Guzman,
S.M. Day, G. Ely, D. Roten, T.H. Jordan, P. Maechling, J. Urbanic,
Y. Cui, and G. Juve, “The ShakeOut Earthquake Scenario: Verifica-
tion of Three Simulation Sets,” Geophys. J. Int’l, vol. 180, no. 1,
2010, pp. 375-404.

[6] J.O. Blanch, J.O.A. Robertsson, and W.W. Symes, “Modeling of a
Constant Q: Methodology and Algorithm for an Efficient and Op-

 20

timally Inexpensive Viscoelastic Technique,” Geophysics, vol. 60,
no. 1, 1995, pp. 176-184, doi:10.1190/1.1443744.

[7] D.M. Boore and G.M. Atkinson, “Ground-motion prediction equa-
tions for the average horizontal component of PGA, PGV, and 5%-
damped PSA at spectral periods between 0.01 s and 10.0 s”, Earth-
quake Spectra, vol. 24, 2008, pp. 99-138.

[8] K.W. Campbell and Y. Bozorgnia, “NGA ground motion model for
the geometric mean horizontal component of PGA, PGV, and 5%-
damped PSA at spectral periods between 0.01 s and 10.0 s”, Earth-
quake Spectra, vol. 24, 2008, pp. 139-171.

[9] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, “A Nonreflecting
Boundary Condition for Direct Acoustic and Elastic Wave Equa-
tions,” Geophysics, vol. 50, no. 4, 1985, pp. 705-708,
doi:10.1190/1.1441945.

[10] P. Chen, L. Zhao, and T.H. Jordan, “Full 3D Tomography for the
Crustal Structure of the Los Angeles Region,” Bull. Seis. Soc. Am.,
vol. 97, no. 4, 2007, pp. 1094-1120, doi: 10.1785/0120060222.

[11] Z. Chen, J.J. Dongarra, “Algorithm-Based Fault Tolerance for Fail-
Stop Failures”, IEEE Trans. Parallel and Distributed Systems, vol.
19, no. 12, 2008, pp. 1628-1641, doi:10.1109/TPDS.2008.58.

[12] Y. Cui, R. Moore, K.B. Olsen, A. Chourasia, P. Maechling, B.
Minster, S. Day, Y. Hu, J. Zhu, A. Majumdar, and T.H. Jordan,
“Enabling Very-Large Scale Earthquake Simulations on Parallel
Machines,” Proc. Int’l Conf. Comput. Science, Lecture Notes in
Computer Science series, vol. 4487, Springer-Verlag, 2007, pp. 46-
53.

[13] Y. Cui, K.B. Olsen, A. Chourasia, R. Moore, P. Maechling, and T.
H. Jordan, “The TeraShake Computational Platform for Large-Scale
Earthquake Simulations,” Advances in Geocomputing: Lecture
Notes in Earth Sciences, vol. 119, Springer-Verlag, 2009, pp. 229-
278.

[14] L.A. Dalguer and S.M. Day, “Staggered-Grid Split-Node Method
for Spontaneous Rupture Simulation,” J. Geophys. Res., vol. 112,
B02302, 2007, doi:10.1029/2006JB004467.

[15] L.A. Dalguer and P.M. Mai, “Implications of Style-of-Faulting and
Loading Characteristics on the Dynamic Rupture Process,” EOS
Trans., Am. Geophys. Union 89(53), Fall Meet. Suppl., 2008.

[16] T.E. Dawson, T.K. Rockwell, R.J. Weldon II, and C.J. Wills, “Sum-
mary of Geologic Data and Developments of A Priori Rupture
Models for the Elsinore, San Jacinto, and Garlock Faults,” Appen-
dix F to USGS Open File Report 2007-1437F, 2008.

[17] S.M. Day, “Efficient Simulation of Constant Q Using Coarse-
Grained Memory Variables,” Bull. Seis. Soc. Am. vol. 88, no. 4,
1998, pp. 1051–1062.

[18] S.M. Day and C.R. Bradley, “Memory-Efficient Simulation of
Anelastic Wave Propagation,” Bull. Seis. Soc. Am, vol. 91, no. 3,
2001, pp. 520–531, doi:10.1785/0120000103.

[19] E.M. Dunham and H.S. Bhat, “Attenuation of Radiated Ground
Motion and Stresses from Three-Dimensional Supershear Rup-
tures,” J. Geophys. Res., vol. 113, 2008.

[20] M. Faerman, R. Moore, Y. Cui, Y. Hu, J. Zhu, B. Minister, and P.
Maechling, “Managing Large Scale Data for Earthquake Simula-
tions,” J. Grid Comp., vol. 5, no. 3, 2007, pp. 295-302, doi:
10.1007/s10723-007-9072-x.

[21] E.H. Field, T.E. Dawson, K.R. Felzer, A.D. Frankel, V. Gupta, T.H.
Jordan, T. Parsons, M.D. Petersen, R.S. Stein, R.J. Weldon II, and
C.J. Wills, “Uniform California Earthquake Rupture Forecast, Ver-
sion 2 (UCERF 2),” Bull. Seis. Soc. Am. vol. 99, no. 4, 2009, pp.
2053-2107, doi:10.1785/0120080049.

[22] E. Gottschammer and K.B. Olsen, “Accuracy of the Explicit Planar
Free-Surface Boundary Condition Implemented in a Fourth-Order
Staggered-Grid Velocity-Stress Finite-Difference Scheme,” Bull.
Seis. Soc. Am., vol. 91, no. 3, 2001, pp. 617-623, doi: 10.1785/
0120000244.

[23] R.W. Graves, “Simulating Seismic Wave Propagation in 3D Elastic
Media Using Staggered-Grid Finite Differences,” Bull. Seis. Soc.
Am., vol. 86, no. 4, 1996, pp. 1091-1106.

[24] iRODS: Data Grid, Digital Libraries, Persistent Archives, and Real
Time Data Systems, http://www.irods.org/.

[25] T.H. Jordan and P. Maechling, “The SCEC community Modeling
Environment: An Information Infrastructure for System-Level
Earthquake Science,” Seis. Res. Letter, vol. 74, no. 1, 2003, pp. 324-
32.

[26] K. Lee, Y. Cui, P. Maechling, K.B. Olsen, and T.H. Jordan
“Commnication Optimizations of SCEC CME AWP-Olsen Appli-
cation for Petascale Computing,” Supercomputing conf. (SC’09),
2009, Poster.

[27] K. Lee, Y. Cui, T. Kaiser, P. Maechling, K.B. Olsen, and T.H.
Jordan, “I/O Optimizations of SCEC AWP-Olsen Application for
Petascale Earthquake Computing,” Supercomputing conf. (SC’09),
2009, Poster.

[28] M8 Simulation Visualization,
 http://visservices.sdsc.edu/projects/scec/m8/1.0.

[29] P. Maechling, E. Deelman, and Y. Cui, “Implementing Software
Acceptance Tests as Scientific Workflows,” PDPTA CSREA Press,
2009, pp. 317-323.

[30] C. Marcinkovich and K.B. Olsen, “On the Implementation of Per-
fectly Matched Layers in a 3D Fourth-Order Velocity-Stress Finite-
Difference Scheme,” J. Geophys. Res., vol. 108 (B5), 2276, 2003,
doi: 10.1029/2002JB002235.

[31] E. Mcquinn, A. Chourasia, B. Minster, and J. Schulze, “Visualizing
Time-Dependent Seismic Vector Fields With Glyphs,” Feb 2010,
http://visservices.sdsc.edu/projects/scec/vectorviz/.

[32] K.C. Meza-Fajardo and A.S. Papageorgiou, “A Nonconventional,
Split-field, Perfectly Matched Layer for Wave Propagation in Iso-
tropic and Anisotropic Elastic Media: Stability Analysis,” Bull.
Seis. Soc. Am., vol. 98, no. 4, 2008, pp. 1811-1836, doi: 10.1785/
0120070223.

[33] S.E. Minkoff, “Spatial Parallelism of a 3D Finite Difference Veloc-
ity-Stress Elastic Wave Propagation Code,” SIAM J. Sci. Comput.,
vol. 24, no. 1, 2002, pp. 1-19.

[34] NCCS, “Jaguar”, 2010, http://www.nccs.gov/jaguar.
[35] H. Nguyen, Y. Cui, K.B. Olsen, K. Lee, “Single CPU optimization

of SCEC AWP-Olsen,” SCEC Annual Meeting, 2009, Poster.
[36] K.B. Olsen, “Simulation of Three-Dimensional Wave Propagation

in the Salt Lake Basin,” doctoral dissertation, Univ. of Utah, 1994,
p. 157.

[37] K.B. Olsen, S.M. Day, C.R. Bradley, “Estimation of Q for Long-
Period (>2 s) Waves in the Los Angeles Basin,” Bull. Seis. Soc. Am.
vol. 93, no. 2, 2003, pp. 627–638, doi: 10.1785/0120020135.

[38] K.B. Olsen, S.M. Day, J.B. Minster, Y. Cui, A. Chourasia, M.
Faerman, R. Moore, P. Maechling, T.H. Jordan, “Strong Shaking in
Los Angeles Expected from Southern San Andreas Earthquake,”
Geophys. Res. Letter, vol. 33, 2006, L07305, doi:10.1029/
2005GL025472.

[39] K.B. Olsen, S.M. Day, J.B. Minster, Y. Cui, A. Chourasia, D.
Okaya, P. Maechling, and T.H. Jordan, “TeraShake2: Spontaneous
Rupture Simulations of Mw 7.7 Earthquakes on the Southern San
Andreas Fault,” Bull. Seism. Soc. Am., vol. 98, no. 3, 2008, pp.
1162-1185, doi: 10.1785/0120070148.

[40] K.B. Olsen, W. J. Stephenson, and A. Geisselmeyer, “3D crustal
structure and long-period ground motions from a M9.0 Megathrust
Earthquake in the Pacific Northwest region,” J. Seism., vol. 12, no.
2, April 2008, pp. 145-159.

[41] K.B. Olsen, L.A. Dalguer, S.M. Day, Y. Cui, J. Zhu, V.M. Cruz, D.
Roten, J. Mayhew, P. Maechling, T.H. Jordan, A. Chourasia, and D.
Okaya, “ShakeOut-D: Ground Motion Estimates Using an Ensem-
ble of Large Earthquakes on the Southern San Andreas Fault with
Spontaneous Rupture Propagation,” Geophys. Res. Letter, vol. 36,
Feb. 2009, L04303, doi: 10.1029/2008GL036832.

[42] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. Schulz,
W. Barth, A. Majumdar, and D.K. Panda, “Quantifying Perform-
ance Benefits of Overlap using MPI-2 in a Seismic Modeling Ap-
plication”, Proceedings of the 24th ACM Int’l Conference on
Supercomputing, 2010, pp. 17-25, doi: 10.1145/1810085.1810092.

[43] D.P. Schwartz, and J. Coppersmith (1984), “Fault behaviour and
characteristic earthquakes: examples from Wasatch and San An-
dreas faults”, J. Geophys. Res., vol. 89, 1984, pp. 5681–5698.

[44] R. Weldon, K. Scharer, T. Fumal, and G. Biasi, “Wrightwood and
the Earthquake Cycle: What a Long Recurrence Record Tells Us
about How Faults Work,” Geol. Soc. Am., vol. 14, no. 9, 2004, pp.
4-10.

[45] J. Zhou, Y. Cui, S. Davis, C.C. Guest, “Workflow-Based High
Performance Data Transfer and Ingestion to Petascale Simulations
on TeraGrid”, IEEE Comput. Sciences and Optimization (CSO’10),
vol. 1, 2010, pp. 343-347.

