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Abstract

Many of the modern networks used to interconnect nodes
in cluster-based computing systems provide network inter-
face cards (NICs) that offer programmable processors. Sub-
stantial research has been done with the focus of offloading
processing from the host to the NIC processor. However, the
research has primarily focused on the static offload of spe-
cific features to the NIC, mainly to support the optimization
of common collective and synchronization-based communi-
cations. In this paper, we describe the design and implemen-
tation of a new framework based on MPICH-GM to sup-
port the dynamic NIC-based offload of user-defined mod-
ules for Myrinet clusters. We evaluate our implementation
on a 16-node cluster using a NIC-based version of the com-
mon broadcast operation and we find a maximum factor of
improvement of 1.2 with respect to total latency as well as
a maximum factor of improvement of 2.2 with respect to av-
erage CPU utilization under conditions of process skew. In
addition, we see that these improvements increase with sys-
tem size, indicating that our NIC-based framework offers
enhanced scalability when compared to a purely host-based
approach.

1. Introduction

Many of the interconnection networks used in cur-
rent cluster-based computing systems include network in-
terface cards (NICs) with programmable processors. Much
research has been done toward utilizing these CPUs to pro-
vide various benefits by offloading processing from the
host. These works have mainly focused on customiza-
tions to enhance the performance of specific operations
including collective communications [6, 11] like multi-
cast [2] and reduce [14] and synchronization operations
such as barrier [4]. The potential benefits of NIC-based of-
fload include lowered communication latency, reduced
host CPU utilization, improved tolerance of process skew
[3, 17] and better overlap of computation and communica-
tion.
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The common approach to NIC-based offload is to hard-
code an optimization into the control program which runs
on the NIC in order to achieve the highest possible perfor-
mance gain. While such approaches have proved successful
in improving performance, they suffer from several draw-
backs. First, NIC-based coding is quite complex and error
prone due to the specialized nature of the NIC firmware
and the difficulty of validating and debugging code on the
NIC. Because of the level of difficulty involved in making
such changes and the potential consequences of erroneous
code, these sorts of optimizations may only be performed by
system experts. Second, hard-coding features into the NIC
firmware is inflexible. The resources available on the NIC
are typically an order of magnitude less than those on the
host. This means that only a limited number of features may
be compiled into the firmware at a given time. Furthermore,
frequent changes may be impractical on production systems
which demand high levels of stability, availability and secu-
rity.
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Figure 1. Static, hard-coded, ad-hoc offload
of features to NIC vs. flexible framework for
dynamic offload of user modules to NIC.

Figure 1 illustrates the difference between a hard-coded,
static approach and a more flexible, dynamic approach to
NIC-based offload. We can see that in the static approach,
we are limited to a fixed number of features, while in the
dynamic approach features may be added and removed as
needed. When a feature is added it is propagated down
through the software layers to the NIC, where it is com-
piled and stored for later use. The upper layers may then
delegate tasks down to the NIC for execution and incom-



ing messages may be handled by the code on the NIC with-
out host involvement. When a feature is no longer needed, it
may be purged from the NIC to free up resources for other
uses.

This paper describes our design and implementation of
a new framework to support the offload of user code to the
NIC in Myrinet [1] clusters. Our approach addresses many
of the negative aspects associated with hard-coding features
into the NIC. We accomplish this by introducing a flexible
framework which we refer to as NICVM (NIC-based Vir-
tual Machine). This framework allows users to dynamically
add and remove code modules from the NIC. The code is
added by the user in source form and compiled into an in-
termediate format which is later interpreted by a special-
purpose virtual machine embedded in the NIC firmware. By
interpreting the code we have the benefit of complete con-
trol, and perhaps counter-intuitively we can still realize the
performance benefits associated with offload. We have im-
plemented the common broadcast operation on the NIC as
a user module and measured performance with respect to
both latency and host CPU utilization. When compared to
a similar host-based implementation on 16 nodes, we ob-
serve a maximum factor of improvement of 1.2 with re-
spect to latency, and under conditions of process skew we
observe a maximum factor of improvement of 2.2 with re-
spect to CPU utilization. Furthermore, we find that in both
cases these performance benefits increase with system size.

The remainder of this paper is organized as follows. In
the next section, we provide brief background information.
In section 3 we discuss the design challenges we encoun-
tered while implementing our framework and in section 4
we detail our implementation. In section 5 we evaluate the
performance of our implementation and in section 6 we dis-
cuss related work. Finally, in section 7 we present our con-
clusions and discuss future work.

2. Background

GM [15] is a user-level message-passing subsys-
tem for Myrinet networks. Myrinet [1] is a low-latency,
high-bandwidth interconnection network that employs pro-
grammable network interface cards (NICs), cut-through
crossbar switches and operating-system-bypass techniques
to achieve full-duplex 2 Gbps data rates. GM consists of a
lightweight kernel-space driver, a user-space library and a
control program (MCP) which executes on the NIC proces-
sor. The kernel-space code is only used for housekeeping
purposes like allocating and registering memory. After tak-
ing care of such initialization tasks, the user-space library
can communicate directly with the NIC-based control pro-
gram, removing the operating system from the critical
path.

GM provides user-level, memory-protected network ac-
cess to multiple applications at once by multiplexing the
network resources between applications. The communica-
tion endpoints used by applications are called ports. GM
maintains reliable connections between each pair of nodes
and then multiplexes traffic across these connections for
multiple ports. This gives applications the advantage of reli-
able in-order message delivery without having to explicitly
establish connections.

MPI [13] is a standard interface for message passing in
parallel programs. MPICH [10] is the reference implemen-
tation of MPI and has been ported to a variety of hardware
platforms including GM over Myrinet. The standard imple-
mentation of MPICH over GM (MPICH-GM) does not in-
clude support for NIC-based offload techniques.

3. Design Challenges

This section discusses the design challenges we encoun-
tered while implementing our NICVM framework. The
specifics regarding our solutions to each issue will be ad-
dressed in detail in the next section.

3.1. Performance of User Code

One of our main challenges was designing the frame-
work so that the user code could be efficiently executed.
There are two different areas where performance of user
code is critical. The first is the startup latency required to ac-
tivate a given user module on the NIC. This latency includes
the time to determine which module should be activated as
well as the time to perform any sort of environmental setup
required for module execution. The second area where per-
formance is critical is the actual time required to execute a
given module of user-code once it has been located and its
execution environment has been initialized. If the startup la-
tency is too high, then performance will be poor regardless
of the time taken to perform the actual work associated with
the module. Such startup latencies could easily outweigh the
positive effect of offload-related benefits like avoiding PCI
bus traffic. Of course, the complete time taken to execute
the user code is important as well. The MCP is structured
as a state machine with different states for sending, receiv-
ing and performing DMAs to and from host memory. The
transitions between states are highly tuned and adding any
extra delay to process user code can have a negative impact
on overall performance. For example, if a user code mod-
ule takes too long to execute it may cause temporary re-
ceive queue buffers on the NIC to overflow, which will re-
sult in packets being dropped and potentially even a reset of
the associated communication port.

3.2. Support for Multiple Reliable NIC-Based
Sends

Providing an infrastructure to allow user code to initi-
ate multiple reliable NIC-based sends proved to be another
challenge. It’s relatively straightforward to initiate a send
from the NIC, especially if reliability is not a requirement.
However, we imagined that a common scenario for user
modules would be to intercept a message before involving
the host and perform reliable several sends to other nodes.
Note that we wanted to avoid memory copies on the NIC,
which would be prohibitively slow and would introduce
scalability issues due to the lack of available NIC mem-
ory. So we needed to come up with a scheme that would
support re-use of a given chunk of NIC-based memory for
multiple sends and that would maintain the data associated
with a given send until that send was verified complete, thus
providing reliability. A related issue involved support for



user modules which involve both performing sends as well
as transferring a received message to the host via DMA.
The easiest solution would be to allow the receive DMA
to complete and then perform the NIC-based sends. How-
ever, it would be more efficient in many cases to initiate
the NIC-based sends first and then perform the DMA to the
host later. This sort of behavior is especially beneficial for
collective-style communications, where the DMA can of-
ten be moved outside of the critical communication path.

3.3. Avoiding Common-Case Impact and Interfer-
ence

Another challenge involved avoiding performance im-
pact to the common case of non-NICVM message traffic.
If we were to add our support for NIC-based execution of
user code in a manner that caused the basic GM or MPI
message latency to increase significantly, then the end re-
sult would not be of much practical use. This issue was
further complicated by the fact that GM’s send and receive
queues and associated flow control mechanisms are tightly
shared between the host and the NIC. Our design strategy
needed to include measures to avoid interference between
host-based and NIC-based sends and to accommodate the
fact that NIC-based sends happen asynchronously with re-
spect to the host. At the other extreme, we needed to con-
sider situations where the host application simply exits after
loading a user module on the NIC so there are no host re-
sources available. This could occur, for example, in the case
of a NIC-based intrusion-detection code, which just needs
to be loaded to the NIC and then requires no further host in-
volvement on a particular node.

3.4. Environmental Constraints on the NIC

When investigating the potential use of existing soft-
ware packages on the NIC, we were faced with the chal-
lenge of adapting to the severely resource-constrained NIC
environment. At 133-MHz and with 2-MB of RAM, the
Myrinet NICs which we used were nearly an order of mag-
nitude slower than the average host and contained an order
of magnitude less memory. Furthermore, the NIC environ-
ment does not include many of the standard programming
utilities which are taken for granted in host-based develop-
ment. For instance, there is no dynamic memory allocation,
C standard library routines or file system. The majority of
the software packages that we initially evaluated were not
sufficiently portable due to heavy reliance on such features.

3.5. Security Concerns

Several security-related concerns also arise at the
prospect of executing user code on the NIC. For exam-
ple, should only the local host be able to upload code to
the NIC or should it be acceptable for a remote host to
do so? What happens if the user uploads code that con-
tains an infinite loop or if a remote node sends a packet
containing data that has a similar effect? Can the user ex-
ecute arbitrary instructions on the NIC that might disable
the NIC or allow access to memory regions belonging to
other users? While we haven’t addressed all of these chal-
lenges in our current implementation, they proved to be

factors that influenced the decisions made in the overall de-
sign of our framework. We intend to further investigate
these issues in the future.

4. Our Implementation

In this section we present the details of the implementa-
tion of our NICVM framework. We start with a high-level
overview and then take a bottom-up approach to describ-
ing the details of the different framework components.

4.1. Overview

To get a high-level feel for the different components of
the framework and how they fit together, let’s start with
an example. Our framework is basically a customized ver-
sion of MPICH-GM. Assume that we wish to prototype a
new NIC-based feature. To match with the experiments pre-
sented later, assume that this feature is a NIC-based broad-
cast.
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Figure 2. Examples of logical trees used to
organize point-to-point communications be-
tween eight processes involved in a broad-
cast operation. The root node is shown in
black, internal nodes are colored gray and
leaf nodes are shown in white.

Broadcast is a common collective operation where a
buffer of data is sent from one node (the root node) to all
other nodes involved in the communication. In MPICH,
each process calls the MPI_Bcast function at the ap-
plication level to initiate the broadcast, with the root
node supplying the outgoing buffer of data and the other
nodes supplying empty buffers for incoming data. Inter-
nally, MPICH organizes the nodes into a logical tree and
performs the broadcast using point-to-point communi-
cation between nodes. Figure 2 illustrates two different
logical broadcast trees for eight processes. The root pro-
cess is shown in black, internal processes are colored gray
and leaf processes are shown in white. The arrows be-
tween processes indicate the direction of point-to-point
messages associated with the broadcast.

Figure 2(a) is a binomial tree, which is the tree utilized
by the default MPICH implementation of broadcast. The
goal here is to maximize the amount of communication
overlap. However, the logic required to construct the tree



is significantly more complicated than the simple computa-
tion involved in constructing a binary tree like that in Fig.
2(b). Since the NIC has such limited processing capabili-
ties and strict latency requirements, the simpler approach of
the binary tree has the potential to offer better performance
in a NIC environment.

In order to implement a NIC-based broadcast using our
NICVM framework, we would actually only need to do
two things. First, we would create a source code module
in an easy to understand language which is similar to Pas-
cal and C. This module would implement the logic that we
wish to offload to the NIC. Assuming we want to implement
our broadcast with a binary tree, the module would contain
logic to initiate two sends to the appropriate child nodes
upon receiving a broadcast message. The simple module
that we used for our experiments consisted of only 20 lines
of code [18]. We would then write an MPI program in which
all nodes first call an API routine to upload the source code
module to the NIC. After this initialization phase the root
node would call an API routine to delegate an outgoing mes-
sage to the NIC-based module, while the other nodes would
simply perform a receive.

At run time, the initialization phase would cause our
NIC-based broadcast module to be dynamically compiled
into a virtual machine running on the NIC. Upon delegation
by the root node, the root node’s NIC would hand off the
outgoing message to the NIC-based virtual machine which
would activate the broadcast module. The broadcast module
would then initiate sends to the root’s children. Upon receiv-
ing the message from the root, the NIC at each child would
behave similarly, handing off the incoming message to the
broadcast module before involving the host. After complet-
ing the sends initiated by the broadcast module, our frame-
work would DMA the broadcast message to the host, thus
finishing the broadcast. Note that this approach does not re-
quire any modifications to the underlying software layers or
disturbance of the cluster environment.

Contrast this to the work required to perform a simi-
lar implementation without using our framework. First we
would need to locate the source code for the MCP and incor-
porate our custom broadcast code. Even with extensive ex-
perience, modifying the MCP is a difficult and error-prone
process, as the code is highly optimized and quite com-
plex. Then we would also need to, at a minimum, modify
the MPICH library source code to either add a new broad-
cast API routine or modify the functionality of the exist-
ing routine. We would also most likely need to make mod-
ifications to the source for the GM library to support our
changes to the MPI layer. Finally, after rebuilding and in-
stalling MPICH-GM, we could write an MPI program to
call the new or modified broadcast routine and test it on the
cluster.

The main components involved in our framework are the
MPICH and GM libraries, the MCP and our NIC-based vir-
tual machine. Figure 3 details the different API routines as-
sociated with each component and how each component fits
into the overall framework. Each layer relies on the API rou-
tines of the layer below. The functions listed inside the vir-
tual machine are actually built into the language utilized by
the user modules. Currently, we just provide basic primi-
tives to enable forwarding messages. However, in order to
make the framework more flexible we eventually plan to
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Figure 3. Various functions of the NICVM
framework and where they fit in to the soft-
ware layers. The functions listed inside the
virtual machine are actually built into the lan-
guage utilized by the user modules.

add primitives to support the customization of packet head-
ers and payload.

4.2. Virtual Machine

We originally began our research using a Forth inter-
preter named pForth [5]. This was highly portable and ex-
tensible and was invaluable in our initial proof of concept
implementation. However, we decided to write a custom in-
terpreter for two reasons. First, pForth is a general purpose
interpreter for the Forth language, which is fairly extensive.
Accordingly, we were unable to achieve the low latency re-
quired for our specialized NIC-based implementation. Sec-
ond, the Forth language is stack-based and significantly dif-
ferent than what most C or Fortran programmers are use to
working with. We felt that a more familiar syntax would be
more natural for programmers to learn and use.

We ended up using a tool named Vmgen [7] to gener-
ate an interpreter which is customized for our own needs.
Vmgen is a utility that basically accepts a description of
an instruction set and generates C code for the correspond-
ing virtual machine. Vmgen generates an engine which ac-
cepts as input instructions of the type recognized by the vir-
tual machine and emulates them using C statements. The
front end to this engine is a parser created using flex [9]
and bison [8], which are standard scanner and parser gen-
erators. The parser accepts source code written in the lan-
guage to be interpreted by the virtual machine and translates
it into a sequence of instructions understood by the the en-
gine. This compilation only happens once for a given mod-
ule during the initialization phase. The resulting instructions
are then stored in the virtual machine in an optimized direct-
threaded manner which supports very low-latency interpre-
tation.

We made several changes to both flex and the default
Vmgen interpreter templates to generate code that would
port to the Myrinet NIC. First, we replaced all dynamic
memory allocation with code to use free lists of statically



allocated structures. This is a commonly used technique in
the MCP where there is no support for dynamic memory al-
location. Next, we implemented our own versions of sev-
eral standard C library routines on which the parsing code
was dependent. A final step in porting was to build the in-
terpreter as a library so that it could be linked into the MCP.
This involved breaking the default executable-style flow of
the interpreter code into library functions. These functions
allow the MCP to compile modules into the virtual ma-
chine, execute modules and purge modules when no longer
required. Also, since the original interpreter code was in-
tended to be run as an executable, it only supported one
module at a time. So as part of the conversion to a library,
we added code to manage the compilation and execution of
multiple modules.

After the initial porting work, we extended the language
to include several built-in functions for use by the user-
provided code modules. These primitives give the user code
access to MPI and GM state such as process ranks and IDs
and the number of processes involved in communication.
This information may then be used as input to other prim-
itives for the purpose of initiating sends. We also extended
the language to include constants for use by the user code
in return values. These constants enable the user code to in-
dicate success or failure as well as whether it has consumed
a message or if the message requires further processing by
the MCP.

4.3. MCP

Our first step in modifying the MCP was to define two
new packet types. These allow us to efficiently differenti-
ate between default message traffic and NICVM messages,
which require the involvement of our framework. This iso-
lates the overhead of our extensions and prevents impact
to default message latency. Figure 4 illustrates the integra-
tion of the virtual machine into the MCP. The MCP con-
sists of four main software state machines associated with
sending and receiving packets. The interpreter is situated
on the receive path and is activated after a NICVM packet
is received from the network but before the associated host
DMA is initiated. The dashed arrows indicate the path ex-
clusive to NICVM messages. Even though the interpreter
is located on the receive path, it can also intercept NICVM
packets delegated from the local host via a loopback path
between the send and receive state machines.

One NICVM packet type contains user source code and
the other contains data. When a source code packet is re-
ceived, the MCP compiles it into the virtual machine. So in
order to add a user module to the NIC, the host need only
send a source code packet to its local NIC via the loopback
path. Such details are abstracted from the user via API rou-
tines. When a data packet is received, the MCP hands off
the data to the virtual machine, which invokes the appropri-
ate user module. This processing is illustrated in detail in
Figure 5. Both the source and data packets contain a name
identifying the module with which they are associated. This
allows the virtual machine to match data packets with the
compiled version of the appropriate source module. Note
that the user module may choose to consume the packet, in-
dicating that the receive DMA to the host should be skipped.
The receive DMA will also be skipped temporarily if the
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Figure 4. Integration of virtual machine into
MCP. The ovals represent the different state
machines which comprise the NIC logic. The
solid arrows show the default path of pack-
ets through the MCP, while the dashed ar-
rows indicate the path of packets containing
NICVM source code or data. The arrow from
the the Send state machine to the Recv state
machine indicates loopback.

user module initiates one or more sends. In this case, the
DMA is actually postponed until after the sends complete
so that it occurs outside of the critical communication path.
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Figure 5. Synchronous component of NICVM
packet processing.

In order to facilitate multiple reliable NIC-based sends
originated by user modules, we employed a new feature
of GM-2. In GM-1, there were only two send chunks and
two receive chunks. Both send and receive chunks are just
blocks of memory in the NIC SRAM used for staging sends
and receives. The send chunks were used to overlap the
transfer of data from the host to the NIC with the trans-
fer of data from the NIC to the network. The receive chunks
were used in a similar manner to pipeline the transfer of data
from the network to the NIC with the transfer of data from
the NIC to the host.

However, GM-2 uses send and receive free lists, each
containing multiple descriptors which take the place of the
fixed number of send chunks. Descriptors basically contain
pointers to the route, headers and payload in NIC SRAM



for a given packet. In addition, each descriptor contains
a pointer to a callback function and an associated context
pointer. Just after the MCP frees a given descriptor, if a call-
back function has been specified it is called and passed a
pointer to the descriptor as well as the context pointer. The
callback is then free to reclaim the descriptor from the free
list for use as desired. In our case we reclaim the descrip-
tor for re-use in subsequent NIC-based sends.
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NICVM Send
Context

Data to manage send
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Send token
...
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Figure 6. Relationship between a GM descrip-
tor associated with a send or receive and
the NICVM send context and NICVM send de-
scriptors used to manage NIC-based sends.
The items in white are part of the default
GM implementation, while those in gray were
added as part of the the NICVM framework.

We make use of this mechanism as follows. When the
user module wants to initiate sends, we basically just record
all of the information required to enqueue the send in a
NICVM send descriptor. We maintain a queue of these send
descriptors for a given GM send or receive descriptor. Fig-
ure 6 illustrates these data structures for a user module
which has requested two sends. The queue is organized us-
ing a NICVM send context which maintains pointers to the
first and last NICVM send descriptors as well as other com-
mon information such as the active GM port to be used for
the sends. By active GM port, we mean the communica-
tion port associated with the send or receive that invoked
the user module.

After the user module terminates, we proceed in an asyn-
chronous manner to perform the actual sends. This process
is illustrated in Figure 7. Just after the GM descriptor associ-
ated with the original send or receive is freed, the MCP calls
our NICVM send callback. We reclaim the GM descriptor,
dequeue the first NICVM send descriptor and enqueue the
associated send. A GM send token is required for each send.
In order to avoid interfering with host-based sends on the
same port, we use a dedicated send token included as part
of the NICVM send descriptor. When the MCP finishes the
send, it again frees the GM descriptor and calls our call-
back. This time the callback just reclaims the descriptor but
doesn’t initiate the next send. Instead, we wait until the pre-
vious send has been acknowledged by the recipient and then
proceed. This cycle repeats until all sends have been com-
pleted, at which point we DMA the message to the host if
necessary.
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Figure 7. Asynchronous processing of sends
requested by a user code module.

4.4. GM and MPI Libraries

Our modifications to the GM library consisted mainly
of the addition of API functions to support adding and re-
moving user modules from the NIC and sending data pack-
ets. We also included API functions to abstract the process
of allocating and freeing NICVM packets. In order to make
MPI state information available to the user modules, we also
extended the GM port data structure and added a related
API function for internal use by MPI in recording state data
in the port. We modified the port to record the size of the
MPI communicator as well as the mappings from MPI node
ranks to the GM node IDs and subport IDs required to en-
queue sends in the MCP.

The API routines that we added to the MPI library mostly
map onto the underlying GM routines. The main exceptions
include a function to explicitly delegate a message to the lo-
cal NIC and helper routines to abstract the creation of MPI
data types for NICVM packets.

5. Experimental Results

We evaluated our framework on a cluster of 16 dual-
SMP 1-GHz Pentium-III nodes with 33-MHz/32-bit PCI.
The nodes were connected via a Myrinet-2000 network built
around a 32-port switch. Each node contained a PCI64B
network interface card with a 133-MHz LANai9.1 pro-
cessor and 2 MB of SRAM. Our framework is based on
MPICH 1.2.5..10 over GM 2.0.3, and all comparisons were
performed against the original, unaltered software packages
of the same versions.

We created two MPI microbenchmarks for use in eval-
uating our framework. The first microbenchmark measures
the total time (latency) to perform a standard broadcast op-
eration, where a message is sent from one node (the root) to
all other nodes. The second microbenchmark is similar in
that we evaluate the broadcast operation. However, in this
case we measure the average per-node host CPU utiliza-
tion associated with performing the broadcast under varying
amounts of process skew. For both microbenchmarks, we
compare a baseline version using the standard MPI mecha-



nisms to a customized version based on our NICVM frame-
work.

5.1. Latency Results

The broadcast latency benchmark works as follows. For
the baseline version we use the broadcast primitive provided
by MPI. As described in Section 4, the MPICH implemen-
tation organizes the broadcast communication into a logical
binomial tree. We time a series of 10,000 broadcasts and
take the average, using a barrier to separate iterations. We
start timing just before the root node initiates the broadcast.
When a non-root completes the broadcast, it sends a notifi-
cation message to the root node. The root node stops timing
after receiving notification messages from all other nodes.
The notification messages may be received by the root node
in any order so as to avoid introducing unnecessary serial-
ization of receives. This process is repeated for varying sys-
tem and message sizes.

In the NICVM version, a user-provided module is up-
loaded to the NIC at all nodes during the initialization
phase. This module implements a broadcast by organizing
communication into a logical binary tree. The root con-
structs a NICVM packet targeted for the module installed
on each NIC and delegates the packet to its local NIC. All
other nodes simply perform a standard MPI receive. The
NIC at the root node then assumes responsibility for initi-
ating the first two point-to-point sends associated with the
broadcast. As the NICs at the other nodes receive the packet,
the broadcast module decides whether or not to perform ad-
ditional sends based on the position of the node in the logi-
cal tree. The timing is performed identically to the baseline
version.

Figures 8 and 9 show the results of the broadcast latency
microbenchmark for 16 nodes. We can see that the NIC-
based implementation consistently outperforms the host-
based implementation for all but the smallest message sizes.
We see a maximum factor of improvement of 1.2 at large
message sizes. The NIC-based implementation performs
better for larger messages due to the fact that for internal
nodes we avoid a trip across the PCI bus associated with a
send DMA from the host to the NIC. Another factor in the
improved performance is that for internal nodes, the DMA
to the host associated with the received broadcast message
is delayed until after the broadcast message is propagated
to the node’s children. This takes the receive DMA out of
the critical path with respect to the entire operation and al-
lows the broadcast to progress more quickly overall.

Figure 10 shows the results of the broadcast latency
benchmark for varying system size. Here we can see that
the factor of improvement increases with system size, indi-
cating the enhanced scalability of the NIC-based approach.

5.2. CPU-Utilization Results

The broadcast CPU-utilization benchmark is imple-
mented slightly differently than the corresponding la-
tency benchmark. In addition to varying the number of
nodes and the message size, we also introduce a vari-
able amount of delay at each node to simulate process
skew. First, we convert a given maximum amount of de-
lay from microseconds to busy-loop iterations at each
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Figure 8. Latency of NIC-based (nicvm)
broadcast and host-based broadcast (base-
line) for 16 nodes and small message sizes.

node. All delays are then generated using busy loops as op-
posed to absolute timings. This enables us to capture
the CPU utilization associated with the broadcast opera-
tion. Next, we perform a series of 10,000 broadcasts and
take the average across all nodes, using a barrier to sepa-
rate iterations.

Within each loop iteration, the timing measurements are
taken as follows. At each node we first start timing, then
introduce a random amount of delay between zero and the
maximum delay, perform the broadcast, introduce a catchup
delay and finally stop timing. The skew delay as well as the
catchup delay are then subtracted from the measured time at
each node to calculate the CPU utilization. The catchup de-
lay is equal to the maximum skew delay plus a conserva-
tive estimate of the maximum broadcast latency. The intent
here is to be sure to delay long enough to capture all asyn-
chronous processing in the overall time measurement.

Fig. 11 shows the results of the broadcast CPU-
utilization benchmark for 16 nodes with increasing
amounts of process skew and message sizes of 4096
and 32 bytes. We can see that the NICVM implementa-
tion consistently outperforms the default implementation
for all combinations of skew and message size, with Fig-
ure 11(b) showing a maximum factor of improvement of
2.2. As the amount of skew increases, internal nodes in the
default implementation spend more and more time wait-
ing on the broadcast message from their parent so that
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Figure 9. Latency of NIC-based (nicvm)
broadcast and host-based broadcast (base-
line) for 16 nodes and large message sizes.

they can propagate the message to their children. How-
ever, in the NICVM case all non-root nodes simply per-
form a receive at the host level and delegate all of the
intermediate broadcast processing to the user code mod-
ule on the NIC. The artificial process skew still causes
each host to be delayed, but the overall broadcast opera-
tion is less affected as the NIC takes care of forwarding
broadcast messages to the children.

Fig. 12 shows the results of the broadcast CPU-
utilization benchmark for for 2, 4, 8 and 16 nodes with
a maximum process skew of of 1,000 ��� and mes-
sage sizes of 4096 and 32 bytes. These results confirm
that the results demonstrated in Fig. 11 hold for vary-
ing system sizes. Once the system size increases past the
unrealistic two-node scenario, the NICVM implementa-
tion outperforms the default implementation for all mes-
sage sizes. Furthermore, we can see that the factor of
improvement increases with system size, demonstrat-
ing the scalability benefits of offloading computation to the
NIC.

Note that in both of the previous cases, the greatest fac-
tor of improvement occurs for smaller message sizes. This
is because small messages are the most vulnerable to the ef-
fects of process skew since the effects of factors such as
transmission time, copy time and DMA time are less preva-
lent then they are for larger messages.

Fig. 12 shows the results of the broadcast CPU-
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Figure 10. Latency of NIC-based broadcast
(nicvm) and host-based broadcast (baseline)
for 2, 4, 8 and 16 nodes with 32 and 4096-byte
message sizes.

utilization benchmark without process skew for for 2, 4,
8 and 16 nodes and message sizes of 4096 and 32 bytes.
Here we can see that even without the introduction of arti-
ficial process skew, the NICVM implementation eventually
outperforms the default implementation for all mes-
sage sizes beyond the fairly modest system size of eight
nodes. This is due to the fact that process skew is nat-
urally introduced as the number of nodes involved in
the broadcast increases and there are more opportuni-
ties for the nodes to become unsynchronized.

6. Related Work

The U-Net/SLE [19] project ported a Java virtual ma-
chine to the NIC on a Myrinet network. There are sev-
eral major differences between this work and our NICVM
framework. First, U-Net/SLE utilizes a Java virtual ma-
chine while we take a more customized approach, build-
ing an interpreter from scratch specifically for use on the
NIC. Even though the Java virtual machine used by U-
Net/SLE has been stripped of non-essential Java language
features, it still incurs a high amount of overhead. This over-
head makes the NIC-based approach slower than similar
host-based approaches for all but the simplest tests. Sec-
ond, in U-Net/SLE a single Java class file may be associ-
ated with a given U-Net user endpoint. A U-Net endpoint



 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n 
(µ

se
c)

Maximum Skew (µsec)

baseline-4096
nicvm-4096

baseline-32
nicvm-32

(a) Average CPU Utilization

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  100 200 300 400 500 600 700 800 900 1000

F
ac

to
r 

of
 Im

pr
ov

em
en

t

Maximum Skew (µsec)

32
4096

(b) Factor of Improvement

Figure 11. Average CPU utilization of NIC-
based (nicvm) broadcast and host-based
broadcast (baseline) for 16 nodes with vary-
ing process skew and 4096 and 32-byte mes-
sages.

is equivalent to a port in GM in that it abstracts an appli-
cation’s connection to the network. Once associated with
an endpoint, methods in the class are called to process all
incoming and outgoing messages. In contract, NICVM al-
lows multiple user modules to be added to the NIC and does
not make any association between a module and an appli-
cation or port. In fact, NICVM modules may even be left
on the NIC for utilization after a user application termi-
nates. Also, NICVM packets are differentiated from stan-
dard GM packets so that the overhead of the mechanism for
executing user modules may be avoided unless actually re-
quired. Finally, to the best of our knowledge no high-level
API such as MPI has been ported to U-Net/SLE. As part of
the NICVM framework, we provide extensions to both the
GM and MPI layers, making our offload features easily ac-
cessible to both user applications and API developers.

Recent versions of Quadrics [12] have included a fea-
ture that enables end users to compile a code module and
load it into the NIC at runtime. This code is then executed
by a dedicated thread processor on the NIC. While this ap-
proach enables offload of processing to the NIC, it also has
some minor drawbacks. First, although more than one mod-
ule may be added to the NIC, there is no published way to
remove a module. Also, a module is only active as long as
the user program is alive, so extra effort is needed to of-
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Figure 12. Average CPU utilization of NIC-
based (nicvm) broadcast and host-based
broadcast (baseline) for 2, 4, 8 and 16 nodes
with maximal process skew and 4096 and 32-
byte messages.

fload persistent code to the NIC.
Active Messages (AM) [16] also provides packet driven

handler invocation. The AM packet, however directly speci-
fies the address of a handler routine to be used in processing
the packet, making it less flexible than the dynamic NICVM
framework where the loaded source modules may vary from
NIC to NIC. Moreover, the AM handler actually executes
on the host, so it can’t provide the benefit of offloading com-
putation to the NIC.

7. Conclusions and Future Work

We have described both the design challenges and imple-
mentation details of our framework for offload of dynamic
user-defined modules to the NIC on Myrinet clusters. With
respect to overall latency, we found a maximum factor of
improvement of 1.2 for NIC-based broadcasts when com-
pared to a similar host-based implementation. Furthermore,
we observed a factor of improvement in CPU utilization of
up to 2.2 under conditions of process skew. We observe that
in both cases the factor of improvement increases with sys-
tem size, indicating that the benefits of our implementation
will lead to improvements in scalability on larger clusters.
However, note that while performance improvement is de-
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Figure 13. Average CPU utilization of NIC-
based (nicvm) broadcast and host-based
broadcast (baseline) without process skew
for 2, 4, 8 and 16 nodes and 4096, 1024 and
32-byte messages.

sirable, the main focus of this work has been to enable end
users to dynamically offload computation to the NIC.

In the future, we intend to port our framework to the
latest NIC hardware and perform application-based evalu-
ations as well as evaluations on more contemporary large-
scale clusters. We also plan to extend the framework to
support NIC-based reduction using user-provided operator
modules. We feel that this would be a natural extension to
the existing MPI capabilities which allow users to define
their own host-based reduction operators. In an effort to fur-
ther enhance performance and usability, we plan to inves-
tigate the feasibility of letting users compile and perform
basic validation of their source modules on the host. This
would eliminate the need to perform the compilation on the
NIC, further lightening the NIC-based virtual machine. It
would also make basic debugging tasks easier for users. An-
other essential addition to the interpreter and the associated
language is support for floating-point operations. The cur-
rent Myrinet NICs do not include hardware support for such
operations, so such an effort will require software emula-
tion.

We also intend to investigate the security issues that we
were unable to fully explore during the development of this
version of the framework. Because of the fact that we chose
the virtual machine approach to NIC-based execution of

user code, we have complete control over the user code
modules and should be able to address such issues as nec-
essary.
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