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SUMMARY

InfiniBand has become a very popular interconnect due to its advanced features and open standard.
Large-scale InfiniBand clusters are becoming very popular, as reflected by the TOP 500 supercomputer
rankings. However, even with popular topologies such as constant bi-section bandwidth Fat Tree, hot-spots
may occur with InfiniBand due to inappropriate configuration of network paths, presence of other jobs
in the network and un-availability of adaptive routing. In this paper, we present a hot-spot avoidance
layer (HSAL) for InfiniBand, which provides hot-spot avoidance using path bandwidth estimation and
multi-pathing using LMC mechanism, without taking the network topology into account. We propose
an adaptive striping policy with batch-based striping and sorting approach, for efficient utilization of
disjoint network paths. Integration of HSAL with MPI, the de facto programming model of clusters,
shows promising results with collective communication primitives and MPI applications. Copyright ©
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade or so, cluster computing has become popular by providing the users with an ex-
cellent price to performance ratio [1]. High-speed commodity interconnects have become popular,
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InfiniBand [2] in particular, due to its advanced features and open standard. Parallel applications
executing on these clusters primarily use MPI [3,4] as the de facto programming model. Fat Tree [5]
has become a very popular interconnection topology for these clusters, primarily due to its multi-
pathing capability. However, even with constant bi-section bandwidth (CBB) Fat Tree, hot-spot(s)
may occur in the network depending upon the route configuration(s) between end nodes and com-
munication pattern(s) in an application. Other factors including the presence of other jobs in the
network and topology un-aware scheduling of tasks by program launchers may significantly impact
the performance of applications. To make the matters worse, the deterministic routing nature of
InfiniBand limits the application from an effective use of multiple paths transparently to avoid
the hot-spot(s) in the network. InfiniBand specification [2] provides a congestion control protocol,
which leverages an early congestion notification mechanism between switches and adapters. How-
ever, this approach enforces a reduced data transfer on the existing path, while other paths in the
network may be left under-utilized.
A popular mechanism for providing hot-spot avoidance is to leverage multi-pathing. In our

previous studies, we provided a framework for supporting multi-pathing at the end nodes [6],
popularly referred to as multi-rail networks. We provided an abstraction for supporting multi-
ple ports and multiple adapters and studied various scheduling policies. The evaluation at the
MPI layer provided promising results with collective communication and applications. We ex-
panded the basic ideas proposed in this study to provide hot-spot avoidance using the LMC
mechanism [7]. Using the adaptive striping policy and the LMC mechanism, we studied the
performance with collective communication primitives and MPI applications. We observed that
HSAM (hot-spot avoidance with MVAPICH [8]) is an efficient mechanism for providing hot-spot
avoidance.
In this study, we thoroughly review our previous proposals and alleviate the deficiencies of

HSAM. The inherent limitations of the HSAM design prohibit the utilization of all the physically
disjoint paths at run time. As a result, better paths may never be even explored. In this paper, we
present a hot-spot avoidance layer (HSAL), which performs batch-based striping and sorting (BSS)
during the application execution to adaptively eliminate the path(s) with low bandwidth. The design
challenges for integration of MPI with HSAL are also discussed in detail. We also compare the
HSAM [7] scheme with MPI integrated with HSAL to compare the performance of different BSS
configurations and the original case (no multi-pathing at all). Using MPI Alltoall, we can achieve
an improvement of 27 and 32% in latency with different BSS configurations compared with the
best configuration of the HSAM scheme on 32 and 64 processes, respectively. A default mapping
of tasks in the cluster shows similar benefits. Using the Fourier transform benchmark from NAS
Parallel Benchmarks [9] with different problem sizes, the execution time can be improved by 5–7%
with different BSS configurations compared with the best HSAM configuration and 11–13% from
the original implementation. Other NAS Parallel Benchmarks [9] do not incur any performance
degradation.
The remainder of this paper is organized as follows: In Section 2, we present the background

of our study. In Section 3, we present the motivation of our study. Section 4 discusses the HSAL,
associated challenges and integration at the MPI layer. In Section 5, we present the performance
evaluation of the BSS approach using an InfiniBand cluster. In Section 6, we present the related
study. In Section 7, we conclude and present our future directions.
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2. BACKGROUND

This section presents the background information of our study. To begin with, an introduction
to InfiniBand is provided. This is followed by an introduction to MPI [3,4], including two-sided
point-to-point communication and collective communication primitives.

2.1. Overview of InfiniBand

The InfiniBand architecture [2] defines a switched network fabric for interconnecting process-
ing nodes and I/O nodes. An InfiniBand network may consist of switches, adapters (called Host
Channel Adapters (HCAs)) and links for communication. InfiniBand supports different classes of
transport services: (reliable connection (RC), unreliable connection, reliable datagram and unreli-
able datagram). RC transport mode supports remote direct memory access (RDMA), which makes
it an attractive choice for designing communication protocols. We use this transport for this study.
Under this model, each process pair creates a unique entity for communication, called queue pair
(QP). Each QP consists of two queues: send queue and receive queue. The requests to send the
data to the peer are placed on the send queue, by using a mechanism called descriptor. A descriptor
describes the information necessary for a particular operation. For RDMA operation, it specifies
the local buffer, address of the peer buffer and access rights for manipulation of the remote buffer.
InfiniBand also provides a mechanism, where different queue pairs can share their receive queues,
called shared receive queue mechanism. The completions of descriptors are posted on a queue
called completion queue. This mechanism allows a sender to know the status of the data transfer
operation. Different mechanisms for notification are also supported (polling and asynchronous).
InfiniBand defines an entity called subnet manager, which is responsible for discovery, config-

uration and maintenance of a network. Each InfiniBand port in a network is identified by one or
more local identifiers (LIDs), which are assigned by the subnet manager. As InfiniBand supports
only destination-based routing for data transfer, each switch in the network has a routing table
corresponding to the LID(s) of the destination. However, deterministic routing nature of InfiniBand
limits the intermediate switches to route the messages adaptively. To overcome this limitation,
InfiniBand provides a mechanism, LID mask count (LMC), which can be used for specifying mul-
tiple paths between every pair of nodes in the network. The subnet manager may be specified with
different values of LMC mechanism (0–7), creating a maximum of 128 paths. Leveraging the LMC
mechanism to avoid the hot-spot(s) in the network is the focus of this paper.

2.2. Overview of MPI protocols

Message passing interface (MPI) [3,4] defines multiple communication semantics. The two-sided
communication semantics [3] has been widely used in the last decade or hence for writing a
majority of parallel applications. Two-sided communication semantics are broadly designed using
the following protocols:

• Eager protocol: In the eager protocol, the sender process eagerly sends the entire message to
the receiver. In order to achieve this, the receiver needs to provide sufficient buffers to handle
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Figure 1. MPI communication protocols.

incoming messages. This protocol has minimal startup overhead and is used to implement low
latency message passing for smaller messages.

• Rendezvous protocol: The rendezvous protocol negotiates the buffer availability at the receiver
side before the message is actually transferred. This protocol is used for transferring large
messages when the sender is not sure whether the receiver actually has sufficient buffer space
to hold the entire message.

Figure 1 illustrates these protocols. RDMA is used for the data transfer with the rendezvous protocol.
The application buffer(s) need to be registered so that the operating system does not swap them
during communication.

2.3. Collective communication

In this section, we describe the collective communication primitives in brief. We specifically focus
on the primitives that are provided by the MPI specification. We assume that the MPI job has proc
number of processes.
MPI Alltoall is used for all-to-all personalized exchange between MPI processes. Each process

has a separate message for every other process. The popular algorithms include pair-wise exchange
and direct communication. As each process communicates with every other process, it takes proc−1
steps for each of these algorithms. MPI Allgather is used for all-to-all broadcast. Each process has a
message for every other process; however, the message is not different for every other process, unlike
MPI Alltoall described above. The popular algorithms are ring algorithm and pair-wise exchange
algorithm. In the ring algorithm, each process sends a message to its neighbor and receives a
message from the other neighbor in the ring. As a result, this algorithm takes proc − 1 steps. A
detailed description of various collective communication primitives has been discussed by Kumar
et al. [10].

3. MOTIVATION

Many researchers have proposed mechanisms for alleviating network hot-spots with Fat Tree
networks [5,11]. The efficacy of this topology for different communication patterns has been
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shown. However, the primary assumption with the studies is availability of partially adaptive
routing mechanisms provided by the network or knowledge of a pre-defined communication
pattern of application among processes. Petrini et al. have shown that a priori communication
may lead to the occurrence of hot-spots in the network [11]. InfiniBand routing mechanism
is deterministic. Mechanisms to overcome this limitation has been proposed by Duato et al.
using splitting of switch buffers, utilization of InfiniBand VLs and BFS-based discovery of Infini-
Band subnet [12,13]. However, the current generation InfiniBand hardware does not support these
mechanisms.
To present the current state of the problem, we use a CBB switch, as shown in Figure 2. Each

switch block consists of 24 ports. The leaf switches (referred to as leaf blocks from here onwards)
have 12 ports available to be used by the end nodes, and the other 12 ports are connected to the
spine switches (referred to as spine blocks from here onwards). In the figure, blocks 1–12 are leaf
blocks and blocks 13–24 are spine blocks. The complete switch has 144 ports available for end
nodes. Each block is a crossbar in itself.
To demonstrate the contention, we take a simple MPI program, which performs ring communi-

cation with neighbor rank increasing at every step. The communication pattern is further illustrated
in the Figure 3 (only step1 and step2 are shown for clarity). Executing the program with n processes
takes n − 1 steps. Let ranki denote the rank of the i th process in the program, and step j denote the
j th step during execution. At step j , an MPI process with ranki sends data to ranki+ j and receives
data from ranki− j . This communication pattern is referred to as displaced ring communication
(DRC) for the rest of the paper.
We take an instance of this program with 24 processes and schedule MPI processes with rank0–

rank11 on nodes connected to block 1 and rank12–rank23 to block 2. We use MVAPICH [8], a
popular MPI over InfiniBand, as our MPI implementation for the evaluation of DRC. As each
block is a crossbar in itself, no contention is observed for intra-block communication. However,
as the step value increases, the inter-block communication increases and a significant link con-
tention is observed. The link contention observed during step12 (each process doing inter-block
communication) is shown in Figure 4, with thicker solid lines representing more contentions. The
quantitative evaluation is shown in Figure 5.
From Figure 4, we can see that some links are over-used to a degree from four to zero. As the

degree of link usage increases, the bandwidth is split among the communication instances using
the link(s), making them hot-spots. In our example, paths using block 13 split bandwidth for four
different communication instances making the set of links using this block hot-spots. In Figure 5,

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:301–319
DOI: 10.1002/cpe



306 A. VISHNU ET AL.

Step1

Step2

Figure 3. Communication steps in DRC.

1

144 Port Switch

rank0 – rank11 rank12 – rank23

14 15 16 17 18

Used Link

Un–used Link

13

12

24

2 3 4 5 6

Figure 4. Link usage with DRC.

0

500

1000

1500

2000

 5  10  15  20

B
an

dw
id

th
(M

B
/s

)

Process Rank

Original

Figure 5. DRC, 24 processes.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:301–319
DOI: 10.1002/cpe



TOPOLOGY AGNOSTIC HOT-SPOT AVOIDANCE WITH INFINIBAND 307

we show the results of our evaluation. The bandwidth observed by rank0 to different processes is
reported. We observe that for rank12 communication, the bandwidth observed is the least by the
process. At this point, all communication instances are inter-block.
An important observation is that the presence of a CBB does not necessarily provide contention-

free routes for DRC. Lack of fully/partial adaptive routing support in the network leads to inefficient
usage of the links. Other topologies with over-subscription of links are likely to face similar or
worse performance degradation. Such topologies include the 3-D tori and oversubscribed Fat Trees
for larger-scale clusters, which would be the norm for upcoming InfiniBand clusters.
In the following section, we present the design of HSAL of InfiniBand, which alleviates this

problem. It leverages InfiniBand multi-pathing mechanism and support from the Subnet Manager.
Reliable connection transport semantics are used for better estimation of path bandwidth and dis-
cussion on scheduling policies is presented.

4. BASIC ARCHITECTURE

In this section, we present the basic architecture of HSAL for providing network topology agnostic
hot-spot avoidance with InfiniBand clusters. Figure 6 shows it further. The architecture comprises
three main components: communication scheduler, scheduling policies and completion filter.
The communication scheduler is the central part of our design. It interfaces with the upper-level

applications for scheduling the data on multiple paths available in the network. The upper-level
application may include programming models (MPI [3,4], distributed shared memory, global arrays
and other PGAS languages). The policy used for data transfer to the peer is based on the scheduling
policy specified by the user. Scheduling policies may themselves be static or dynamic [6]. We discuss
the adaptive striping policy in detail, which uses a feedback mechanism from the network for path
bandwidth estimation. The architecture also consists of a completion filter, which is responsible
for processing of data transfer completions. As discussed in Section 2, the data transfer with
InfiniBand provides a completion on the sender side. In this paper, we leverage this mechanism for
path bandwidth estimation to provide hot-spot avoidance.

InfiniBand Access Layer

Multiple
Paths

Data Transfer Request

Hot–Spot Avoidance Layer

Completion
Notification

Completion
Notification

Message
Scheduler

Scheduling
Policies

Completion
Filter

Figure 6. Basic Architecture of HSAL.
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4.1. Adaptive striping

In this section, we present the adaptive striping policy. In our previous studies [6,14], we provided
initial discussion on scheduling policies for small and large messages. Adaptive striping policy
primarily focuses for large messages, as the bandwidth estimation using small messages is not very
accurate.
In adaptive striping scheme, we assume that the latencies of the paths are similar and focus on

their bandwidth. The primary goal is to stripe the data in such a manner that all the stripes reach
the destination at the same time. As multiple paths may have different bandwidths, the stripe sizes
may be different. A static approach for assigning weights to different paths fails to address the
changes in the state of contention and traffic in the network. To address this issue, we leverage the
completion notification mechanism of InfiniBand, which is generated after each message delivery
and an acknowledgment is received on the sender side. With the help of completion filter, the
progress engine of our HSAL uses polling to check any new completion notifications and mark the
timings of their arrival. Hence, the adaptive striping policy uses a feedback mechanism to estimate
different path bandwidths. This feedback-based control mechanism is illustrated in Figure 7. In the
following section, we discuss the limitations of HSAM [7] and present the BSS scheduling policy,
which is a refined form of adaptive striping policy. Under this policy, a subset of paths is used at
every step, providing a better estimation of path bandwidth and potentially better path utilization.

4.2. The HSAM design and limitations

To begin with, in this section we discuss the HSAM approach in brief [7]. Under this approach,
we use the LMC mechanism for creation of multiple physical paths and use the adaptive striping
policy described above for data transfer. However, the inherent design of HSAM imposes some
practical constraints:

• Sending a message stripe through each path requires posting a corresponding descriptor. Hence,
this may lead to significant startup overhead with increasing number of paths.

• For each message stripe, a completion is generated on the sender side. With increasing number
of paths, more completions need to be handled, which can potentially delay the progress of
the application.
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• The accuracy of path bandwidth is significantly dependent upon the discovery of the comple-
tions, as mentioned in the scheduling policies sections. With increasing number of paths, the
accuracy may vary significantly.

4.3. BSS scheduling policy

To overcome these problems, we propose the BSS scheduling policy. Let n paths represent the total
number of paths between every pair of processes and nbatch represent the batch of paths used
during a communication instance for a message. Each BSS configuration is represented as a 2-
tuple: (npaths, nbatch), where nbatch ≤ npaths. These values can be specified by the user. However,
as discussed above, increasing npaths beyond the number of physically disjoint paths may not be
beneficial. Let Wtotal represent the aggregated weight of npaths and wi represent the weight of the
i th path between a pair of processes. To begin with, we initialize all the paths with equal weights:

wi = Wtotal

npaths
(1)

As HSAL is topology and communication pattern agnostic, this weight assignment reflects the
generic nature of HSAL. This by no means is a limitation of the framework and other initial weight
assignments may be plugged in as well. For every communication instance, BSS selects the first
nbatch of paths from a non-decreasing weight sorted array. The data are striped on these paths
proportional to their weights. Let Wbatch denote the total weight of the paths in the batch and M
be the size of the data to be transferred. The i th path sends wi/Wbatch · M amount of data. Let ti
denote the time taken by the stripe on the i th path. As mentioned earlier, ti is calculated using the
data delivery notification mechanism of RC transport model. The updated weight w′

i of the path is
represented by the following equation:

w′
i =Wbatch ·

wi

ti
∑

k∈batch
wk

tk

(2)

The variance in bandwidth estimation is alleviated using a linear model for updating paths:

w′
i = (1 − �) · wi + � · Wbatch ·

wi

ti
∑

k∈batch
wk

tk

(3)

To enable faster convergence on the paths to use, we use a higher value of �. In performance
evaluation, we use 0.95 as the value of �. Once the paths are updated, the array of path weights is
sorted again. We also note that each communication instance impacts only the weights of the paths
that have been used during the communication. However, it does affect the ordering of the paths to
be used for next iteration. In this regard, our weight updation policy is rather a heuristic, where the
optimal algorithm would update the local weights keeping global weights into account. However,
the latter approach is not scalable, as it requires addition global exchange of weight arrays. Hence,
we implement only the heuristic for our evaluation.
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4.3.1. Detailed design issues

In this section, we present the detailed design issues with the BSS algorithm.

• Selecting the number of paths: In Section 3, we presented the block diagram of the switch used
in our performance evaluation. A maximum of 12 physically independent paths are available
between every pair of nodes. Using the ibtracertmechanism provided by the InfiniBand access
layer, we have concluded that the subnet manager is able to configure these paths for usage.
Hence, we use 12 as the maximum number of paths with BSS. In addition, we also evaluate
other BSS configurations (4, 2), (8, 2) and (12, 3).

• Scalability issues: The scalability issues with RC transport model have been a focus of research
for many researchers [8,15]. Most of the researchers have focused on scalability issues with
‘no-multi-pathing’ case. Multi-pathing requires creation of multiple QPs, which aggravates this
issue significantly. Although it is beyond the scope of this paper, we hereby briefly mention
possible solutions for alleviating these problems:
◦ On-demand connection management with unreliable datagram-based approach for small

messages and RC for large messages.
◦ Maintaining an upper bound on the number of RC queue pairs. This would provide an upper

bound on the connection memory taken by the MPI library [8,15].
◦ ConnectX [16], the next generation InfiniBand, promises to provide QP sharing benefits

for processes on the same node. This would be beneficial for clusters based on many-core
architectures and reduce the connection memory consumption significantly.

4.3.2. Integration with MPI

In this section, we present the integration of HSAL with MPI, the de facto programming model used
in the current clusters. Much of the HSAL design is programming model independent. However,
some of the design parameters need modification at the MPI layer for efficient usage of HSAL. In
the upcoming sections, we discuss the detailed design issues associated with this integration. This
is further reflected in Figure 8.

• Multiple RDMA completion notifications: In our design, bulk data transfer in the rendezvous
protocol is striped into multiple smaller messages. Hence, multiple completion notifications
may be generated for a single message at the sender side. The completion filter component in
our design notifies the MPI protocol layer only after it has collected all the notifications.
At the receiver, the MPI protocol layer also needs to know when the data message has

been transferred into the destination buffer. In our original design, this is achieved by using
a rendezvous finish control message. This message will be received only after the rendezvous
data messages, as ordering is guaranteed for a single InfiniBand connection. However, this
scheme is not enough for multiple paths. In this case, we have to use multiple rendezvous
finish messages—one per each path where rendezvous data are sent. The receiver notifies the
MPI protocol layer only after it has received all the rendezvous finish messages. It should be
noted that these rendezvous finish messages are sent in parallel and their transfer times are
overlapped. In general, they incur negligible overhead.
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• Out-of-order messages: Owing to the requirement of MPI-1 two-sided communication, it
is desirable to process messages in order in our multi-rail implementation. As we use RC
service provided by InfiniBand for each path, messages for a single path are delivered in order.
However, there is no ordering guarantee in the presence of multiple paths. To address this
problem, we introduce a packet sequence number (PSN) variable shared by multiple paths
used between a pair of processes. For convenience, we refer to this set of multiple paths
as a connection. Every message sent through this connection carries current PSN and also
increments it. Each receiver maintains an expected sequence number (ESN) for every virtual
channel. When an out-of-order message is received, it is enqueued into an out-of-order queue
associated with this connection and its processing is deferred. This queue is checked at proper
times when a message in the queue may be the next expected packet.
The basic operations on the out-of-order queue are enqueue, dequeue and search. To improve

the performance, it is desirable to optimize these operations. In practice, we have found that
out-of-order messages are rare and incur negligible overhead.

• Our design focuses on data transfer involving large messages. For small messages, software-
based approaches for hot-spot measurement are not feasible. In the future, we plan to work on
the optimizing collective communication primitives for small messages. Each rendezvous data
transfer involves a send-handle and receive-handle data structure on the sender and receiver
sides, respectively. These data structures are used for notification upon the completion of data
transfer on the sender and receiver sides. Compared with the HSAM [7] scheme, each data
transfer in the BSS scheduling policy involves differentWbatch values. To address this issue, we
piggybackWbatch value with the rendezvous start message. This is further illustrated in Figure 9.
The receive-handle stores this value at the receipt of the rendezvous start message. As RDMA
is used for actual data transfer, the receiver is unaware of the individual data size written to its
memory by different stripes. Hence, we piggyback the wi/Wbatch ·M information with the i th
finish message. Once the aggregated value of weight received from different finish messages
is equal to the Wbatch, the MPI protocol layer is notified of the completion of data transfer.

• Efficacy of adaptive striping: In our implementation, the start times of all stripes are almost
the same and can be accurately measured. However, completion notifications are generated by
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the InfiniBand layer asynchronously and we record only the finish time of a stripe as we have
found its completion notification. As the progress engine processing can be delayed due to
application computation, we can obtain only an upper bound of the actual finish time and the
resulting delivering ti is also an upper bound. Therefore, one question is how accurately we
can estimate the delivering time ti for each path. To address this question, we consider three
cases:

1. Progress engine is not delayed. In this case, accurate delivering time can be obtained.
2. Progress engine is delayed and some of the delivering times are overestimated. In this case,

weight redistribution will not be optimal, but it will still improve performance compared
with the original weight distribution.

3. Progress engine is delayed for a long time and we find all completion notifications at about
the same time. This will essentially result in no change in the weight distribution.

We can see that in no case the redistribution results in worse performance than the original
distribution. In practice, case 1 is the most common and accurate estimation is expected. This is
typically true for synchronizing collective communication primitives including, MPI Alltoall,
MPI Allgather, DRC and MPI Allreduce.

5. PERFORMANCE BENEFITS WITH MPI OVER HSAL

In this section, we evaluate the performance of the BSS policy using a 64-node InfiniBand cluster.
Different configurations of the BSS policy ((4, 2), (8, 2) and (12, 3)) are evaluated and compared
with the HSAM [7] design. Although more combinations are possible, we show the results for best
value of nbatch, keeping npaths constant. In Section 4, we mentioned that HSAM is a special case of
the BSS scheme, when npaths and nbatch are the same. For clarity, we refer to this configuration as the
HSAM [7] scheme. In our previous study, we concluded that the HSAM scheme with 4 paths is the
best configuration [7]. We also compare the performance of the BSS scheme with no multi-pathing
case, the scenario commonly used in most MPI implementations over InfiniBand. This is referred
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as ‘Original’ in the performance graphs, unless otherwise mentioned. Our evaluation consists of
three parts. In the first part, we use Intel MPI Benchmark [17] for collective communication. In
the second part, we focus on NAS Parallel Benchmarks [9], particularly, Fourier transform, which
primarily uses MPI Alltoall. We begin with a brief description of our experimental testbed.

5.1. Experimental testbed

Our testbed cluster consists of 64 nodes: 32 nodes with Intel EM64T architecture and 32 nodes
with AMD Opteron architecture. Each node with Intel EM64T architecture is a dual socket, single
core with 3.6GHz, 2MB L2 cache and 2GB DDR2 533MHz main memory. Each node with
AMD Opteron architecture is a dual-socket, single core with 2.8GHz, 1MB L2 cache and 4GB
DDR2 533MHz main memory. On each of these systems, the I/O bus is × 8 PCI-Express with
Mellanox [16] MT25208 dual-port DDR Mellanox HCAs attached to 144-port DDR Flextronics
switch. The firmware version is 5.1.400. We have used open fabrics enterprise distribution version
1.1 for evaluation on each of the nodes and OpenSM as the subnet manager, distributed with this
version.

5.2. Performance evaluation with collective communication

In this section, we present the evaluation of BSS, HSAM and Original for various collective com-
munication patterns. We use MPI Alltoall, MPI Allgather and MPI Allreduce for collective com-
munication. We also evaluate different mappings of process ranks to nodes in the network:

• Sequential mapping: The processes are mapped to the nodes in a sequential manner. As an
example, let the i th output switch port be represented by porti , as discussed in Section 3. A
process with MPI rank i is scheduled on porti . This is referred as SM in the rest of the section.

• Default mapping: The processes are assigned randomly to the nodes. This is also the
default behavior of various program launchers (multi-purpose daemon is an example used
by MVAPICH2). However, for a consistent comparison between different configurations of
BSS, HSAM and Original implementations, the same mapping is used. Default mapping also
represents the nodes assigned to a job, due to fragmentation in the cluster aggravated by the
completion of previous jobs. This is referred as DM in rest of the section.

Figure 10 shows the results forMPI Alltoall with 48 processes. Pair-wise exchange algorithm is used
for MPI Alltoall [10]. However, the exchange partner for the non-power-of-2 case (48 processes)
is different from the power-of-2 case (64 processes). We see that BSS (12, 3) performs the best,
reducing the latency to half in comparison with the original case. Compared with the HSAM,
latency decreases by 27%. Compared with the BSS (4, 2) case, the improvement in performance
is 15%. The improvement in performance is due to the adaptation of path weights at the run time
by the BSS scheme. The HSAM scheme is also able to adapt the path weights, but it does not
use all the paths and ends up with sub-optimal paths for usage. Figure 11 shows the results for
MPI Alltoall with a default mapping of processes. We see that the benefits are significant compared
with the Original case as well as HSAM. Hence, BSS provides benefits with a different scheduling
of processes.
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Figure 10. MPI AlltoAll (48× 1), SM.
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Figure 11. MPI AlltoAll (64× 1), DM.

Figure 12 shows the results for MPI Allgather with 48 processes. For the message sizes pre-
sented in these figures, MPI Allgather uses the ring algorithm [10]. Looking from the topology
perspective, each switch block has exactly one out-bound and in-bound communications. Rest of
the communication is within a leaf block. As a result, insignificant contention is observed, and all
the cases perform similarly. However, under random allocation of nodes to a job, the number of
in-bound and out-bound communication instances increases and the contention increases signifi-
cantly. Figure 13 shows the results for such a scenario. For 64 processes, default distribution of
processes leads to significant contention. As a result, the improvement compared with the Original
and the HSAM scheme is 43 and 32%, respectively.
Figures 14 and 15 show the results for DRC with 24 and 64 processes, respectively. We see

that significant improvement is observed in all cases compared with the HSAM case. Although not
shown here, the Original implementation performs much worse than HSAM.
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Figure 12. MPI Allgather (48× 1), SM.
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Figure 13. MPI Allgather (64× 1), DM.

5.3. Performance evaluation with MPI applications

Figures 16 and 17 represent the results for NAS Parallel Benchmarks [9] with Fourier transform
with Class B and Class C problem size, respectively. In all experiments, we use only the SM. As
seen in the previous section, the SM of processes produces the least performance improvement.
We expect that the benefits shown with the SM of processes are the least a job will achieve for any
mapping of processes.
Fourier transform benchmark uses collective communications primitives such as MPI Alltoall,

MPI Reduce and MPI Bcast. For MPI Alltoall, we saw significant performance benefits in the
previous section. We note that the benefits are transferred to the Fourier transform benchmark.
For Class B, compared with the Original case, different versions of the BSS scheme show

performance benefits ranging from 10 to 11% in the execution time. Different configurations of
BSS further improve the execution time by 6–7%. Similar improvements are seen for both 32 and
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Figure 15. DRC (64× 1), SM.

64 process cases. For Class C problem size, BSS configurations perform similarly. Compared with
the original case, BSS configurations improve the execution time by 13% for 32 process case and
6.5% compared to the HSAM scheme. Similar performance improvement is observed with the 64
process case.

6. RELATED STUDY

A popular mechanism to alleviate hot-spots in the network is to leverage multi-rail clusters
[6,14,18,19]. Coll et al. have proposed the general algorithms for utilization of multi-rail clus-
ters and studied their benefits with point-to-point and collective communication primitives [18].
Liu et al. have studied the designs for providing support for multi-rail InfiniBand clusters with two-
sided communication [6]. To support MPI-2 one-sided communication, enhanced designs have been
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Figure 17. NAS Benchmarks, FT, Class C.

proposed by Vishnu et al. [14,20]. IBM HPS architecture supports multiple adapters with connec-
tivity to different switches. An initial study for avoiding congestion, and fail-over has been studied
by Sivaram et al. [19]. Petrini et al. have also studied the hardware features with Quadrics [21]
Interconnection network for providing congestion control [11,22]. Similar studies have been per-
formed with Myrinet [23] for providing congestion control [24]. The current generation of Myrinet
clusters leverages dispersive routing to avoid hot-spots. Under this mechanism, a random selection
of path is done during data transfer.
Recently, many researchers have focused on providing congestion control with InfiniBand net-

works [25–27]. The study proposed by Santos et al. has also been accepted with InfiniBand speci-
fication [2]. The primary idea of the above studies is to generate an explicit congestion notification
mechanism to the destination (early forward congestion notification mechanism). The destination
sends a early backward congestion notification to the source. Mechanisms for rate control and early
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rate increase upon recovery from congestion have also been proposed [25]. However, our approach
significantly differs from the above approach by using the multi-pathing mechanism. These mech-
anisms are likely to be available with the next generation InfiniBand products [16]. The solutions
proposed in this study can be easily extended with the congestion control solutions proposed for
InfiniBand.

7. CONCLUSIONS AND FUTURE STUDY

In this paper, we have presented a novel performance-based adaptive approach for hot-spot avoid-
ance, which performs batch-based striping and sorting (BSS) during the application execution to
eliminate the path(s) with low bandwidth in the network. We have also thoroughly reviewed our
previous proposals for providing hot-spot avoidance, particularly hot-spot avoidance with MVA-
PICH (HSAM). The inherent limitations of the HSAM design prohibits the utilization of all the
physically disjoint paths at runtime. As a result, better paths may never be even explored. We have
also implemented the HSAM [7] scheme in our MPI stack to compare the performance of different
BSS configurations, the best configuration of the HSAM [7] scheme and the original case (no multi-
pathing at all). Using MPI Alltoall, we have achieved an improvement of 27% with different BSS
configurations compared with the best configuration of HSAM on 48 processes. The default map-
ping of tasks in the cluster shows similar benefits. Using MPI Allgather and MPI Allreduce with
the default mapping of tasks, an improvement of 32% in latency is observed for 64 processes. Using
NAS Parallel Benchmark, Fourier transform, with different problem sizes, the execution time is
improved by 5–7% with different BSS configurations compared with the best HSAM configuration.
In the future, we plan to continue the research in this direction. We plan to evaluate candidate

petascale applications on larger-scale InfiniBand cluster, especially with multi-core architectures.
We plan to design routing engines for the subnet manager, which can optimize at least a subset
of communication pattern type for a single scheduling of tasks. This will also help us identify the
optimal performance for one instance of execution. ConnectX [16], the next-generation InfiniBand
interconnect, is also a promising technology for congestion control. We plan to design hot-spot
avoidance schemes based on this interconnect.
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