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Abstract
Current data-centers lack in efficient support for intelligent ser-

vices, such as requirements for caching documents and cooperation of
caching servers, efficiently monitoring and managing the limited physi-
cal resources, load-balancing, controlling overload scenarios, that are
becoming a common requirement today. On the other hand, the Sys-
tem Area Network (SAN) technology is making rapid advances during
the recent years. Besides high performance, these modern intercon-
nects are providing a range of novel features and their support in hard-
ware (e.g., RDMA, atomic operations). In this paper, we extend our
previously proposed framework comprising of three layers (communi-
cation protocol support, data-center service primitives and advanced
data-center services) that work together to tackle the issues associated
with existing data-centers. We present the performance results using
data-center services such as cooperative caching and active resource
monitoring and data-center primitives such as distributed data sharing
substrate and distributed lock manager, which demonstrate significant
performance benefits achievable by our framework as compared to ex-
isting data-centers in several cases.

1 Introduction
There has been an incredible growth of highly data-intensive

applications such as medical informatics, genomics and satel-
lite weather image analysis in the recent years which generate
multi-terabytes of data. With technology trends, the ability to
store and share these datasets is also increasing, allowing scien-
tists to create such large dataset repositories and making them
available for use by others, typically through a web-based inter-
face forming web-based data-centers. Such data-centers are not
only becoming extremely common today, but are also increasing
exponentially in size, currently ranging to several thousands of
nodes. With increasing interest in web-based data-centers [16],
more and more datasets are being hosted online. Several clients
request for either the raw or some kind of processed data si-
multaneously. However, current data-centers are becoming in-
creasingly incapable of meeting such sky-rocketing processing
demands with high-performance and in a flexible and scalable
manner.

Current data-centers rely on TCP/IP for communication even
within the cluster. The host-based TCP/IP protocols are known
to have high latency, low bandwidth, and high CPU utilization
limiting the maximum capacity of data-centers. Together with
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raw performance, data-centers also lack in efficient support for
intelligent services, such as requirements for caching documents
and cooperation of caching servers, monitoring and managing
the limited physical resources, load-balancing, that are becom-
ing a common requirement today. Not only are current data-
centers expected to handle these with high-performance, but also
in a scalable manner on clusters ranging to thousands of nodes.
However, currently there is no mechanism to achieve this.

On the other hand, the System Area Network (SAN) tech-
nology is making rapid advances during the recent years. SAN
interconnects such as InfiniBand (IBA) [2] and 10-Gigabit Eth-
ernet (10GigE) [11] have been introduced and are currently gain-
ing momentum for designing high-end data-centers. Besides
high performance, these modern interconnects are providing a
range of novel features and their support in hardware, e.g., Re-
mote Direct Memory Access (RDMA), Remote Atomic Opera-
tions, Offloaded Protocol support and several others.

In our previous work [6], we have shown the capabilities of
these current generation SAN technologies in dealing with the
limitations of existing data-centers. Specifically, we presented
a novel framework comprising of three layers (communication
protocol support, data-center service primitives and advanced
data-center services) that work together to tackle the issues as-
sociated with existing data-centers. In this paper, we extend our
work to provide efficient data-center services and primitives to
further improve the data-center performance. We also present
performance results using data-center system services such as
cooperative caching and active resource monitoring and primi-
tives such as distributed data sharing substrate and distributed
lock manager, which demonstrate significant performance ben-
efits achievable by our framework as compared to existing data-
centers in several cases.

The remaining part of the paper is organized as follows: Our
proposed framework is discussed in detail in Section 2. In Sec-
tion 3, we briefly describe the initial work on advanced com-
munication protocols and data-center services which was com-
pleted last year. This year, we extended our framework in de-
signing efficient data-center primitives and data-center services
as discussed in Sections 4 and 5, respectively. We present the
discussion and future work in Section 6 and conclude the paper
in Section 7.
2 Proposed Framework

To satisfy the needs of the next generation data-center appli-
cations, we propose a three-stage research framework for design-
ing data-centers as shown in Figure 2. This framework is aimed
to take advantage of the novel features provided by advances in
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Figure 1. Proposed Framework
The framework is broken down into three layers, namely,

communication protocol support, data-center service primitives
and advanced data-center services as illustrated in the figure.
Broadly, in the figure, all the dark colored boxes are the com-
ponents which exist today. The light gray colored boxes are the
components which we developed last year. The white boxes are
the ones which need to be designed to efficiently support next-
generation data-center applications. Amongst these, for this pa-
per, we concentrate on the boxes with the dashed lines by pro-
viding either complete or partial solutions. The boxes with the
solid lines are aspects which are deferred for future work.

The advanced communication protocols layer aims at trans-
parently improving the communication performance of data-
center applications by taking advantage of the features provided
by modern interconnects. More details about this layer are pre-
sented in [3]. The data-center primitives layer takes advan-
tage of the features of modern networks to provide higher-level
utilities for data-center applications and services through a dis-
tributed data sharing substrate. For the most efficient design of
the higher-level data-center services, several primitives such as
soft shared state, enhanced point-to-point communication, dis-
tributed lock manager, and global memory aggregator are nec-
essary. In this paper, however, we limit our study to only the
distributed data sharing substrate, soft shared state primitive and
the distributed lock manager as described in Section 4. The ad-
vanced data-center services such as active caching, cooperative
caching, dynamic reconfiguration and resource monitoring are
intelligent services that are critical for the efficient functioning
of data-centers. In Section 5, we discuss two of these services:
(i) cooperative caching and (ii) active resource monitoring.

3 Overview of Initial Work
In this section, we present our initial work on advanced com-

munication protocols and services such as active caching and
dynamic reconfiguration which was completed last year.

As discussed earlier, several data-center applications have tra-
ditionally relied on TCP/IP sockets for communication. Thus,
a communication protocol stack that creates a pseudo sockets-
like interface can allow such applications to transparently uti-
lize the capabilities of the network. In [5], we had demonstrated

the potential of one such stack, namely the Sockets Direct Pro-
tocol (SDP), for data-center applications. In [3], we proposed
a new design for SDP, namely Asynchronous Zero-copy SDP
(AZ-SDP), to extend the capabilities of the stack by allowing for
better network utilization using asynchronous zero-copy com-
munication. To transparently provide asynchronous communica-
tion capabilities for the widely sockets, two goals need to be met:
(i) the interface should not change; the application can still use
the same interface as earlier, i.e., the synchronous interface and
(ii) the application can assume the synchronous sockets seman-
tics, i.e., once the control returns from the communication call, it
can read or write from/to the communication buffer. In AZ-SDP,
the key idea in meeting these design goals is to memory-protect
the user buffer (thus disallow the application from accessing it)
and to carry out communication asynchronously from this buffer,
while tricking the application into believing that we are carrying
out data communication in a synchronous manner.

As mentioned earlier, the size, scale and complexity of data-
centers is increased tremendously in recent years and hence has
necessitated complex caching schemes to scale the performance
correspondingly. In our previous work [12], we presented a com-
plete architecture to support strong cache coherency for dynamic
content caches. Our architecture, which is based primarily on
the shared state primitive using one sided RDMA operations, is
designed to handle caching of responses composed of multiple
dynamic dependencies. We propose a complete architecture to
handle two issues: (i) caching documents with multiple depen-
dencies and (ii) being resilient to load on servers. In our work,
we have explored mechanisms for maintaining necessary infor-
mation on the application servers to achieve the above objectives.

Active resource adaptation services help in improving the uti-
lization of the nodes in the data-center by dynamically reallocat-
ing the resources based on system load and traffic pattern. In [7],
we had shown the strong potential of using the advanced features
of high-speed networks in designing such services. In [4], we
extended the service to support Quality of Service and prioriti-
zation for different websites hosted in the data-center. In our ap-
proach, we used the RDMA and atomic operations for providing
efficient active resource adaptation service. Some of the other
major design challenges and issues we solved in [7] are: (i) con-
currency control to avoid live-locks and starvation, (ii) avoiding
server thrashing through history aware reconfiguration and (iii)
tuning the reconfigurability module sensitivity.
4 Data-Center Service Primitives

While all the system-level primitives are important for the ef-
ficient functionality of the advanced data-center services, in this
paper, we limit our scope to the discussion of soft shared state
and distributed lock manager.

4.1 Distributed Data Sharing Substrate

Several higher level services such as active resource adapta-
tion, caching and resource monitoring use some sort of a shared
state for exchanging the system state. Further, some of these ser-
vices require the data only at periodic intervals and can also sus-
tain staleness in the data; However, other services have strong
requirements with coherency, consistency, scalability, etc. In
this section, we present a novel distributed data sharing substrate
(DDSS) that provides a soft shared state and addresses all the is-
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sues mentioned above. In our design, we use RDMA and atomic
operations to support a variety of operations such as get, put,
allocate, free, etc., for reading and writing to the shared state.

Figure 2 shows the various components of DDSS. The IPC
management module helps in virtualizing the shared state ser-
vices to multiple processes in a single node using IPCs. The
memory management module takes care of the allocation and
release operations. Data placement module allows the shared
data to be placed either on local or remote node. Locking ser-
vices provide basic locks for shared data to avoid multiple pro-
cesses accessing the data simultaneously. Coherency and Con-
sistency maintenance module support various coherency models
such as strict coherence, write coherence, read coherence, null
coherence, delta coherence, temporal coherence. To meet the
consistency needs of applications, DDSS also supports version-
ing of cached data and ensures that requests from multiple sites
view the data in a consistent manner. More details are discussed
in [20].

Coherency and
Consistency Maintenance

Data Placement

Locking
Mechanisms

Mgmt
MemoryIPC

Mgmt

Distributed Data Sharing Interface

Data−Center Applications and Services

Advanced Features of High−Speed Networks

Figure 2. Proposed Distributed Data Sharing Sub-
strate

Figure 3a shows the put() operation latency of different co-
herence models of DDSS using InfiniBand. We observe that, for
all coherence models, the maximum 1-byte latency achieved is
only around 55µs. We also observe close to 19% improvement
with distributed STORM in comparison with traditional imple-
mentations, as shown in Figure 3b. Detailed performance results
are presented in [20].

4.2 Distributed Lock Manager

In this section, we present the design details of a novel dis-
tributed lock manager based on advanced network features. Our
algorithm enables the use of one sided RDMA operations for
both shared and exclusive locking modes.

Recent advances in parallel computing has lead to a deluge
of applications that use these computing environments. Efficient
cooperation among these parallel processes and applications has
necessitated highly efficient distributed locking services. On the
other hand, InfiniBand provides remote memory atomic (RMA)
operations (compare and swap and fetch and add) that can be
used to atomically operate on a remote memory location. Our
distributed lock manager design utilizes these RMA operations
to provide one-sided atomic-based locking operations.

Figure 4 shows the two basic scenarios for the locking opera-
tions. In our design, for each lock we designate a 64-bit memory

window that is used to provide the primary location for lock’s
current state. We divide this 64-bit window into two 32-bit parts
that are used to store the following: (i) the first 32-bits store the
location of the tail of the current distributed queue of the nodes
that requested an exclusive lock and (ii) the second 32-bit store
the number of shared lock requests received after the enqueuing
of the last exclusive request. The RMA operation used for en-
queuing exclusive requests is compare and swap and the RMA
operation used for shared locks is fetch and add. Figure 4 shows
the scenarios for shared only and exclusive only locking scenar-
ios. Further details are described in [14].

Our results shown in Figure 5 present the basic performance
improvement that our scheme (N-CoShED) shows over existing
schemes: (i) basic Distributed Queue based Non-shared Lock-
ing (DQNL) [10] and (ii) traditional Send/Receive-based Server
Locking (SRSL). N-CoShED scheme shows 39% improvement
over the SRSL scheme. We also observe a significant (up to
317% for 16 nodes) improvement over the DQNL scheme. Fur-
ther performance results are presented in [14].

5 Data-Center Systems Services
As mentioned earlier, multi-tier data-centers need efficient

support for many higher level services for efficient functioning
of the data-center. In this section, we present two such services:
(i) cooperative caching and (ii) resource monitoring.

5.1 Co-operative Caching

Caching has been a very important technique in improving the
performance and scalability of web-serving data-centers. The
research community has long proposed cooperation of caching
servers to achieve higher performance benefits. Many of the ex-
isting cooperative caching mechanisms often partially duplicate
the cached data redundantly on multiple servers for higher per-
formance (by optimizing the data-fetch costs for multiple similar
requests) [15, 8]. With the advent of RDMA enabled intercon-
nects, these basic data-fetch cost estimates have changed signif-
icantly. Further, the effective utilization of the vast resources
available across multiple tiers in today’s data-centers is of obvi-
ous interest.

In the following, we briefly describe our designs [13] that
provide highly efficient cooperative caching schemes using net-
work based RDMA operations while controlling the amount of
duplicated content in the data-center to maximize the resource
utilization. We design the following three schemes: (i) Basic
RDMA based Cooperative Cache (BCC) - a basic scheme for ag-
gregating cache across the caching nodes using RDMA for data
transfers, (ii) Cooperative Cache Without Redundancy (CCWR)
- a caching scheme in which duplicate copies are eliminated
across all the caching nodes and (iii) Multi-Tier Aggregate Co-
operative Cache (MTACC) - a caching scheme in which we have
memory aggregated (for caching) from multiple tiers of a data-
center. Based on our study, we further propose a Hybrid Cooper-
ative Caching Scheme (HYBCC) that uses multiple of the above
schemes based on a method that can achieve the best possible
performance. Additional details are available in [13].

Figure 6 shows the performance results of our schemes
(Scheme AC denotes basic Apache Cache). The throughput im-
proves up to 35% for certain cases for our advanced schemes
over the RDMA based simple cooperative caching schemes and
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improves up to 180% over simple caching methods. The figure
further shows that our schemes scale well for systems with large
working-sets and large files. Further results are available in [13].

5.2 Active Resource Monitoring

Efficiently identifying the amount of resources used in data-
center environments has been a critical research issue in the
past several years. With the amount of resources used by
each application becoming more and more divergent and un-
predictable [21, 17], the solution to this problem is becoming
increasingly important. Traditionally, several techniques peri-
odically monitor the resources used in the cluster and use this
information to make various decisions such as load-balancing,
reconfiguration, etc. However, these techniques relied on coarse-
grained monitoring in order to avoid the overheads associated
with fine-grained resource monitoring. On the other hand, the re-
source usage of requests is becoming increasingly divergent [9],
thus increasing the need for fine-grained monitoring resources.

In this section, we describe our approach [19] for fine-grained
resource monitoring in data-center environments. We achieve
three broad goals: (i) to get an accurate picture of the current re-
source usage in data-centers at very high granularity (in the order
of milliseconds), (ii) to avoid the overhead of an extra monitor-
ing processes on the node that is being monitored and (iii) to be
resilient to loaded conditions in a data-center environment. In
our approach we use RDMA operations in kernel space to ac-
tively monitor the resource usage of the nodes. As shown in
Figure 7, we register the necessary kernel data structures that di-
rectly monitor the resource usage and we perform RDMA read
operation from the front-end node to capture the current load
information. Such a design has two major advantages: (i) it re-
moves the need for an extra process in the back-end server and
(ii) it can exploit the detailed resource usage information in ker-
nel space to report accurate load information.

App
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Monitoring
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Figure 7. Synchronous RDMA-based Resource
Monitoring Mechanism

In our experimental evaluation, we compared our scheme
with the traditional sockets-based communication schemes. Fig-
ure 8a shows the deviation of the number of threads running on
the server for all four schemes in comparison to the actual num-
ber of threads running on the remote node. We observe that,
RDMA-based schemes report very less or no deviations with the
actual number of threads running on the back-end node, thus giv-
ing an accurate picture of load on the back-end node. We also

measure the performance of a data-center environment hosting
two web services: (i) a Zipf trace with varying α value (i.e.,
higher the α value, higher is the temporal locality of the docu-
ment accessed) and (ii) RUBiS auction benchmark [1] simulat-
ing an e-commerce website developed by Rice University. We
observe close to 35% improvement with RDMA-based schemes
in comparison with traditional sockets-based implementation.

6 Discussion and Work-in-Progress
Our proposed framework mentioned in Section 2 builds mul-

tiple layers of efficient designs. Apart from the services men-
tioned in this paper, these different layers can also be utilized
to design other data-center applications and services as needed.
More importantly, however, our designs have already been inte-
grated into current data-center applications such Apache, PHP
and MySQL. Also, though this work has been done in the con-
text of InfiniBand and 10GigE, our designs rely on quite com-
mon features provided by most RDMA-enabled networks and
can be easily extended to work with several other networks such
as Myrinet, Quadrics etc. In the current context, we intend to
focus on several aspects as described in this section.

Like many other communication middleware, SDP utilizes a
copy-based approach for transferring small messages. In this
approach, the sender copies the data into a temporary buffer and
transmits it to a temporary buffer on the receiver side. The re-
ceiver copies this data to the final destination buffer. To improve
pipelining of data communication, researchers have proposed
flow-control mechanisms such as the credit-based flow-control,
where the receiver preposts multiple buffers and the sender is
given as many credits. Whenever a message is sent, the sender
loses a credit; after the data is copied to the final destination
buffer, the receiver returns credit to the sender. While this ap-
proach is simple, it suffers from significant under-utilization of
the temporary buffer and hence loss of performance. For exam-
ple, let us assume that each temporary buffer is about 8KB large.
Now, if the sender sends two 1-byte messages, each of them use
up a separate temporary buffer on the receiver side, thus wasting
the remaining 99.98% of the buffer space. In packetized flow
control, we use RDMA communication to allow the sender to
manage both the sender side buffers as well as the receiver side
buffers. This allows the sender to pack the transmitted data more
precisely and avoid buffer wastage. Preliminary results in this
approach demonstrate close to an order of magnitude bandwidth
improvement for some message sizes.

Further, resource monitoring services can be combined with
the active resource adaptation in providing fine-grained resource
dynamism in data-centers. As part of the current study, we have
developed a fine-grained active resource adaptation module that
uses the resource usage information through resource monitor-
ing schemes. Further, our fine-grained reconfiguration module
not only reconfigures the web servers but also other applications
such as application servers and database servers. Preliminary
evaluations show that the reconfiguration module can achieve
an order of magnitude performance benefit compared to exist-
ing schemes. Also, we plan to extend the knowledge gained in
our previous study [18] in utilizing the remote memory on a file
system cache miss to avoid cache corruption.

Several of the challenges and solutions described in the previ-
ous few sections are not completely independent. For example,
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the active resource adaptation schemes focus on reallocating the
data-center resources to the varying load. However, blindly real-
locating resources might have negative impacts on the proposed
caching schemes due to cache corruption that can potentially oc-
cur. Thus, each of these designs cannot be evaluated in a stand-
alone fashion, but needs to be seen in an integrated environment.
We plan to carry out such integrated evaluation.
7 Concluding Remarks

In this paper, we have extended our previously proposed
framework comprising of communication protocol support,
data-center primitives and data-center services for addressing
two primary drawbacks of current data-centers: (i) low perfor-
mance due to high communication overheads and (ii) lack of
efficient support for advanced features such as caching dynamic
data, monitoring and managing limited physical resources, load-
balancing and prioritization and QoS mechanisms. Specifically,
we focused on data-center systems services such as cooperative
caching and active resource monitoring and data-center service
primitives such as distributed data sharing substrate and dis-
tributed lock manager. Our experimental results demonstrate
that this framework is quite promising in tackling the issues with
current and next-generation data-centers and can provide signif-
icant performance benefits as compared to existing solutions.
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