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Abstract
Packet processing in the TCP/IP stack at multi-Gigabit data rates

occupies a significant portion of the system overhead. Though there
are several techniques to reduce the packet processing overhead on
the sender-side, the receiver-side continues to remain as a bottleneck.
I/O Acceleration Technology (I/OAT), developed by Intel, is a set of
features particularly designed to reduce the receiver-side packet pro-
cessing overhead. This paper studies the benefits of the I/OAT tech-
nology by extensive evaluations through micro-benchmarks as well
as evaluations on two different application domains: (1) A multi-
tier data-center environment and (2) A Parallel Virtual File System
(PVFS). Our micro-benchmark evaluations show that I/OAT results
in 38% lower overall CPU utilization in comparison with traditional
communication. Due to this reduced CPU utilization, I/OAT delivers
better performance and increased network bandwidth. Our experi-
mental results with data-centers and file systems reveal that I/OAT
can improve the total number of transactions processed by 14% and
throughput by 12%, respectively. In addition, I/OAT can sustain a
large number of concurrent threads (up to a factor of four as com-
pared to non-I/OAT) in data-center environments, thus increasing the
scalability of the servers.

1 Introduction
Over the past few years, there has been an incredible growth

of highly data-intensive applications in various fields such as
medical informatics, genomics, e-commerce, data mining and
satellite weather image analysis. With technology trends, the
ability to store and share the datasets generated by these appli-
cations is also increasing, allowing scientists and institutions
to create large dataset repositories and making them available
for use by others. On the other hand, clusters consisting of
commodity off-the-shelf hardware components have become
increasingly attractive as platforms for high-performance com-
putation and scalable servers. Based on these two trends, re-
searchers have proposed the feasibility and potential of cluster-
based servers [14, 10, 18, 19].

Several clients request these servers for either the raw
or some kind of processed data simultaneously. How-
ever, existing servers are becoming increasingly incapable of
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meeting such sky-rocketing processing demands with high-
performance and scalability. These servers rely on TCP/IP
for data communication and typically use Gigabit Ethernet
networks for cost-effective designs. The host-based TCP/IP
protocols on such networks have high CPU utilization and
low bandwidth, thereby limiting the maximum capacity (in
terms of requests they can handle per unit time). Alternatively,
many servers use multiple Gigabit Ethernet networks to cope
with the network traffic. However, at multi-Gigabit data rates,
packet processing in the TCP/IP stack occupies a significant
portion of the system overhead.

Packet processing [12, 13] usually involves manipulating
the headers and moving the data through the TCP/IP stack.
Though this does not require significant computation, pro-
cessor time gets wasted due to delays caused by latency of
memory accesses and data movement operations. To over-
come these overheads, researchers have proposed several tech-
niques [9] such as transport segmentation offload (TSO),
jumbo frames, zero-copy data transfer (sendfile()), interrupt
coalescing, etc. Unfortunately, many of these techniques are
applicable only on the sender side, while the receiver side con-
tinues to remain as a bottleneck in several cases, thus result-
ing in a huge performance gap between the CPU overheads of
sending and receiving packets.

Intel’s I/O Acceleration Technology (I/OAT) [1, 3, 2, 15] is
a set of features which attempts to alleviate the receiver packet
processing overheads. It has three additional features, namely:
(i) split headers, (ii) DMA copy offload engine and (iii) multi-
ple receive queues.

At this point, the following open questions arise:

• What kind of benefits can be expected from the current
I/OAT architecture?

• How does this benefit translate to applications?

In this paper, we focus on the above questions. We first
analyze the performance of I/OAT based on a detailed suite
of micro-benchmarks. Next, we evaluate it on two different
application domains:

• A multi-tier Data-Center environment

• A Parallel Virtual File System (PVFS)

Our micro-benchmark evaluations show that I/OAT reduces the
overall CPU utilization significantly, up to 38%, as compared
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to traditional communication (non-I/OAT). Due to this reduced
CPU utilization, I/OAT delivers better performance and in-
creased network bandwidth. Our experimental results with
data-centers and file systems reveal that I/OAT can improve
the total number of transactions processed by 14% and the
throughput by 12%, respectively. Also, our results show that
I/OAT can sustain a large number of concurrent threads (up
to a factor of four as compared to non-I/OAT) in data-center
environments, thus increasing the scalability of the servers.

The remaining part of the paper is organized as follows:
Section 2 provides a brief background on socket optimizations
and I/OAT architecture. In Section 3, we discuss the soft-
ware infrastructures used; in particular the Multi-Tier Data-
Center environments and Parallel Virtual File System (PVFS).
Section 4 addresses micro-benchmark evaluations to study the
ideal case benefits of I/OAT over the native kernel implementa-
tion. Sections 5 and 6 present the benefits of I/OAT in a data-
center and PVFS environment, respectively. Section 7 presents
the advantages and the disadvantages of I/OAT. We conclude
the paper in Section 8.

2 Background
In this section, we present some of the socket optimization

technologies in detail. Later, we provide a brief background of
the I/OAT architecture and its features.

2.1 Socket Optimizations
As mentioned in Section 1, due to technological develop-

ments, significant performance gaps exist between the CPU
overhead of sending and receiving packets. In particular, there
are two techniques that make the CPU usage on the sender-side
far less than the CPU usage on the receiver-side.

The first technique, TCP segmentation offload (TSO), al-
lows the kernel to send a large buffer, which is more than the
maximum transmission unit (MTU), to the network controller.
The network controller segments the buffer into individual Eth-
ernet frames and sends it on the wire. In the absence of this
technique, the host CPU is expected to break the large buffer
into small frames and send the small frames to the network
controller. This operation is more CPU intensive. The second
technique, sendfile() optimization, allows the kernel to perform
zero-copy operation. Using this technique, the kernel does not
copy the user buffer to the network buffer. Instead, it points the
pinned pages of the user buffer as the data source for transmis-
sion.

However, neither of these techniques are applicable to the
receiver side. On the receiver side, interrupt coalescing tech-
nique helps to reduce the number of interrupts generated in the
host system. This technique generates one interrupt for multi-
ple packets rather than one interrupt for every single packet.
However, this optimization improves the performance only
when the network is heavily loaded.

2.2 I/O Acceleration Technology (I/OAT) Overview
I/OAT [15] attempts to alleviate the bottlenecks mentioned

in Section 1 by providing a set of features, namely: (i) Split

headers, (ii) Asynchronous copy using DMA engine and (iii)
Multiple Receive Queues.

2.2.1 Split-headers
As shown in Figure 1, the optimized TCP/IP stack of I/OAT
has the split header feature implemented. In TCP/IP-based
communication for transmission of application data, headers
such as TCP header, IP header and Ethernet header are at-
tached along with the application data. Typically, the network
controller transfers the headers and the application data onto a
single buffer. However, with the split-header feature, the con-
troller partitions the network data into headers and application
data and copies them into two separate buffers. This allows
the header and data to be optimally aligned. Since the head-
ers are frequently accessed during network processing, this
feature also results in better cache utilization by not pollut-
ing the CPU’s cache with any application data while access-
ing the headers, thus increasing the locality of the incoming
headers. For more information regarding this feature and its
benefits please refer to [15, 16].
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Figure 1. Intel’s I/O Acceleration Technology
(Courtesy Intel)

2.2.2 Asynchronous copy using DMA engine
Most of the receive packet processing time [15] is spent in
copying the data from kernel buffer to user buffer. In particular,
the ratio of useful work done by the CPU to useless overheads
such as CPU stalling for memory access or data movement, de-
creases as we go from 1 Gbps links to 10 Gbps links [17]. Es-
pecially for data movement operations, rather than waiting for
a memory copy to finish, the host CPU can process other pend-
ing packets while the copy is still in progress. I/OAT offloads
this copy operation with an additional DMA engine. This is
a dedicated device which can perform memory copies. As a
result, while the DMA is performing the data copy, the CPU
becomes free to process other pending packets. For more de-
tails regarding this feature and its implementation please refer
to [15, 17, 16].
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2.2.3 Multiple Receive Queues
Processing large packets is generally not CPU-intensive,
whereas processing small packets can fully occupy the CPU.
Even on a multi-CPU system, processing occurs on a single
CPU (the CPU which handles the controller’s interrupt). Mul-
tiple receive queue feature helps in distributing the packets
among different receive queues and allows multiple CPUs to
act on different packets at the same time. For more details re-
garding this feature please refer to [15, 16]. Unfortunately,
this feature is currently disabled in the Linux platform. Hence,
we could not measure the performance impact of this feature
in our evaluation.

3 Software Infrastructure
We have carried out the evaluation of I/OAT on two dif-

ferent software infrastructures: Multi-Tier Data Center envi-
ronment and the Parallel Virtual File System (PVFS). In this
section, we discuss each of these in more detail.

3.1 Multi-Tier Data Center environment
More and more people are using web interfaces for a wide

range of services. Scalability of these systems is a very impor-
tant requirement. Upgrading a server to a single, more pow-
erful server is no longer a feasible method. In recent years,
clusters consisting of low-cost commodity off-the-shelf hard-
ware components have become increasingly attractive for host-
ing web services. Cluster architectures are characterized by a
low setup and maintenance cost. In addition, clusters provide
greater flexibility in reallocating resources among the tiers of
a data-center to accommodate fluctuating load.

A typical Multi-tier Data-center [20, 8, 21] has a cluster of
nodes, called the edge nodes, as its first tier. These nodes can
be thought of as switches (up to the 7th layer) that provide
services like load balancing, security, caching etc. The main
purpose of this tier is to increase the performance of the inner
tiers. The next tiers are usually the web-servers. These nodes,
apart from serving static content, can fetch dynamic data from
other sources and serve that data in a presentable form. The
last tier of the data-center is the database tier. It is used to store
persistent data. This tier is usually I/O intensive. Figure 2a
shows a typical data-center setup.

A request from a client is received by the edge or proxy
servers. This request is serviced from cache if possible, other-
wise it is forwarded to the web/application servers. Static re-
quests are serviced by the web servers by just returning the re-
quested file to the client via the edge server. This content may
be cached at the edge server so that subsequent requests to the
same static content may be served from the cache. The applica-
tion tier handles dynamic content. Any request that needs some
value to be computed, searched, analyzed or stored, must use
this tier at some stage. The application servers may also need
to spend some time on converting data to presentable formats.
The back-end database servers are responsible for storing data
persistently and responding to queries. These nodes are con-
nected to a persistent storage system. Queries to the database
systems can be anything from a simple search of required data
to performing join/aggregation/select operations on the data.
3.2 Parallel Virtual File System (PVFS)

Parallel Virtual File System (PVFS) [7] is one of the lead-
ing parallel file systems for Linux clusters today. It is designed
to meet the increasing I/O demands of parallel applications in
cluster systems. Figure 2b demonstrates a typical PVFS envi-
ronment. As shown in the figure, a group of nodes in the cluster
system can be configured as I/O servers and one of them (ei-
ther an I/O server or a different node) as a meta-data manager.
It is possible for a node to host computation while serving as
an I/O node.

PVFS achieves high performance by striping files across a
set of I/O server nodes to allow parallel accesses to the data. It
uses the native file system on the I/O servers to store individual
file stripes. An I/O daemon runs on each I/O node and services
requests from the compute nodes, in particular the read and
write requests. Data is transferred directly between the I/O
servers and the compute nodes.

A manager daemon runs on the meta-data manager node. It
handles meta-data operations involving file permissions, trun-
cation, file stripe characteristics, and so on. Meta-data is
also stored on the local file system. The meta-data man-
ager provides a cluster-wide consistent name space to appli-
cations. In PVFS, the meta-data manager does not participate
in read/write operations.

PVFS supports a set of feature-rich interfaces, including
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Figure 3. Micro-Benchmarks: (a) Bandwidth and (b) Bi-directional Bandwidth

support for both contiguous and non-contiguous accesses to
memory and files [11]. PVFS can be used with multiple APIs:
a native API, the UNIX/POSIX API, MPI-IO [22], and an ar-
ray I/O interface called the Multi-Dimensional Block Inter-
face (MDBI). The presence of multiple popular interfaces con-
tributes to the wide success of PVFS in the industry.

4 I/OAT Micro-Benchmark Results
In this section, we compare the ideal case performance ben-

efits achievable by I/OAT as compared to the native sockets
implementation (non-I/OAT) using a set of micro-benchmarks.

We use two testbeds for all of our experiments. Their de-
scriptions are as follows:

Testbed 1: A system consisting of two nodes built around
SuperMicro X7DB8+ motherboards which include 64-bit
133 MHz PCI-X interfaces. Each node has a dual dual-core
Intel 3.46 GHz processor with a 2 MB L2 cache. The ma-
chines are connected with three Intel PRO 1000Mbit adapters
with two ports each through a 24-port Netgear Gigabit Ether-
net switch. We use the Linux RedHat AS 4 operating system
and kernel version 2.6.9-30.

Testbed 2: A cluster system consisting of 44 nodes. Each
node has a dual Intel Xeon 2.66 GHz processor with 512KB
L2 cache and 2GB of main memory.

For the experiments mentioned in Sections 5, we use the
nodes in Testbed 2 as clients and the nodes in Testbed 1 as
servers. For all other experiments, we only use the nodes in
Testbed 1. Also, for experiments within Testbed 1, we create
a separate VLAN for each network adapter in one node and a
corresponding IP address within the same VLAN on the other
node to ensure an even distribution of network traffic. In all
of our experiments, we define the term relative CPU benefit of
I/OAT as follows: if a is the % CPU utilization of I/OAT and b
is the % CPU utilization of non-I/OAT, the relative CPU benefit
of I/OAT is defined as (b − a)/b. For example, if I/OAT occu-
pies 30% CPU and non-I/OAT occupies 60% CPU, the relative
CPU benefit of I/OAT is 50%, though the absolute difference
in CPU usage is only 30%.
4.1 Bandwidth and Bi-directional Bandwidth

Figure 3a shows the bandwidth achieved by I/OAT and non-
I/OAT with an increasing number of network ports. We use
the standard ttcp benchmark [4] for measuring the bandwidth.
As the number of ports increase, we expect the bandwidth to
increase. As shown in Figure 3a, we see that the bandwidth

performance achieved by I/OAT is similar to the performance
achieved by non-I/OAT with an increasing number of ports.
The maximum bandwidth achieved is close to 5635 Mbps with
six network ports. However, we see a difference in perfor-
mance with respect to the CPU utilization on the receiver side.
We observe that the CPU utilization is lower for I/OAT as com-
pared to non-I/OAT using three network ports and this differ-
ence increases as we see the number of ports increase from
three to six. For a six port configuration, non-I/OAT occupies
close to 37% of the CPU while I/OAT occupies only 29% of
the CPU. The relative benefit achieved by I/OAT in this case is
close to 21%.

In the bi-directional bandwidth test, we use two machines
and 2*N threads on each machine with N threads acting as
servers and the other N threads as clients. Each thread on one
machine has a connection to exactly one thread on the other
machine. The client threads connect to the server threads on
the other machine. Thus, 2*N connections are established
between these two machines. On each connection, the basic
bandwidth test is performed using the ttcp benchmark. The
aggregate bandwidth achieved by all threads is calculated as
the bi-directional bandwidth, as shown in Figure 3b. In our ex-
periments, N is equal to the number of network ports. We
see that the maximum bi-directional bandwidth is close to
9600 Mbps. Also, we observe that I/OAT shows an improve-
ment in CPU utilization using only two ports and this im-
provement increases with an increasing number of ports. With
six network ports, non-I/OAT occupies close to 90% of CPU
whereas I/OAT occupies only 70% of the CPU. The relative
CPU benefits achieved by I/OAT is close to 22%. This trend
also suggests that with an addition of one or two network ports
to this configuration, non-I/OAT may not give the best network
throughput in comparison with I/OAT since non-I/OAT may
end up occupying 100% CPU.

4.2 Multi-Stream Bandwidth
The multi-stream bandwidth test is very similar to the bi-

directional bandwidth test mentioned above. However, in this
experiment, only one machine acts as a server and the other
machine as the client. We use two machines and N threads on
each machine. Each thread on one machine has a connection to
exactly one thread on the other machine. On each connection,
the basic bandwidth test is performed. The aggregate band-
width achieved by all threads is calculated as the multi-stream
bandwidth. As shown in Figure 4, we observe that the band-



width achieved by I/OAT is similar to the bandwidth achieved
by non-I/OAT for an increasing number of threads. However,
when the number of threads increases to 120, we see a degra-
dation in performance of non-I/OAT; whereas, I/OAT consis-
tently shows no degradation in network bandwidth. Further,
the CPU utilization for non-I/OAT also increases with an in-
creasing number of threads. With 120 threads in the system,
we see that non-I/OAT occupies close to 76% CPU whereas
I/OAT only occupies 52% resulting in 24% absolute benefit in
CPU utilization. The relative CPU benefits achieved by I/OAT
in this case is close to 32%.
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Figure 4. Multi-Stream Bandwidth

4.3 Bandwidth and Bi-directional Bandwidth with
Socket Optimizations

As mentioned in Section 2, several optimizations on the
sender side exist to reduce the packet overhead and also to im-
prove the network performance. In this experiment, we con-
sidered three such existing optimizations: (i) Large Socket
buffer sizes (100 MB), (ii) Segmentation Offload (TSO) and
(iii) Jumbo Frames. In this experiment, we aim to understand
the impact of each of these optimizations and observe the im-
provement, both in terms of throughput and CPU utilization
on the receiver-side. Case 1 uses the default socket options
without any optimization. In Case 2, we increase the socket
buffer size to 100 MB. For Case 3, we further improve the
optimization by enabling segmentation offload (TSO) so that
the host CPU is relieved from fragmenting large packets. In
Case 4, in addition to the previous optimizations, we increase
the MTU-size to 2048 bytes so that large packets are sent over
the network. In addition to the sender-side optimizations, in
Case 5, we include the interrupt coalescing feature. Perfor-
mance numbers with various socket optimizations are shown
in Figure 5.

In the bandwidth test, as shown in Figure 5a, we observe
two interesting trends. First, as we increase the socket op-
timizations, we see an increase in the aggregate bandwidth.
Second, we observe that the performance of I/OAT is consis-
tently better than the performance of non-I/OAT. Especially for
Case 5, which includes all socket optimizations, the bandwidth
achieved by I/OAT is close to 5586 Mbps, whereas non-I/OAT
achieves only 5514 Mbps. More importantly, we observe that
there is a significant improvement in terms of CPU utilization.
As shown in Figure 5a, the relative CPU benefit of I/OAT in-
creases as we increase the socket optimizations. Especially

in Case 4, we observe that I/OAT achieves 30% relative CPU
benefit in comparison with non-I/OAT.

We see similar trends with the bi-directional bandwidth test
as shown in Figure 5b. Further, the relative benefits achieved
by I/OAT is much higher than compared to the bandwidth ex-
periment. In Case 4, I/OAT achieves close to 38% relative CPU
benefit as compared to non-I/OAT.

In summary, we see that the micro-benchmark results show
a significant improvement in terms of CPU utilization and net-
work performance for I/OAT. Since I/OAT in Linux has two
additional features, the split-header and DMA copy engine, it
is also important to understand the benefits attributed by each
of these features individually. In the following section, we con-
duct several experiments to show the individual benefits.

4.4 Benefits of Asynchronous DMA Copy Engine
In this section, we isolate the DMA engine feature of I/OAT

and show the benefits of an asynchronous DMA copy engine.
We compare the performance of the copy engine with that of
traditional CPU-based copy and show its benefits in terms of
performance and overlap efficiency. For CPU-based copy, we
use the standard memcpy utility.

Figure 6 compares the cost of performing a copy using the
CPU and I/OAT’s DMA engine. The copy-cache bars denote
the performance of CPU-based copy with the source and des-
tination buffers in the cache and the copy-nocache bars de-
note the performance with the source and destination buffers
not in the cache. The DMA-copy bars denote the total time
taken to perform the copy using the copy engine and the DMA-
overhead bars include the startup overhead in initiating the
copy using the DMA engine. The Overlap line denotes the
percentage of DMA copy time that can be overlapped with
other computations. As shown in Figure 6, we see that the per-
formance of DMA-based copy approach (DMA-copy) is bet-
ter than the performance of CPU-based copy approach (copy-
nocache) for message sizes greater than 8 KB. Further, we ob-
serve that the percentage of overlap increases with increasing
message sizes reaching up to 93% for a 64 KB message size.
However, if the source and destination buffers are in the cache,
we observe that the performance of the CPU-based copy is
much better than the performance of the DMA-based copy ap-
proach. Also, since the DMA-based copy can be overlapped
with processing other packets, we incur only the DMA startup
overheads. As observed in Figure 6, we see that the DMA
startup overhead time is much less than the time taken by the
CPU-based copy approach. Thus, the DMA copy engine can
also be useful even if the source and destination buffers are in
cache.
4.5 Breakdown of I/OAT Features

In this section, we break down the two features of I/OAT
and show its benefits in terms of throughput and CPU utiliza-
tion. We first measure the performance of non-I/OAT with-
out the DMA engine and the split header features. Next, we
measure the performance including the DMA engine feature
(denoted as I/OAT-DMA in Figure 7) and compare it with the
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Figure 5. Optimizations: (a) Bandwidth and (b) Bi-directional Bandwidth

performance of non-I/OAT. We report the difference in perfor-
mance as DMA engine benefits. Finally, we measure the per-
formance including both the split-header feature and the DMA
engine feature (denoted as I/OAT-SPLIT in Figure 7) and com-
pare it with the performance of I/OAT with DMA engine. We
report the difference in performance as split-header benefits.

We design the experiment in the following way. We use the
two nodes from Testbed 1, one node as a server and the other
as a client. We use two Intel network adapters with two ports
each on both the server and the client node. Since we have
four network ports on each node, we use four clients and per-
form a bandwidth test with four server threads. We first mea-
sure the bandwidth performance for small message sizes for
all three cases, i.e., non-I/OAT, I/OAT-DMA and I/OAT-SPLIT
and report the relative CPU benefits. As shown in Figure 7a,
we observe that the DMA engine feature achieves close to 16%
relative CPU benefit compared to the non-I/OAT case. This im-
provement is seen for all message sizes from 16 KB to 128 KB.
However, we do not observe any throughput improvement for
all message sizes. Also, the split-header feature of I/OAT does
not seem to improve the CPU or the throughput for all message
sizes.

As mentioned in Section 2, the split-header feature of I/OAT
increases the locality of incoming headers and also helps im-
prove cache utilization by not polluting the CPU’s cache with
application buffers during network processing. In order to
show the cache pollution effects, we repeat the previous ex-
periment for large message sizes that cannot fit in the system
cache. Figure 7b shows the throughput benefits achieved by
I/OAT features for large message sizes. We observe that the
split-header feature can achieve up to 26% benefit in through-
put for transferring 1 MB of application data. In this case, the
server with I/OAT capability receives a total of 4 MB of ap-
plication data from the four clients and since the cache size is
only 2 MB, clearly the application data does not fit in the sys-
tem cache. We see a huge improvement for the split-header
feature because the CPU’s cache is not polluted with applica-
tion data. In addition, we see that the benefits achieved by the
split-header feature decreases for increasing message sizes.

5 Data-Center Performance Evaluation
In this section, we analyze the performance of a 2-tier data-

center environment with I/OAT and compare its performance
with non-I/OAT. For all experiments in this section, we use the
nodes in Testbed 1 (described in Section 4) for the data-center
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tiers. For the client nodes, we use the nodes in Testbed 2 for
most of the experiments. We notify the readers at appropriate
points in the remaining sections when other nodes are used as
clients.
5.1 Evaluation Methodology

As mentioned in Section 2, I/OAT is a server architec-
ture geared to improve the receiver-side performance. In
other words, I/OAT can be deployed in a data-center environ-
ment and client requests coming over the Wide Area Network
(WAN) can seamlessly take advantage of I/OAT and get ser-
viced much faster. Further, the communication between the
tiers inside the data-center, such as proxy tier and application
tier, can be greatly enhanced using I/OAT, thus improving the
overall data-center performance and scalability.

We set up a two-tier data-center testbed to determine the
performance characteristics of using I/OAT and non-I/OAT.
The first tier consists of the front-end proxies. For this, we used
the proxy module of Apache 2.2.0. The second tier consists of
the web server module of Apache in order to service static re-
quests. The two tiers in the data-center reside on 1 Gigabit
Ethernet network; the clients are connected to the data-center
using a 1 Gigabit Ethernet connection.

Typical data-center workloads have a wide range of charac-
teristics. Some workloads may vary from high to low tem-
poral locality, following a Zipf-like distribution [6]. Simi-
larly workloads vary from small documents (e.g., on-line book
stores, browsing sites, etc.) to large documents (e.g., down-
load sites, etc.). Further, workloads may contain requests for
simple cacheable static or time invariant content or more com-
plex dynamic or time variant content via CGI, PHP, and Java
servlets with a back-end database. Due to these varying char-
acteristics of workloads, we classify the workloads into three
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Figure 7. I/OAT split-up benefits: (a) CPU Utilization and (b) Throughput

broad categories: (i) Single-file Micro workloads, (ii) Zipf-like
workloads and (iii) Dynamic content workloads. However, in
this paper, we focus our analysis on the first two categories.

Single-File Micro workloads: These workloads contain
only a single file. Several clients request the same file multiple
times. These workloads are used to study the basic perfor-
mance achievable by the data-center environment without be-
ing diluted by other interactions in more complex workloads.
We use workloads ranging from 2 KB to 10 KB file sizes since
this is considered the average file size for most documents in
the Internet.

Zipf-like Workloads: It has been well acknowledged in the
community that most workloads for data-centers hosting static
content, follow a Zipf-like distribution [6]. According to Zipf
law, the relative access probability of a request for the i’th most
popular document is proportional to 1/iα, where α determines
the randomness of file accesses. In our experiments, we vary
α from 0.95 to 0.5, ranging from high temporal locality for
documents to low temporal locality.

We also evaluate the performance achieved inside the data-
center with proxy servers acting as clients and web-servers
with I/OAT capability. For example, within a data-center, the
proxy servers forward dynamic content requests to the ap-
plication servers. The application servers are known to be
CPU-intensive due to processing of scripts such as PHP, CGI,
servlets, etc. If the application servers have I/OAT capability,
the servers can not only accept more number of requests but
can also process the pending requests at a faster rate, due to
reduced CPU utilization.

For both of the scenarios, we use a testbed with one proxy
at the first tier and one web-server at the second tier. Each
client fires one request at a time and sends another request after
getting a reply from the server.
5.2 Experimental Results

In this section, we separate our analysis into two categories.
First, we analyze the performance benefits of I/OAT with the
two workloads. As mentioned above, we use Testbed 2 to fire
requests to the proxy server. Due to the I/OAT capability on
the server nodes, we expect the performance of the servers to
improve.

5.2.1 Analysis with Single File Traces
In this experiment, we use five different traces with varying file
size requests. Trace 1 uses an average file size of 2 KB while

Traces 2, 3, 4 and 5 use 4 KB, 6 KB, 8 KB and 10 KB, respec-
tively. Each client has a 10,000 request subset of different files
and reports the TPS (Transactions Per Second) achieved after
getting the response from the servers for all of the requests.
TPS is defined as the total number of transactions serviced per
second as seen by the client. Higher TPS values attribute to
better server performance.

Figure 8a shows the performance of a data-center with vary-
ing trace files ranging from 2 KB to 10 KB. As shown in Fig-
ure 8a, we see that the throughput reported by I/OAT is consis-
tently better than the throughput reported by non-I/OAT. It is
also to be noted that for Trace 2, with average file size of 4 KB,
we see a significant throughput improvement for I/OAT. I/OAT
reports a TPS which is close to 9,754 whereas non-I/OAT re-
ports only 8,569 TPS resulting in a 14% overall improvement.
For other traces, we see around 5-8% TPS improvement with
I/OAT.

5.2.2 Analysis with Zipf File Traces
Next, we evaluate the performance of the data-center with the
zipf-trace. As mentioned earlier, we vary the α values from
0.95 to 0.5 ranging from high temporal locality to low temporal
locality. As shown in Figure 8b, I/OAT consistently performs
equal to or better than non-I/OAT. Further, we note that non-
I/OAT achieves close to 1,989 TPS whereas I/OAT achieves
close to 2,212 TPS, i.e., I/OAT achieves up to 11% throughput
benefit as compared to non-I/OAT. Also, we measured the CPU
utilization for these experiments but the improvement was neg-
ligible. However, the throughput improves since the server can
accept more requests (i.e., reduction in CPU overheads result
in greater CPU efficiency).

5.2.3 Analysis with Emulated Clients
Next, we evaluate the performance of I/OAT within a data-
center when both the proxy and the web servers have I/OAT
capability. In this experiment, the proxy server acts as a client
in sending the requests to the web servers. We use only the
nodes in Testbed 1. Due to reduced CPU usage in proxy nodes
using I/OAT, we expect the clients to fire requests at a much
faster rate, resulting in higher throughput. Figure 9 shows the
performance with I/OAT capability for increasing number of
client threads. In this experiment, we fix the file size to 16 KB
and varied the number of client threads from 1 to 256. As
shown in Figure 9, we note that the performance of I/OAT is
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Figure 8. Performance of I/OAT and non-I/OAT: (a) Single File Traces and (b) Zipf Trace

similar to non-I/OAT from one to sixteen threads. As the num-
ber of threads firing the requests increases from 32 to 256, we
observe two interesting trends. First, I/OAT throughput perfor-
mance increases with an increasing number of client threads.
With 256 client threads, I/OAT achieves close to 14,996 TPS
whereas non-I/OAT achieves only around 12,928, i.e., I/OAT
achieves close to 16% throughput improvement as compared
to non-I/OAT. It is also to be noted that the CPU utilization of
I/OAT is consistently lower than the CPU utilization of non-
I/OAT. In this experiment, we only report the CPU utilization
on the client node, since our focus is to capture the client-side
benefits when clients have I/OAT capability. We observe that
the CPU utilization saturates with non-I/OAT with 64 threads
and thus the throughput does not improve any further with an
increase in the client threads after 64. With I/OAT, we see that
the CPU utilization saturates only with 256 client threads, re-
sulting in superior performance. I/OAT not only improves the
performance by 16%, but can also support a large number of
threads (up to a factor of four as compared to non-I/OAT).
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Figure 9. Clients with I/OAT capability using a
16 KB file trace

6 PVFS Performance Evaluation
In this section, we compare the PVFS performance over

non-I/OAT and I/OAT with the original PVFS implementa-
tion [7]. All experiments in this section were performed on
Testbed 1.
6.1 Evaluation Methodology

It is to be noted that due to the wide difference between the
network and the disk speeds, the effective throughput achieved
by PVFS could be limited by that of the disk. However, data
used by applications is frequently in server memory, e.g., due
to file caching and read-ahead mechanisms. Thus, applications
can still benefit from fast networks in such cases. Hence, we

designed our experiments based on a memory-resident file sys-
tem, ramfs. These tests are designed to stress the network data
transfer independent of any disk activity.

6.2 Experimental Results
We split our evaluation into two categories. First, we de-

sign an experiment that measures the PVFS concurrent read
and write bandwidth. Next, we evaluate the file system per-
formance in the presence of multiple streams performing the
bandwidth test.

6.2.1 PVFS Concurrent Read and Write on ramfs
The test program used for concurrent read and write perfor-
mance is pvfs-test, which is included in the PVFS release pack-
age. We followed the same test method as described in [7]. In
all tests, each compute node simultaneously reads or writes a
single contiguous region of size 2N MB, where N is the num-
ber of I/O nodes in use. For example, if the number of I/O
nodes is four, the request size is then 8 MB. Each compute
node will access 2 MB of data from each I/O node. It is to
be noted that since I/OAT is a receiver-side optimization, we
report the average CPU utilization at the client-side while per-
forming a read operation and report the CPU utilization at the
server-side while performing the write operation.

Figure 10a shows the PVFS read bandwidth performance
with I/OAT and non-I/OAT with six I/O servers. With non-
I/OAT, the bandwidth increases from 361 MB/s to 649 MB/s
with an increasing number of compute nodes. With I/OAT,
the bandwidth increases from 360 MB/s to 731 MB/s with
an increasing number of compute nodes, i.e., I/OAT achieves
12% increase in throughput as compared to non-I/OAT with
six compute nodes. Further, the results are consistent with
the micro-benchmark evaluations seen in Section 4. In terms
of CPU utilization, we see that I/OAT achieves close to 15%
improvement as compared to non-I/OAT using six compute
nodes. We see similar trends when we decrease the number
of I/O servers to five as shown in Figure 10b. However, the im-
provement seen both in terms of throughput and CPU utiliza-
tion are much less than when compared to the six I/O server
configuration.

Figure 11a shows the PVFS write bandwidth performance
with I/OAT and non-I/OAT. Again, we see similar trends as
seen with the PVFS read performance. With non-I/OAT, the
write bandwidth performance increases from 464 MB/s to
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Figure 10. PVFS Concurrent Read Performance: (a) Six I/O Servers and (b) Five I/O Servers
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Figure 11. PVFS Concurrent Write Performance: (a) Six I/O Servers and(b) Five I/O Servers

697 MB/s. With I/OAT, the write bandwidth performance in-
creases from 460 MB/s to 750 MB/s with an increasing number
of compute nodes, i.e., I/OAT achieves 8% throughput benefit
as compared to non-I/OAT. Further, I/OAT achieves close to
5% CPU benefit as compared to non-I/OAT using six compute
nodes. We see similar trends when we decrease the number of
I/O servers as shown in Figure 11b.

6.2.2 PVFS read performance with multiple streams
In this experiment, we emulate a scenario where multiple
clients access the file system. We increase the number of
clients from 1 to 64 and study the behavior of concurrent read
performance in PVFS. As shown in Figure 12, we observe that
the performance of I/OAT is either equal to or greater than the
performance achieved by non-I/OAT. It is to be noted that we
report the CPU utilization numbers measured on the client-side
which also has the I/OAT capability. Due to the fact that the
client with I/OAT can receive the data at a much faster rate,
the clients can also fire PVFS read requests at a faster rate than
compared to non-I/OAT. As a result, we observe that the CPU
utilization on the client-side is around 10-12% higher than the
non-I/OAT case.

In summary, PVFS with I/OAT has a 12% improvement for
concurrent reads and 8% improvement for concurrent writes
as compared to PVFS with non-I/OAT. In terms of CPU uti-
lization, PVFS with I/OAT achieves 15% benefit for concur-
rent reads and 7% benefit for concurrent writes as compared to
PVFS with non-I/OAT.

7 Discussion
As mentioned earlier, I/OAT helps in improving the network

performance and reducing the CPU utilization through its fea-
tures such as the asynchronous copy engine, split-headers, etc.
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Figure 12. Multi-Stream PVFS Read Perfor-
mance

The asynchronous copy engine can also be used by user appli-
cations to improve the performance of memory operations and
also to improve the communication performance between two
processes within the same node. Since the copy engine can
operate in parallel with the host CPU, applications can achieve
significant benefits by overlapping useful computations with
memory operations. With the introduction of chip-level multi-
processing (CMP), per-core memory bandwidth reduces dras-
tically, thus increasing the need for such asynchronous mem-
ory operations as a memory-latency hiding mechanism. Mo-
hit, et. al., have proposed soft-timer techniques to reduce the
receiver-side processing [5]. I/OAT can co-exist with this tech-
nology to further reduce the receiver-side overheads and im-
prove the performance.

On the other hand, I/OAT requires special network adapters
to support the split-header and the multiple receive queue fea-
ture. In addition, the host system should have an in-built
copy engine to support the asynchronous copy feature. Also,
the memory controller uses physical addresses and hence, the
pages cannot be swapped during a copy operation. As a result,
the physical pages need to be pinned before initiating the copy



operation. Due to the page-pinning requirement, the useful-
ness of the copy engine becomes questionable if the pinning
cost exceeds the copy cost.

8 Concluding Remarks and Future Work
I/O Acceleration technology (I/OAT) developed by Intel is

a set of features particularly designed to reduce the packet pro-
cessing overheads on the receiver-side. This paper studies the
benefits of I/OAT technology through extensive evaluations of
micro-benchmarks as well as evaluations on two different ap-
plication domains: (1) A multi-tier Data-Center environment
and (2) A Parallel Virtual File System (PVFS). Our micro-
benchmark results show that I/OAT results in 38% lower over-
all CPU utilization in comparison with traditional communi-
cation. Due to this reduced CPU utilization, I/OAT delivers
better performance and increased network bandwidth. Our ex-
perimental results with data-centers and file systems reveal that
I/OAT can improve the total number of transactions processed
by 14% and throughput by 12%, respectively. In addition,
I/OAT can sustain a large number of concurrent threads (up
to a factor of four as compared to non-I/OAT) in data-center
environments, thus increasing the scalability of the servers.

We are currently working on two broad aspects with respect
to I/OAT. First, we are looking at modifying the applications
to realize the true benefits of I/OAT capability. Second, we
are trying to provide an asynchronous memory copy operation
to user applications. Though this involves some amount of
overhead (such as context switches, user page locking, etc),
asynchronous memory copy can help applications in using the
CPU cycles intelligently.

9 Acknowledgments
We would like to thank Intel Corporation for providing ac-

cess to I/OAT-based systems and the kernel patch which in-
cludes all of their features. We would also like to thank Eric
Simpson from the I/OAT team of Intel Corporation for provid-
ing us crucial insights into the implementation details.

References

[1] Accelerating High-Speed Networking with Intel I/O Ac-
celeration Technology. http://www.intel.com/technology/
ioacceleration/306517.pdf.

[2] Increasing network speeds: Technology@intel.
http://www.intel.com/technology/magazine/communications/intel-
ioat-0305.htm.

[3] Intel I/O Acceleration Technology.
http://www.intel.com/technology/ioacceleration/306484.pdf.

[4] USNA, TTCP: A test of TCP and UDP Performance, August
2001.

[5] Mohit Aron and Peter Druschel. Soft timers: efficient microsec-
ond software timer support for network processing. ACM Trans-
actions on Computer Systems, 18(3):197–228, 2000.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implications.
In INFOCOM (1), pages 126–134, 1999.

[7] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev
Thakur. PVFS: A Parallel File System for Linux Clusters. In
Proceedings of the 4th Annual Linux Showcase and Conference,
pages 317–327, Atlanta, GA, 2000. USENIX Association.

[8] A. Chandra, W. Gong, and P. Shenoy. Dynamic Resource Al-
location for Shared Data Centers Using Online Measurements.
In Proceedings of ACM Sigmetrics 2003, San Diego, CA, June
2003.

[9] J. Chase, A. Gallatin, and K. Yocum. End system optimiza-
tions for high-speed TCP. IEEE Communications Magazine,
39(4):68–74, 2001.

[10] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin
Vahdat, and Ronald P. Doyle. Managing energy and server re-
sources in hosting centres. In Symposium on Operating Systems
Principles, 2001.

[11] Avery Ching, Alok Choudhary, Wei keng Liao, Robert Ross,
and William Gropp. Noncontiguous I/O through PVFS. In Pro-
ceedings of the IEEE International Conference on Cluster Com-
puting, 2002.

[12] J. R. David D. Clark, Van Jacobson, and H. Salwen. An analysis
of TCP processing overhead, 1989.

[13] Annie Foong et al. TCP performance analysis revisited. In IEEE
International Symposium on Performance Analysis of Software
and Systems, March 2003.

[14] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable network ser-
vices. In Symposium on Operating Systems Principles, 1997.

[15] Andrew Gover and Christopher Leech. Accelerating network
receiver processing. http://linux.inet.hr/files/ols2005/grover-
reprint.pdf.

[16] S. Makineni and R. Iyer. Architectural characterization of
TCP/IP packet processing on the Pentium M microprocessor.
In High Performance Computer Architecture, HPCA-10, 2004.

[17] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. TCP On-
loading for Data Center Servers. In IEEE Computer, Nov 2004.

[18] John Reumann, Ashish Mehra, Kang G. Shin, and Dilip Kand-
lur. Virtual services: A new abstraction for server consolida-
tion. In In Proceedings of the USENIX 2000 Technical Confer-
ece, June 2000.

[19] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Man-
ageability, availability and performance in porcupine: A highly
scalable, cluster-based mail service. In Symposium on Operat-
ing Systems Principles, 1999.

[20] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S.
Madukkarumukumana, and G. J. Regnier. CSP: A Novel System
Architecture for Scalable Internet and Communication Services.
In the Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, pages pages 61–72, San Francisco,
CA, March 2001.

[21] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource
Management for Cluster-based Internet Services. In Proceed-
ings of Fifth USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’02), pages 225–238, Boston, MA,
December 2002.

[22] Rajeev Thakur, William Gropp, and Ewing Lusk. On Imple-
menting MPI-IO Portably and with High Performance. In Pro-
ceedings of the 6th Workshop on I/O in Parallel and Distributed
Systems, pages 23–32. ACM Press, May 1999.


