
DDSS: A Low-Overhead Distributed Data Sharing
Substrate for Cluster-Based Data-Centers over Modern

Interconnects

Karthikeyan Vaidyanathan, Sundeep Narravula, and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{vaidyana, narravul, panda }@cse.ohio-state.edu

Abstract. Information-sharing is a key aspect of distributed applications such as
database servers and web servers. Information-sharing also assists services such
as caching, reconfiguration, etc. In the past, information-sharing has been im-
plemented using ad-hoc messaging protocols which often incur high overheads
and are not very scalable. This paper presents a new design for a scalable and a
low-overhead Distributed Data Sharing Substrate (DDSS). DDSS is designed to
support efficient data management and coherence models by leveraging the fea-
tures of modern interconnects. It is implemented over the OpenFabrics interface
and portable across multiple interconnects including iWARP-capable networks
in LAN/WAN environments. Experimental evaluations with networks like Infini-
Band and iWARP-capable Ammasso through data-center services show an order
of magnitude performance improvement and the load resilient nature of the sub-
strate. Application-level evaluations with Distributed STORM achieves close to
19% performance improvement over traditional implementation, while evalua-
tions with check-pointing application suggest that DDSS is highly scalable.

1 Introduction

Distributed applications in the fields of nuclear research, biomedical informatics, satel-
lite weather image analysis etc., are increasingly getting deployed in cluster environ-
ments due to their high computing demands. Advances in technology have facilitated
storing and sharing of the large datasets that these applications generate, typically
through a web interface forming web data-centers [1]. A web data-center environment
(Figure 1) comprises of multiple tiers; the first tier consists of front-end servers such
as the proxy servers that provide services like web messaging, caching, load balancing,
etc. to clients; the middle tier comprises of application servers that handle transaction
processing and implement business logic, while the back-end tier consists of database
servers that hold a persistent state of the databases and other data repositories. In order
to efficiently host these distributed applications, current data-centers also need scalable
support for intelligent services like dynamic caching of documents, resource manage-
ment, load-balancing, etc. Apart from communication and synchronization, these appli-
cations and services exchange some key information at multiple sites (e.g, timestamps
of cached copies, coherency and consistency information, current system load). How-
ever, for the sake of availability, high-performance and low-latency, programmers use
ad-hoc messaging protocols for maintaining this shared information. Unfortunately, as

Fig. 1. Web data-centers

mentioned in [2], the code devoted to these protocols accounts for a significant frac-
tion of overall application size and complexity. As system sizes increase, this fraction
is likely to increase and cause significant overheads.

On the other hand, System Area Network (SAN) technology has been making rapid
progress during the recent years. SAN interconnects such as InfiniBand (IBA) [3] and
10-Gigabit Ethernet (10GigE) have been introduced and are currently gaining momen-
tum for designing high-end computing systems and data-centers. Besides high perfor-
mance, these modern interconnects provide a range of novel features and their support
in hardware, e.g., Remote Direct Memory Access (RDMA), Atomic Operations, Of-
floaded Protocol support and several others. Recently OpenFabrics [4] has been pro-
posed as the standard interface that allows protable implementations over several mod-
ern interconnects like IBA, and iWARP capable ethernet interconnects including [5]
Chelsio, Ammasso [6], etc., both in LAN/WAN environments.

In this paper, we design and develop a low-overhead distributed data sharing sub-
strate (DDSS) that allows efficient sharing of data among independently deployed servers
in data-centers by leveraging the features of the SAN interconnects. DDSS is designed
to support efficient data management and coherence models by leveraging the features
like one-sided communication and atomic operations. Specifically, DDSS offers several
coherency models ranging from null coherency to strict coherency.

Experimental evaluations with IBA and iWARP-capable Ammasso networks through
micro-benchmarks and data-center services such as reconfiguration and active caching
not only show an order of magnitude performance improvement over traditional im-
plementations but also show the load resilient nature of the substrate. Application-level
evaluations with Distributed STORM using DataCutter achieves close to 19% perfor-
mance improvement over traditional implementation, while evaluations with check-
pointing application suggest that DDSS is scalable and has a low overhead. The pro-
posed substrate is implemented over the OpenFabrics standard interface and hence is
portable across multiple modern interconnects.

2 Constraints of Data-Center Applications
Existing data-center applications such as Apache, MySQL, etc., implement their own
data management mechanisms for state sharing and synchronization. Databases com-
municate and synchronize frequently with other database servers to satisfy the co-
herency and consistency requirements of the data being managed. Web servers im-
plement complex load-balancing mechanisms based on current system load, request

patterns, etc. To provide fault-tolerance, check-pointing applications save the program
state at regular intervals for reaching a consistent state. Many of these mechanisms are
performed at multiple sites in a cooperative fashion. Since communication and synchro-
nization are an inherent part of these applications, support for basic operations to read,
write and synchronize are critical requirements from the DDSS. Further, as the nodes in
a data-center environment experience fluctuating CPU load conditions the DDSS needs
to be resilient and robust to changing system loads.

Higher-level data-center services are intelligent services that are critical for the
efficient functioning of data-centers. Such services require sharing of some state in-
formation. For example, caching services such as active caching [7] and cooperative
caching [8], [9] require the need for maintaining versions of cached copies of data and
locking mechanisms for supporting cache coherency and consistency. Active resource
adaptation service requires the need for advanced locking mechanism in order to recon-
figure nodes serving one website to another in a transparent manner and needs simple
mechanism for data sharing. Resource monitoring services, on the other hand, require
efficient, low overhead access to the load information on the nodes. The DDSS has to
be designed in a manner that meets all of the above requirements.

3 Design Goals of DDSS
To effectively manage information-sharing in a data-center environment, the DDSS
must understand in totality, the properties and the needs of data-center applications
and services and must cater to these in an efficient manner.

Caching dynamic content at various tiers of a multi-tier data-center is a well known
method to reduce the computation and communication overheads. Since the cached
data is stored at multiple sites, there is a need to maintain cache coherency and con-
sistency. Broadly, to accommodate the diverse coherency requirements of data-center
applications and services, DDSS supports a range of coherency models. The six basic
coherency models [10] to be supported are: 1) Strict Coherence, which obtains the most
recent version and excludes concurrent writes and reads. Database transactions require
strict coherence to support atomicity. 2) Write Coherence, which obtains the most recent
version and excludes concurrent writes. Resource monitoring services [11] need such a
coherence model so that the server can update the system load and other load-balancers
can read this information concurrently. 3) Read Coherence is similar to write coher-
ence except that it excludes concurrent readers. Services such as reconfiguration [14]
are usually performed at many nodes and such services dynamically move applications
to serve other websites to maximize the resource utilization. Though all nodes perform
the same function, such services can benefit from a read coherence model to avoid two
nodes looking at the same system information and performing a reconfiguration. 4)
Null Coherence, which accepts the current cached version. Proxy servers that perform
caching on data that does not change in time usually require such a coherence model. 5)
Delta coherence guarantees that the data is no more than x versions stale. This model is
particularly useful if a writer has currently locked the shared segment and there are sev-
eral readers waiting to the read the shared segment. 6) Temporal Coherence guarantees
that the data is no more than t time units stale.

Secondly, to meet the consistency needs of applications, DDSS should support ver-
sioning of cached data and ensure that requests from multiple sites view the data in a

consistent manner. Thirdly, services such as resource monitoring require the state in-
formation to be maintained locally since the data is updated frequently. On the other
hand, services such as caching and resource adaptation can be cpu-intensive and hence
require the data to be maintained at remote nodes distributed over the cluster. Hence,
DDSS should support both local and remote allocation in the shared state. Due to the
presence of multiple threads on each of these applications at each node in the data-
center environment, DDSS should support the access, update and deletion of the shared
data for all threads in a transparent manner. DDSS should also provide asynchronous
interfaces for reading and writing the shared information Further, as mentioned in Sec-
tion 2, DDSS must be designed to be robust and resilient to load imbalances and should
have minimal overheads and provide high performance access to data. Finally, DDSS
must provide an interface that clearly defines the mechanism to allocate, read, write and
synchronize the data being managed.

Proxy
Server

Proxy
Server

Proxy
Server

get()

get()

put()

put() get()

Server
App

Server
App

Server
App

put()

Shared Data Segment

Configuration
Current System

Load Information

Data Sharing Mechanism

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

get()

get()

put()

put() get()

Server

Server

Server

put()
Server

Server

Server

Master

Master

Master

Slave

Slave

Slave

Lock Data

Data Sharing Mechanism

Fig. 2. DDSS using the proposed Framework (a) Non Coherent Distributed Data Sharing Mech-
anism (b) Coherent Distributed Data Sharing Mechanism

4 Proposed DDSS Framework and Implementation Issues

The basic idea of DDSS is to allow efficient sharing of information across the cluster by
creating a logical shared memory region. It supports two basic operations, get operation
to read the shared data segment and put operation to write onto the shared data segment.
Figure 2a shows a simple distributed data sharing scenario with several processes (proxy
servers) writing and several application servers reading certain information from the
shared environment simultaneously. Figure 2b shows a mechanism where coherency
becomes a requirement. In this figure, a set of master and slave servers access different
portions of the shared data. All master processes waits for the lock since the shared data
is currently being read by multiple slave servers.

In order to efficiently implement distributed data sharing, several components need
to be built. Figure 3 shows the various components of DDSS that help in satisfying
the needs of the current and next generation data-center applications. Broadly, in the
figure, all the colored boxes are the components which exist today. The white boxes
are the ones which need to be designed to efficiently support next-generation data-
center applications. In this paper, we concentrate on the boxes with the dashed lines by
providing either complete or partial solutions. In this section, we describe how these
components take advantage of advanced networks in providing efficient services.

Applications
Web Server

Applications
App Server

Applications
Database Server

Applications
Other

InfiniBand 10 GigE Ammasso
Networks

High−Speed
Other

Protocol
Offload RDMA Atomic Multicast

Advanced
System

Services

Network
Features

Advanced

Network
High−Speed

Connection
Mgmt

Applications
Data−Center

Mechanisms
Locking

Basic

Dynamic Content
Caching

Active Resource
Adaptation

Resource Monitoring
Services
Other

Maintenance

Coherency
Consistency

&IPC
Placement

DataMemory
MgmtMgmt

Components
Substrate

Data−Sharing
Distributed

Fig. 3. Proposed DDSS Framework

4.1 IPC and Connection Management

In order to support multiple user processes or threads in a system to access the DDSS,
we optionally provide a run-time daemon to handle the requests from multiple pro-
cesses. We use shared memory channels and semaphores for communication and syn-
chronization purposes between the user process and the daemon. The daemon estab-
lishes connections with other data sharing daemons and forms the distributed data shar-
ing framework. Any service which is multi-threaded or the presence of multiple services
need to utilize this component for efficient communication. Connection management
takes care of establishing connections to all the nodes participating in either accessing
or sharing its address space with other nodes in the system. It allows for new connec-
tions to be established and existing connections to be terminated.

4.2 Memory Management and Data Access

Each node in the system allocates a large pool of memory to be shared with DDSS.
We perform the allocation and release operations inside this distributed memory pool.
One way to implement the memory allocation is to inform all the nodes about an allo-
cation. However, informing all the nodes may lead to large latencies.Another approach
is to assign one node for each allocation (similar to home-node based approach but the
node can maintain only the metadata and the actual data can be present elsewhere). This
approach reduces the allocation latency. The nodes maintain a list of free blocks avail-
able within the memory pool. During a release ss() operation, we inform the designated
remote node for that allocation. During the next allocation, the remote node searches
through the free block list and informs the free block which can fit the allocation unit.
While searching for the free block, for high-performance, we get the first fit free block
which can accommodate the allocation unit. High-speed networks provide one-sided
operations (like RDMA read and RDMA write) that allow access to remote memory
without interrupting the remote node. In our implementation, we use these operations
to perform the read and write. All the applications and services mentioned in Figure 3
will need this interface in order access/update the shared data.

4.3 Data Placement Techniques

Though DDSS hides the placement of shared data segments, it also exposes interfaces
to the application to explicitly mention the location of the shared data segment (e.g.
local or remote node). For the remote nodes, the interface also allows the application to
choose a specific node. In our implementation, each time a data segment is allocated,
the next data segment is automatically allocated on a different node. This design allows
the shared data segments to get well-distributed among the nodes in the system and
accordingly help in distributing the load in accessing the shared data segments for data-
center environments. This is particularly useful in reducing the contention at the NIC in
the case where all the shared segment resides in one single node and several nodes needs
to access different data segment residing on the same node. In addition, distributed
shared segments also help in improving the performance for applications which use
asynchronous operations on multiple segments distributed over the network.

4.4 Basic Locking Mechanisms

Locking mechanisms are provided using the atomic operations which is completely
handled by modern network adapters. The atomic operations such as Fetch-and-Add
and Compare-and-Swap operate on 64-bit data. The Fetch-and-Add operation performs
an atomic addition at a remote node, while the Compare-and-Swap compares two 64-bit
values and swaps the remote value with the data provided if the comparison succeeds. In
our implementation, every allocation unit is associated with a 64-bit data which serves
as a lock to access the shared data and we use the Compare-and-Swap atomic operation
for acquiring and checking the status of locks. If the locks are implicit based on the co-
herence model, then DDSS automatically unlocks the shared segment after successful
completion of get() and put() operations. Each shared data segment has an associated
lock. Though we maintain the lock for each shared segment, the design allows for main-
taining these locks separately. Similar to the distributed data sharing, the locks can also
be distributed which can help in reducing the contention at the NIC if too many pro-
cesses try to acquire different locks on the same node.

4.5 Coherency and Consistency Maintenance

As mentioned earlier, we support six different coherence models. We implement these
models by utilizing the RDMA and atomic operations of advanced networks. How-
ever, for networks which lack atomic operations, we can easily build software-based
solutions using the send/receive communication model. In the case of Null coherence
model, since there is no explicit requirement of any locks, applications can directly
read and write on the shared data segment. For strict, read, write coherence models,
we maintain locks and get() and put() operations internally acquire locks to DDSS be-
fore accessing or modifying the shared data. The locks are acquired and released only
when the application does not currently hold the lock for a particular shared segment.
In the case of version-based coherence model, we maintain a 64-bit integer and use
IBV WR ATOMIC FETCH AND ADD atomic operation to update the version for ev-
ery put() operation. For get() operation, we perform the actual data transfer only if the
current version does not match with the version maintained at the remote end. In delta
coherence model, we split the shared segment into memory hierarchies and support up

to x versions. Accordingly, applications can ask for up to x previous versions of the data
using the get() and put() interface. Basic consistency is achieved through maintaining
versions of the shared segment and applications can get a consistent view of the shared
data segment by reading the most recently updated version. We plan to provide several
consistency models as a part of future work.

4.6 DDSS Interface

Table 1 shows the current interface that is available to the end-user applications or
services. The interface essentially supports six main operations for gaining access to
DDSS: allocate ss(), get(), put(), release ss(), acquire lock ss(), release lock ss() op-
erations. The allocate ss() operation allows the application to allocate a chunk of mem-
ory in the shared state. This function returns a unique shared state key which can be
shared among other nodes in the system for accessing the shared data. get() and put()
operations allow applications to read and write data to the shared state and release ss()
operation allows the shared state framework to reuse the memory chunk for future al-
locations. acquire lock ss() and release lock ss() operations allow end-user application
to gain exclusive access to the data to support user-defined coherency and consistency
requirements. In addition, we also support asynchronous operations such as async get(),
async put(), wait ss() and additional locking operations such as try lock() operation to
support a wide range of applications to use such features.

Table 1. DDSS Interface
DDSS Operation Description
int allocate ss(nbytes, type, ...) allocate a block of size nbytes in the shared state
int release ss(key) free the shared data segment
int get(key, data, nbytes, ...) read nbytes from the shared state and place it in data
int put(key, data, nbytes, ...) write nbytes of memory to the shared state from data
int acquire lock ss(key) lock the shared data segment
int release lock ss(key) unlock the shared data segment

DDSS is built as a library which can be easily integrated into distributed applications
such as checkpointing, DataCutter [12], web servers, database servers, etc. For applica-
tions such as datacutter, several data sharing components can be replaced directly using
the DDSS. Further, for easy sharing of keys, i.e., the key to an allocated data segment,
DDSS allows special identifiers to be specified while creating the data sharing segment.
Applications can create the data sharing segment using this identifier and DDSS will
make sure that only one process creates the data segment and the remaining processes
will get a handle to this data segment. For applications such as web servers and database
servers, DDSS can be integrated as a dynamic module and all other modules can make
use of the interface appropriately. In addition, DDSS can also be used to replace tra-
ditional communication such as TCP/IP. In our earlier work, cooperative caching [9],
we have demonstrated the capabilities of high-performance networks for data-centers
with respect to utilizing the remote memory and support caching of varying file sizes.
DDSS can also be utilized in such environments. However, for very large file sizes
which cannot fit in a cluster memory, applications will need to rely on the file system
to store and retrieve the data. Another aspect of DDSS that is currently not supported is

fault-tolerance. This is especially required for applications such as databases. If appli-
cations can explicitly inform DDSS for taking frequent snapshots, this feature can be
implemented as a part of DDSS. We plan to implement this as a part of future work.

5 Experimental Results

In this section, we analyze the applicability of DDSS with services such as reconfigura-
tion and active caching and with applications such as Distributed STORM and check-
pointing. We evaluate our DDSS framework on two interconnects IBA and Ammasso
using the OpenFabrics implementation. The iWARP implementation of OpenFabrics
over Ammasso was available only at the kernel space. We wrote a wrapper for user
applications which in turn calls the kernel module to fire appropriate iWARP functions.
Our experimental testbed consists of a 12 node cluster with dual Intel Xeon 3.4 GHz
CPU-based EM64T systems. Each node is equipped with 1 GB of DDR400 memory.
The nodes were connected with MT25128 Mellanox HCAs (SDK v1.8.0) connected
through a InfiniScale MT43132 24-port completely non-blocking switch. For Ammasso
experiments, we use two node dual Intel Xeon 3.0 GHz processors with a 512 kB L2
cache and a 533 MHz front side bus and 512 MB of main memory.

5.1 Microbenchmark

Measuring Access Latency: The latency test is conducted in a ping-pong fashion and
the latency is derived from round-trip time. For the measuring the latency of put() oper-
ation, we run the test performing several put() operations on the same shared segment
and average it over the number of iterations. Figure 4a shows the latencies of differ-
ent coherence models by using the put() operation of DDSS using OpenFabrics over
IBA through a daemon process. We observe that the 1-byte latency achieved by null
and read coherence model is only 20µs and 23µs. We observed that the overhead of
communicating with the daemon process is close to 10-12µs which explains the large
latencies with null and read coherence models. For write and strict coherency model,
the latencies are 54.3µs and 54.8µs respectively. This is due to the fact both write and
strict coherency models use atomic operations to acquire the lock before updating the
shared data. Version-based and delta coherence models report a latency of 37µs and
41µs respectively, since they both need to update the version status maintained at the
remote node. Also, as the message size increases, we observe that the latency increases
for all coherence models. We see similar trends for get() operations with the basic 1-
byte latency of get being 25µs. Figure 4b shows the performance of get() operation
with several clients accessing different portions from a single node. We observe that
DDSS is highly scalable in such scenarios and the performance is not affected for in-
creasing number of clients. Figure 4c shows the performance of get() operation with
several clients accessing the same portion from a single node. Here, we observe that
for relatively lesser contention-levels of up to 40%, the performance of get() and put()
operations do not seem to be affected. However, for contention-levels more than 40%,
the performance of clients degrades significantly in the case of strict and write coher-
ence model mainly due to the waiting time for acquiring the lock. We see similar trends
in the performance of latencies using OpenFabrics over Ammasso. We have included
these results in [13].

0
20
40
60
80

100
120
140

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message Size

La
te

nc
y

(u
se

c)

Null Read Write
Strict Version Delta

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Number of Clients

La
te

nc
y

(u
se

c)

Null Read Write Strict Version Delta

0

100

200

300

400

500

600

10% 20% 40% 60% 80% 100%

Lock Contention

La
te

nc
y

(u
se

c)

Null Read Write
Strict Version Delta

Fig. 4. Basic Performance using OpenFabrics over IBA: (a) put() operation (b) Increasing Clients
accessing different portions (get()) (c) Contention accessing the same shared segment (put())

Measuring Substrate Overhead: One of the critical issues to address on support-
ing DDSS is to minimize the overhead of the middle-ware layer for applications. We
measure the overhead for different configurations (i) Direct scheme allows application
to directly communicate with underlying network through DDSS library, (ii) Thread-
based scheme allows application to communicate through a daemon process for access-
ing DDSS and (iii) Thread-based asynchronous scheme is same as thread-based scheme
except that applications use asynchronous calls. We see that the overhead is less than
a microsecond (0.35µs) through the direct scheme. If the run-time system needs to
support multiple threads, we observe that the overhead jumps to 10µs using the thread-
based scheme. The reason being the overhead of round-trip communication between
the application thread and the DDSS daemon consumes close to 10µs. If the applica-
tion uses asynchronous operations (thread-based asynchronous scheme), this overhead
can be significantly reduced for large message transfers. However, in the worst case
scenario, for small message sizes and scheduling of asynchronous operations followed
by a wait operation can lead to an overhead of 12µs. The average synchronization time
observed in all the schemes is around 20µs.

5.2 Data-Center Service Evaluation

Dynamic Reconfiguration: In our previous work [14] we have shown the strong po-
tential of using the advanced features of high-speed networks in designing reconfigura-
tion techniques. In this section, we use this technique to illustrate the overhead of using
DDSS for such a service in comparison with implementations using native protocols.
We modified our code base to use the DDSS and compared it with the previous im-
plementation. Also, we emulate the loaded conditions of a real data-center scenario by
firing client requests to the respective servers. As shown in Figure 5a, we see that the
average reconfiguration time is only 133µs for increasing loaded servers. The x-axes
indicates the number of servers that are currently heavily loaded. The y-axes shows the
reconfiguration time using the native protocol (white bar) and using DDSS (white bar
+ black bar). We observe that the DDSS overhead (black bar) is only around 3µs for
varying load on the servers. Also, as the number of loaded servers increase, we see no
change in the reconfiguration time. This indicates that the service is highly resilient to
the loaded conditions in the data-center environment. Further, we see that the number
of reconfigurations increase linearly as the number of loaded servers increase from 5%
to 40%. Increasing the loaded servers further does not seem to affect the reconfigura-
tion time and when this reaches 80%, the number of reconfiguration decreases mainly
due to insufficient number of free servers for performing the reconfiguration. Also, for
increasing number of reconfigurations, several servers get locked and unlocked to per-
form efficient reconfiguration. The figure clearly shows that the contention for acquiring

locks on loaded servers does not affect the total reconfiguration time showing the scal-
able nature of this service. In this experiment, since we have only one process per node
performing the reconfiguration, we use the direct model for integrating with the DDSS.

100
105
110
115
120
125
130
135
140

5 10 20 40 60 80

Load %

T
im

e
(u

se
cs

)

0

500

1000

1500

2000

2500

3000

N
o

of
 R

ec
on

fig
ur

at
io

ns

Reconfiguration Time software-overhead
No of Reconfigurations

0

100

200

300

400

500

600

700

1 2 4 8 16 32

Number of Compute/Communicate Threads

La
te

nc
y

(u
se

cs
) Version Check -

RDMA/iWARP
Version Check - TCP/IP

Fig. 5. Software Overhead on Data-Center Services (a) Active Resource Adaptation using Open-
Fabrics over IBA (b) Dynamic Content Caching using OpenFabrics over Ammasso

Strong Cache Coherence: In our previous work [7], we have shown the strong poten-
tial of using the features of modern interconnects in alleviating the issues of providing
strong cache coherence with traditional implementations. In this section, we show the
load resilient nature of the one-sided communication in providing such a service using
DDSS over Ammasso. Figure 5b, we observe that as we increase the number of server
compute threads, the time taken to check for the version increases exponentially for a
two-sided communication protocol such as TCP/IP. However, since DDSS is based on
one-sided operations (RDMA over iWARP in this case), we observe that the time taken
for version check remains constant for increasing number of compute threads.

5.3 Application-level Evaluation

STORM with DataCutter: STORM [12] is a middle-ware service layer developed by
the Department of Biomedical Informatics at The Ohio State University. It is designed
to support SQL-like select queries on datasets primarily to select the data of interest
and transfer the data from storage nodes to compute nodes for processing in a clus-
ter computing environment. In distributed environments, it is common to have several
STORM applications running which can act on same or different datasets serving the
queries of different clients. If the same dataset is processed by multiple STORM nodes
and multiple compute nodes, DDSS can help in sharing this dataset in a cluster environ-
ment so that multiple nodes can get direct access to this shared data. In our experiment,
we modified the STORM application code to use DDSS in maintaining the dataset so
that all nodes have direct access to the shared information. We vary the dataset size
in terms of number of records and show the performance of STORM with and without
DDSS. Since larger datasets showed inconsistent values, we performed the experiments
on small datasets and we flush the file system cache to show the benefits of maintaining
this dataset on other nodes memory. As shown in Figure 6a, we observe that the perfor-
mance of STORM is improved by around 19% for 1K, 10K and 100K record dataset
sizes using DDSS in comparison with the traditional implementation.

0

1000

2000

3000

4000

5000

6000

7000

8000

1K 5K 10K 100K

of Records

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(m

se
c)

STORM STORM-DDSS

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 10 11 12

Number of Clients

T
im

e
(u

se
cs

)

0

100

200

300

400

500

600

N
o

of
 R

es
ta

rt
s

Avg Sync Time Avg Total Time No of Restarts

Fig. 6. Application Performance over IBA (a) Distributed STORM application (b) Check-pointing

Check-pointing: We use a check-pointing benchmark to show the scalability and the
performance of using DDSS. In this experiment, every process attempts to checkpoint a
particular application at random time intervals. Also, every process simulates the appli-
cation restart, by attempting to reach a consistent check-point and informing all other
processes to revert back to the consistent check-point at other random intervals. In Fig-
ure 6b, we observe that the average time taken for check-pointing is only around 150µs
for increasing number of processes. As this value remains almost constant with increas-
ing number of clients and application restarts, it suggests that the application scales well
using DDSS. Also, we see that the average application restart time to reach a consistent
checkpoint increases with the increase in the number of clients. This is expected as each
process needs to get the current checkpoint version from all other processes to decide
the most recent consistent checkpoint. Further, we noticed that the DDSS overhead for
checkpointing in comparison with native implementation is only around 2.5µs.
6 Related Work
Several distributed data sharing models have been proposed in the past for a variety of
environments. The key aspects that distinguish DDSS from previous work is its ability
to exploit features of high-performance networks, its portability over multiple intercon-
nects, its support for relaxed coherence protocols and its minimal overhead. Further, our
work is mainly targeted for real data-center environment on very large scale clusters.

Run-time data sharing models such as InterWeave [15], Khazana [16], InterAct [17]
offer benefits to applications in terms of relaxed coherency and consistency protocols.
Khazana proposes the use of several consistency models. InterWeave allows users to
define application-specific coherence models. Many of these models are implemented
using traditional two-sided communication protocols targeting the WAN environment
addressing issues such as heterogeneity, endianness, etc. Such protocols have been
shown to have significant overheads in a real cluster-based data-center environment
under heavy loaded conditions. Also, none of these models take advantage of high-
performance networks for communication, synchronization and efficient data manage-
ment. Though many of the features of high-performance networks are applicable only in
a cluster environment, with the advent of advanced protocols such as iWARP included
in the OpenFabrics standard, DDSS can also work well in WAN environments.
7 Conclusion and Future Work
This paper proposes and evaluates a low-overhead distributed data sharing substrate
(DDSS) for data-center environments. Traditional data-charing implementations us-
ing ad-hoc messaging often incur high overheads and are not very scalable. DDSS

on the other hand, is designed to support efficient data management and coherence
models while minimizing overheads by leveraging the features of modern intercon-
nects. DDSS is implemented over the OpenFabrics interface and is portable across
multiple interconnects including iWARP-capable networks both in LAN/WAN envi-
ronments. Application-level evaluations with Distributed STORM using DDSS show
close to 19% performance benefit over traditional implementation, while evaluations
with check-pointing application suggest that DDSS is scalable and has a low overhead.

We plan to enhance DDSS to support advanced locking mechanisms and study the
benefits of DDSS for services and applications like meta-data management, storage of
BTree data structures in database servers and advanced caching techniques.

Funding Acknowledgment: This research is supported in part by Department of Energy’s
Grant #DE-FC02-01ER25506, and National Science Foundation’s grants #CNS-0403342 and#CNS-
0509452; grants from Intel, Mellanox, Sun Microsystems and Linux Networx; and equipment
donations from Intel, Mellanox and Silverstorm.

References
1. Shah, H.V., Minturn, D.B., Foong, A., McAlpine, G.L., Madukkarumukumana, R.S., Reg-

nier, G.J.: CSP: A Novel System Architecture for Scalable Internet and Communication
Services. 3rd USENIX Symposium on Internet Technologies and Systems, (2001)

2. Tang, C., Chen, D., Dwarkadas, S., Scott, M.: Integrating Remote Invocation and Distributed
Shared State (2004)

3. InfiniBand Trade Association. (http://www.infinibandta.com)
4. OpenFabrics Alliance: OpenFabrics. (http://www.openfabrics.org/)
5. Shah, H.V., Pinkerton, J., Recio, R., Culley, P.: DDP over Reliable Transports (2002)
6. Ammasso, inc. (http://www.ammasso.com)
7. Narravula, S., Balaji, P., Vaidyanathan, K., Krishnamoorthy, S., Wu, J., Panda, D.K.: Sup-

porting Strong Coherency for Active Caches in Data-Centers in InfiniBand. SAN. (2004)
8. Zhang, Y., Zheng, W.: User-level communication based cooperative caching. In ACM

SIGOPS Operating Systems. (2003)
9. Narravula, S., Jin, H.W., Vaidyanathan, K., Panda, D.K.: Designing Efficient Cooperative

Caching Schemes for Data-Centers over RDMA-enabled Networks. In CCGRID). (2005)
10. Chen, D., Tang, C., Sanders, B., Dwarkadas, S., Scott, M.: Exploiting high-level coherence

information to optimize distributed shared state. In Proc. of the 9th ACM Symp. on Principles
and Practice of Parallel Programming. (2003)

11. Vaidyanathan, K., Jin, H.W., Panda, D.K.: Exploiting RDMA Operations for Providing Effi-
cient Fine-Grained Resource Monitoring in Cluster-based Servers. In Workshop on Remote
Direct Memory Access (RDMA): RAIT, Barcelona, Spain (2006)

12. The STORM Project at OSU BMI. (http://storm.bmi.ohio-state.edu/index.php)
13. Vaidyanathan, K., Narravula, S., Panda, D.K.: Soft Shared State Primitives for Multi-Tier

Data-Center Services. Technical Report OSU-CISRC-1/06-TR06, OSU (2006)
14. Balaji, P., Vaidyanathan, K., Narravula, S., Savitha, K., Jin, H.W., Panda, D.K.: Exploiting

Remote Memory Operations to Design Efficient Reconfiguration for Shared Data-Centers.
In Workshop on RAIT, San Diego, CA (2004)

15. Chen, D., Dwarkadas, S., Parthasarathy, S., Pinheiro, E., Scott, M.L.: InterWeave: A Mid-
dleware System for Distributed Shared State. In LCR. (2000)

16. Carter, J., Ranganathan, A., Susarla, S.: Khazana: An Infrastructure for Building Distributed
Services. In ICDCS. (1998)

17. Parthasarathy, S., Dwarkadas, S.: InterAct: Virtual Sharing for Interactive Client-Server
Application. Workshop on Languages, Compilers, and Systems for Computers. (1998)

