
Optimized Distributed Data Sharing Substrate in Multi-Core Commodity

Clusters: A Comprehensive Study with Applications∗

K. Vaidyanathan P. Lai S. Narravula D. K. Panda

Department of Computer Science and Engineering

The Ohio State University

{vaidyana, laipi, narravul, panda}@cse.ohio-state.edu

Abstract

Distributed applications tend to have a complex design

due to issues such as concurrency, synchronization and

communication. Researchers in the past have proposed

simpler abstractions to hide these complexities. However,

many of the proposed techniques use messaging protocols

which incur high overhead and are not very scalable. To

address these limitations, in our previous work [20], we

proposed an efficient Distributed Data Sharing Substrate

(DDSS) using the features of high-speed networks. In this

paper, we propose several design optimizations for DDSS

in multi-core systems such as the combination of shared

memory and message queues for inter-process communi-

cation, dedicated thread for communication progress and

for onloading DDSS operations such as get and put. Our

micro-benchmark results not only show a very low latency

in DDSS operations but also demonstrate the scalability of

DDSS with increasing number of processes. Application

evaluations with R-Tree and B-Tree query processing and

distributed STORM shows an improvement of up to 56%,

45% and 44%, respectively, as compared to traditional im-

plementations. Evaluations with application checkpoint-

ing using DDSS demonstrate the scalability with increas-

ing number of checkpointing applications. Further, in our

evaluations, we demonstrate the portability of DDSS across

multiple modern interconnects including InfiniBand and

iWARP-capable 10-Gigabit Ethernet networks (applicable

for both LAN/WAN environments).

1 Introduction

Cluster systems consisting of commodity off-the-shelf

hardware components are becoming increasingly attractive
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as platforms for distributed applications, primarily due to

their high performance-to-cost ratio. Today, several dis-

tributed applications such as STORM [4], database query

processing [3, 2] and services [18] such as caching, load-

balancing and resource monitoring have been developed

and deployed in such systems to not only enable sharing the

datasets that these applications generate but also to improve

the performance and scalability.

Unfortunately, these applications tend to have a com-

plex design since they explicitly try to deal with issues such

as concurrency, communication and synchronization. Fur-

ther, for the sake of availability and performance, program-

mers use ad-hoc messaging protocols for communication

and synchronization. As mentioned in [17], the code de-

voted to these protocols accounts for a significant fraction

of overall application size and complexity. Researchers in

the past [6, 9, 16, 13] have proposed a simpler way to build

these applications that hides these complexities through

data sharing primitives such as read/write, begin/end trans-

actions and notifications. However, these mechanisms were

built on top of communication protocols like TCP/IP that

is known to have overheads such as protocol processing,

memory copies, context-switches and remote CPU involve-

ment.

On the other hand, System Area Networks (SAN) such

as InfiniBand (IBA) [7] and iWARP [14] capable 10-Gigabit

Ethernet (10-GigE) adapters [1] are currently gaining mo-

mentum in both LAN/WAN environments. Besides high

performance, these modern interconnects also provide a

range of novel features such as Remote Direct Memory Ac-

cess (RDMA), Protocol Offload and several others. Accord-

ingly, in our previous work [20], we proposed a Distributed

Data Sharing Substrate (DDSS) using these features to ad-

dress the limitations of TCP/IP-based data sharing primi-

tives.

Recently, multi-core systems have been gaining popu-

larity due to their low-cost per processing element and are

getting deployed in several distributed environments. In ad-

dition, many of these systems enable simultaneous multi-



threading (SMT), also known as hyper-threading, to support

large number of concurrent thread executions in the system.

While the main idea of these systems is to provide multiple

processing elements to function in parallel, it also opens up

new ways to design and optimize existing middleware such

as DDSS. Further, as the number of cores and threads mul-

tiply, one or more of these cores can also be dedicated to

perform specialized services.

In this paper, we propose several design optimizations

for DDSS in multi-core systems such as the combination of

shared memory and message queues for inter-process com-

munication, dedicated thread for communication progress

and for onloading other DDSS operations such as get and

put. Our micro-benchmark results not only show a very

low latency in DDSS operations but also demonstrate the

scalability of DDSS with increasing number of processes.

Application evaluations with R-Tree and B-Tree query pro-

cessing and distributed STORM shows an improvement of

up to 56%, 45% and 44%, respectively, as compared to

traditional implementations. Evaluations with application

checkpointing demonstrate the scalability of DDSS. Fur-

ther, in our evaluations, we demonstrate the portability of

DDSS across multiple modern interconnects such as In-

finiBand and iWARP-capable 10-Gigabit Ethernet networks

(applicable for both LAN/WAN environments). In addition,

our evaluations using an additional core for DDSS services

show a lot of potential benefits for performing these services

on dedicated cores.

The remaining part of the paper is organized as follows:

Section 2 provides a background on high-speed intercon-

nects and the functionalities of DDSS. In Section 3, we

propose our design optimizations in a multi-core system.

Section 4 deals with the evaluation of DDSS using micro-

benchmarks and applications. In Section 5, we discuss

some of the issues involved in dedicating the functionali-

ties of DDSS to multiple cores and we conclude the paper

in Section 6.

2 Background

In this section, we provide a brief background on high-

speed networks and the features of DDSS.

2.1 High-Speed Interconnects

As mentioned earlier, there are several high-speed inter-

connects such as InfiniBand, 10-Gigabit Ethernet, Myrinet

and Quadrics that are currently deployed in large-scale clus-

ters. The InfiniBand Architecture (IBA) is an industry

standard that defines a System Area Network (SAN) to

design clusters within a LAN environment offering very

low latency and high bandwidth while 10-Gigabit Ethernet

adapters offer high-performance for both LAN/WAN envi-

ronments. Apart from high-performance, both the adapters

support several advanced features such as remote memory

operations (performing a remote read/write operation with-

out interrupting the remote CPU), protocol offload and sev-

eral others. Recently OpenFabrics [12] has been proposed

as the standard interface which allows a common API that is

portable across multiple interconnects such as IBA and 10-

GigE. We use this standard interface and demonstrate the

portability on multiple interconnects.

2.2 Distributed Data Sharing Substrate

The basic idea of DDSS [20] is to allow efficient shar-

ing of information across the cluster by creating a logical

shared memory region. DDSS supports operations such as

a get operation to read a shared data segment, a put opera-

tion to write onto a shared data segment using the advanced

features of high-speed interconnects. Figure 1 shows a sim-

ple distributed data sharing scenario with several processes

(back-end servers) writing and several front-end servers

reading certain information from the shared environment si-

multaneously. DDSS also supports several other features

such as basic locking services, several coherence models,

versioning of data and timestamps using the advanced fea-

tures of high-speed interconnects. Applications can create

and destroy memory segments using allocate and release

operations. As shown in the figure, DDSS uses System V

message queues for sending and receiving messages (shown

as ipc send and ipc recv in Figure 1). The readers are en-

couraged to refer to our previous work [20] for more details

on the design of DDSS.
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3 Design Optimizations

In this section, we first present our existing Message

Queue-based DDSS (MQ-DDSS) design. Next, we present

two design optimizations for multi-core systems, namely,

(i) Request/Message Queue-based DDSS (RMQ-DDSS)

and (ii) Request/Completion Queue-based DDSS (RCQ-

DDSS).
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Figure 2. Design Optimizations in DDSS

3.1 Message Queue-based DDSS (MQ-
DDSS)

Existing DDSS service utilizes a kernel-based message

queue to store and forward user requests from one appli-

cation thread to another and notification-based mechanism

to respond to network events. For example, in the case of

a get() operation in DDSS, the application thread performs

an ipc send operation (shown as Step 1 in Figure 2(a)) to

submit a request. During this operation, the kernel (after

a context-switch) copies the user request buffer to a FIFO

(First-In-First-Out) message queue. If the corresponding

ipc recv (shown as Step 2 in the figure) operation is posted

by the service thread, then the kernel copies the request

buffer to the service thread’s user buffer and sends an in-

terrupt to the service thread to handle the request. Next, the

service thread determines the remote node that holds the

data and issues an RDMA read operation (Step 4). After

the RDMA read operation completes, the network sends an

interrupt to the kernel (Step 6 shown in the figure) to sig-

nal the completion and submits a completion event in the

completion queue (Step 7). The kernel looks at the inter-

rupt service routine and raises another interrupt (Step 8) for

the user process in order to signal the completion of the

network event. The service thread processes the network

completion event (Step 9) and accordingly informs the ap-

plication thread regarding the status of the operation (Steps

10 and 11). Though this approach does not consume signif-

icant CPU, it suffers from the fact that the operating system

gets involved in processing the request and reply messages

and in handling network events. As a result, this approach

leads to several context-switches, interrupts (shown as the

dashed line in Figure 2(a)) and thus may lead to degrada-

tion in performance.

3.2 Request and Message Queue-based
DDSS (RMQ-DDSS)

One approach to optimize the performance of DDSS

is to use a shared memory region as a circular array of

buffers (Steps 1 and 2 shown in the Figure 2(b)) for inter-

process communication. In this approach, the reply mes-

sages still follow the path of using the kernel-based mes-

sage queues (Step 7 and 8). Networks such as InfiniBand

and iWARP-capable 10-Gigabit Ethernet also allow appli-

cations to check for completions through memory mapped

completion queues. The DDSS service thread periodically

polls on this completion queue, thereby avoiding the ker-

nel involvement for processing the network events. How-

ever, the service thread cannot poll too frequently as it may

occupy the entire CPU. We propose an approach through

which critical operations such as get() and put() use a

polling-based approach while other operations such as al-

locate() and release() use a notification-based mechanism

and wait for network events. The performance of allocate()

and release() operations are not most critical since applica-

tions typically read and write information frequently. This

optimization reduces the kernel involvement significantly.

3.3 Request and Completion Queue-based
DDSS (RCQ-DDSS)

Another approach to optimize the performance of DDSS

is to use a circular array of buffers for both request and re-

ply messages for inter-process communication as shown in

Figure 2(c). Applications submit requests using the request

circular buffer (Step 1) . The service thread constantly looks

for user requests by polling at all request buffers (Step 2)

and processes each request (Step 3) by issuing the corre-

sponding network operations. The network processes this

request (Step 4) and issues a completion (Step 5) in a com-

pletion queue. The service thread periodically polls on this

queue (Step 6) to signal completions to applications threads

(Step 7 and 8). It is to be noted that a similar mechanism

using memory mapped request and response queues has al-

ready been proposed by [15]. This approach completely re-

moves the kernel involvement for both submitting requests

and receiving reply messages, thus leading to better perfor-

mance for several operations in DDSS. However, applica-

tion threads need to constantly poll on the reply buffer to

look for a receive completion and this may result in occu-

pying a significant amount of CPU. As application threads

in the system increase and if all threads constantly poll on

the reply buffers, it is very likely that the performance may



degrade for systems with limited CPUs or SMTs. However,

for systems which support large number of cores or SMTs,

this optimization can significantly help improve the perfor-

mance of the application.

4 Experimental Results

In this section, we present various performance results.

First, we present the impact of our design optimizations in

DDSS at a micro-benchmark level and then we show the

performance improvement achieved by applications such as

distributed STORM, R-Tree and B-Tree query processing,

application checkpointing and resource monitoring services

using DDSS.

Our experimental testbed is a 560-core InfiniBand Linux

cluster. Each of the 70 compute nodes have dual 2.33 GHz

Intel Xeon “Clovertown” quad-core processors for a total of

8 cores per node. Each node has aMellanoxMT25208 dual-

port Memfree HCA. For experiments with 10-GigE, we use

two Chelsio T3B 10 GigE PCI-Express adapters (firmware

version 4.2) connected to two nodes. InfiniBand and 10-

Gigabit Ethernet software support is provided through the

OpenFabrics/Gen2 stack [12], OFED 1.2 release.

4.1 Micro-benchmarks

In this section, we present the benefits of our design op-

timizations in DDSS over IBA and 10-GigE.

4.1.1 DDSS Latency

First, we measure the performance of inter-process com-

munication (IPC) using the different approaches mentioned

in Section 3. We design the benchmark in the following

way. Each application thread sends an eight byte message

through System V message queues or shared memory (us-

ing a circular array of buffers) to the service thread. The

service thread immediately sends a reply message of eight

bytes to the corresponding application thread. Figure 3(a)

shows the inter-process communication latency with in-

creasing number of application threads for MQ-DDSS,

RMQ-DDSS and RCQ-DDSS approaches. We observe that

the RCQ-DDSS approach achieves a very low latency of

0.4µsecs while RMQ-DDSS and MQ-DDSS approaches

achieve a higher latency of 8.8µsecs and 13µsecs, respec-

tively. This is expected since the RCQ-DDSS approach

completely avoids kernel involvement through memory-

mapped circular buffers for communication. Also, we

see that the performance of RCQ-DDSS approach scales

with increasing number of processes as compared to RMQ-

DDSS and MQ-DDSS approaches. Next, we measure

the performance of DDSS operations including the inter-

process communication and the network operations. Fig-

ure 3(b) shows the performance of get() operation of DDSS

over InfiniBand. We see that the latency of a get() operation

over InfiniBand using RCQ-DDSS approach is 8.2µsecs

while the RMQ-DDSS and MQ-DDSS approaches show a

latency of up to 11.3µsecs and 22.6µsecs, respectively. For

increasing message sizes, we observe that the latency in-

creases for all three approaches. We see similar trends for

a get() operation over iWARP-capable 10-Gigabit Ethernet

as shown in Figure 3(c).

4.1.2 DDSS Scalability

Here, we measure the scalability of DDSS with increasing

number of processes performing the DDSS operations over

IBA. First, we stress the inter-process communication and

show the performance of the three approaches, as shown

in Figure 4(a). We observe that, for very large number of

client threads (up to 512), the RMQ-DDSS approach per-

forms significantly better than RCQ-DDSS and MQ-DDSS

approaches. Since the RCQ-DDSS approach uses signifi-

cant amount of CPU to check for completions, it does not

scale well with large number of threads. In the case of

MQ-DDSS approach, it generates twice the number of ker-

nel events as compared to the RMQ-DDSS approach and

thus it performs worse. Next, we stress the network and

show the scalability of DDSS. In this experiment, we al-

locate the data on a single node and multiple applications

from different nodes access different portions of the data si-

multaneously (shown as DDSS-(non-distributed) in the Fig-

ure 4(b)). We compare its performance by distributed data

across different nodes in the cluster and show its scalability.

As shown in Figure 4(c), we observe that the performance

of DDSS scales with increasing number of clients using the

distributed approach as compared to the non-distributed ap-

proach.

4.2 Application-level Evaluations

In this section, we present the benefits of DDSS using ap-

plications such as R-Tree and B-Tree query processing, dis-

tributed STORM, application checkpointing and resource

monitoring services over IBA.

4.2.1 R-Tree Query Processing

R-Tree [10] is a hierarchical indexing data structure that is

commonly used to index multi-dimensional geographic data

(points, lines and polygons) in the fields of databases, bio-

informatics and computer vision. In our experiments, we

use an R-tree query processing application, developed by

Berkeley [3] that uses helper functions such as read page

and write page to read and write the indexing informa-

tion to the disk. We place the indexing information on a

network-based file system so that multiple threads can si-

multaneously access this information for processing differ-

ent queries. We modify the read page and write page func-

tion calls to use the get() and put() operations of DDSS and
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place the indexing information on DDSS to show the ben-

efits of accessing this information from remote memory as

compared to the disk using the network-based file system.

Table 1 shows the overall execution time of an R-Tree appli-

cation with varying percentage of queries (100% query im-

plies that the query accesses all the records in the database

while 20% implies accessing only 20% of the records). As

shown in the table, we see that all three approaches (RCQ-

DDSS, RMQ-DDSS and MQ-DDSS) improve the perfor-

mance by up to 56% as compared to the traditional approach

(No DDSS approach) and the RCQ-DDSS approach shows

an improvement of up to 9% and 4% as compared to MQ-

DDSS and RMQ-DDSS approaches, respectively. More-

over, for increasing percentage of query accesses, we see

that the performance improvement decreases. This is ex-

pected since applications spend more time in computation

for large queries as compared to small queries, thus reduc-

ing the overall percentage benefit.

4.2.2 B-Tree Query Processing

B-Tree [8] is a data structure that is commonly used in

databases and file systems which maintains sorted data and

allows operations such as searches, insertions and deletions

in logarithmic amortized time. In our experiments, we use a

B-Tree query processing application, developed by Berke-

ley [3] that uses similar helper functions to read and write

the indexing information. Similar to the R-Tree applica-

tion, we place the indexing information in DDSS and com-

pare its performance with accessing the information from

the disk using network-based file system. Table 1 shows the

overall execution time of a B-Tree application with vary-

ing percentage of queries. As shown in table1, we see that

all three approaches (RCQ-DDSS, RMQ-DDSS and MQ-

DDSS) improve the performance by up to 45% as compared

to the traditional approach (No DDSS approach) and the

RCQ-DDSS approach shows an improvement of up to 3%

and 1% as compared to MQ-DDSS and RMQ-DDSS ap-

proaches, respectively.

4.2.3 Distributed STORM

STORM [11, 4] is a middle-ware layer developed by the

Department of Biomedical Informatics at The Ohio State

University. It is designed to support SQL-like queries on

datasets primarily to select the data of interest and transfer

the data from storage nodes to compute nodes for data pro-

cessing. In our previous work [20], we demonstrated the

improvement of placing the datasets in DDSS. In this work,

we place the meta-data information of STORM in DDSS

and show the associated benefits as compared to access-

ing the meta-data using TCP/IP communication protocol.



Table 1 shows the overall execution time of STORM with

varying record sizes. As shown in the table, we see that

all three approaches improve the performance by 44% as

compared to the traditional approach (No DDSS approach).

STORM establishes multiple connections with the directory

server to get the meta-data information and uses socket-

based calls to send and receive the data, which is a two-

sided communication protocol. Most of the benefits shown

is achieved mainly due to avoiding connections (in the or-

der of several milliseconds) and using one-sided communi-

cation model.

To understand the decrease in performance improvement

of RCQ-DDSS approach as compared to MQ-DDSS and

RMQ-DDSS approaches, we repeat the experiments and re-

port the time taken by the data sharing component in ap-

plications in Figure 5. The performance benefits achieved

in an R-Tree query processing application is shown in Fig-

ure 5(a). We see that the performance benefits achieved

by the RCQ-DDSS approach as compared to MQ-DDSS

and RMQ-DDSS approaches is 56% and 27%, respectively.

However, we also observe that the MQ-DDSS approach

achieves close to 87% performance improvement as com-

pared to R-Tree query processing without DDSS, with only

13% of the remaining time to be optimized further. As a

result, we see marginal improvements in application per-

formance using the RCQ-DDSS approach as compared to

MQ-DDSS and RMQ-DDSS approaches. We see similar

trends for B-Tree query processing and STORM as shown

in Figures 5(b) and 5(c).

4.2.4 Application Checkpointing

Here, we present our evaluations with an application check-

pointing benchmark [20] to demonstrate the scalability of

all three approaches. In this experiment, every process

checkpoints an application at random time intervals (if the

current version does not match, it restarts to a previous con-

sistent version, else commits an updated version). Also,

every process simulates the application restart by taking a

consistent checkpoint at other random intervals based on a

failure probability 0.001 (0.1%).

Figure 6(a) shows the performance of checkpoint ap-

plications with increasing number of processes within the

same node. We observe that the performance of the RCQ-

DDSS approach scales with increasing number of applica-

tion processes for up to 16. However, for large number of

processes up to 64, we see that the RMQ-DDSS approach

performs better which confirms the results shown in Sec-

tion 4.1.2. Figure 6(b) shows the performance of check-

point applications with increasing number of processes on

different nodes. Here, we stress the network by assigning

the operations in DDSS on one single remote node and all

processes perform DDSS operations on this remote node.

As shown in Figure 6(b), we see that the performance of

all three approaches scale for up to 16 processes. However,

for processes beyond 16, the performance of all three ap-

proaches fail to scale due to network contention. Further,

with 512 processes, we observe that the performance of the

RCQ-DDSS approach performs significantly worse as com-

pared to RMQ-DDSS and MQ-DDSS approaches which

confirms the results shown in Section 4.1.2. Next, we show

the performance by distributing the operations in DDSS on

all the nodes in the system and show its scalability for up to

8192 processes. As shown in the Figure 6(c), we observe

that the RCQ-DDSS approach scales for up to 512 pro-

cesses. However, for very large number of processes up to

8192, we see that the RMQ-DDSS approach performs bet-

ter as compared to RCQ-DDSS and MQ-DDSS approaches,

confirming our earlier observations in Section 4.1.2.

4.2.5 DDSS Services on Additional Cores

Several existing services such as resource monitoring,

caching, distributed lock manager can be built on top of

DDSS. While these services help improve the performance

of many applications, it can also affect the performance of

other applications that run concurrently, since it requires

some amount of CPU to perform these tasks. To demon-

strate this effect, we use a resource monitoring applica-

tion [18] and build it as a part of a DDSS service and show

its impact with a proxy server that directs client requests

to web servers for processing HTML requests. The DDSS

service periodically monitors the system load on the web

servers by issuing a get() operation. For our evaluations, we

use a different experimental testbed (cluster system consist-

ing of 48 nodes and each node has two Intel Xeon 2.6 GHz

processors with a 512 KB L2 cache and 2 GB of main mem-

ory) as we did not see any appreciable difference using the

8-core testbed. In the 48-node experimental testbed, we use

one CPU for both the proxy server and the DDSS service

and blocked the other CPU with dummy computations. Fig-

ure 7(a) shows the response time seen by clients in request-

ing a 16 KB file from the web server. We observe that the

client response time fluctuates significantly depending on

the number of web servers monitored by the DDSS service.

With 32 web servers, we see that the client response time

can get affected by almost 50%. Next, we use one CPU

for the proxy server and an additional CPU for the DDSS

service and show the performance impact in Figure 7(b).

We observe that the client response time remains unaffected

irrespective of the number of servers being monitored by

the DDSS service. Accordingly, applications with stringent

quality of service requirements can use a dedicated core to

perform the additional services and still meet their require-

ments in an efficient manner. We also varied the experi-

ments in terms of different file size requests and different

monitoring granularities and see similar trends. These re-

sults can be found in [19].



Table 1. Application Performance

Application No. of DDSS Average Size Overall Execution Time (milliseconds)

Operations (bytes) No DDSS MQ-DDSS RMQ-DDSS RCQ-DDSS

R-Tree

20% 8 8192 3.917 1.868 1.786 1.700

40% 23 8192 12.427 7.149 7.013 6.855

60% 41 8192 25.360 15.609 15.481 15.189

80% 60 8192 42.457 27.529 27.232 26.830

100% 74 8192 60.781 43.064 42.587 42.385

B-Tree

20% 8 8192 4.715 2.675 2.605 2.576

40% 13 8192 8.114 4.906 4.805 4.743

60% 20 8192 12.242 7.336 7.186 7.149

80% 26 8192 16.040 9.490 9.425 9.311

100% 33 8192 20.400 11.534 11.360 11.265

STORM

1K 86 7.6 2250 1260.2 1259.4 1258.2

10K 177 6.4 4900 1910.8 1910.1 1909.4

100K 158 6.5 6200 3211 3210.7 3210

1000K 125 6.4 13100 11110.5 11110.3 11109.6
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(a) R-Tree Query Processing
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(b) B-Tree Query Processing
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(c) Meta-data in Distributed STORM

Figure 5. Data Sharing Performance in Applications
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(a) Clients within a single node (non-distributed)
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(b) Clients across different nodes (non-distributed)
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(c) Clients across different nodes (distributed)

Figure 6. Checkpoint Application Performance
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(a) DDSS Service and Web Server on the same core
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(b) DDSS Service and Web Server on different cores

Figure 7. Performance impact of DDSS on Web Servers



5 Discussion and Related Work

Modern processors are seeing a steep increase in the

number of cores available in the system [5]. As the number

of cores increases, the choice to dedicate one or more cores

to perform specialized services will become more common.

In this paper, we demonstrated the benefits with a resource

monitoring service using DDSS. There has been several dis-

tributed data sharing models proposed in the past for a vari-

ety of environments such as InterWeave [16], Khazana [9],

InterAct [13] and Sinfonia [6]. Many of these models are

implemented based on the traditional two-sided communi-

cation model targeting theWAN environment addressing is-

sues such as heterogeneity, endianness and several others.

Such two-sided communication protocols have been shown

to have significant overheads in a cluster-based data-center

environment under loaded conditions [20]. The most im-

portant feature that distinguishes DDSS from these mod-

els is the ability to take advantage of several features of

multi-core systems and high-performance networks for both

LAN/WAN environments, its applicability and portability

with several high-speed networks and its minimal overhead.

6 Conclusions

In this paper, we presented design optimizations in

DDSS for multi-core systems and comprehensively evalu-

ated DDSS in terms of performance, scalability and asso-

ciated overheads using several micro-benchmarks and ap-

plications such as Distributed STORM, R-Tree and B-Tree

query processing, checkpointing applications and resource

monitoring services. Our micro-benchmark results not only

showed a very low latency in DDSS operations but also

demonstrated the scalability of DDSS with increasing num-

ber of processes. Application evaluations with R-Tree and

B-Tree query processing and distributed STORM showed

an improvement of up to 56%, 45% and 44%, respectively,

as compared to traditional implementations. Evaluations

with application checkpointing demonstrated the scalabil-

ity of DDSS. Further, we demonstrated the portability of

DDSS across multiple modern interconnects such as In-

finiBand and iWARP-capable 10-Gigabit Ethernet networks

(applicable for both LAN/WAN environments). In addition,

our evaluations using an additional core for DDSS services

showed a lot of potential benefits for performing services

on dedicated cores.
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