MPI-LAPI: An Efficient Implementation of MPI
for IBM RS/6000 SP Systems!

Mohammad Banikazemif? Rama K Govindarajui Robert Blackmore®
Dhabaleswar K Pandal

JfDep‘c. of Computer and Information Science fCommunication Subsystems
The Ohio State University IBM Power Parallel Systems
Columbus, OH 43210 Poughkeepsie, NY 12601

Email: {banikaze, panda}@cis.ohio-state.edu Email: {ramag,blackmor}@us.ibm.com

Abstract

The IBM RS/6000 SP system is one of the most cost-effective commercially available high
performance machines. IBM RS/6000 SP systems support the Message Passing Interface
standard (MPI) and LAPI. LAPI is a low level, reliable and efficient one sided communi-
cation API library, implemented on IBM RS/6000 SP systems. This paper explains how
the high performance of the LAPI library has been exploited in order to implement the MPI
standard more efficiently than the existing MPI. It describes how to avoid unnecessary data
copies at both the sending and receiving sides for such an implementation. The resolution of
problems arising from the mismatches between the requirements of the MPI standard and the
features of LAPI is discussed. As a result of this exercise, certain enhancements to LAPI
are identified to enable an efficient implementation of MPI on LAPI. The performance of the
new implementation of MPI is compared with that of the underlying LAPI itself. The latency
(in polling and interrupt modes) and bandwidth of our new implementation is compared with
that of the native MPI implementation on RS/6000 SP systems. The results indicate that
the MPI implementation on LAPI performs comparably or better than the original MPI im-
plementation in most cases. Improvements of up to 17.3% in polling mode latency, 35.8% in
interrupt mode latency, and 20.9% in bandwidth are obtained for certain message sizes. The
implementation of MPI on top of LAPI also outperforms the native MPI implementation for
the NAS Parallel Benchmarks.

Keywords: Interprocessor Communication, Fast Messaging Layers, Networks of Workstations, Message
Passing Interface (MPI), Clustering.

'A preliminary version of this paper has been presented at the International Parallel Processing Symposium,
April 1999 [2].

*Work done while visiting the IBM Power Parallel Systems group during Summer 1998. This work is supported
in part by an Ameritech Faculty Fellowship award.



Contents

Introduction

The Native MPI Overview

LAPI Communication Model Overview

Supporting MPI on top of LAPI

4.1 TImplementing the Internal Protocols . . . . . . ... ... ... ... ... ..
4.1.1 Implementing the Eager Protocol . . . . . . . ... .. ... ... ... . ... ...
4.1.2 TImplementing the Rendezvous Protocol . . . .. .. ... .. ... ... ......

4.2 TImplementing the MPI Communication Modes . . . . ... ... ... ... ... ......

4.3 A Closer Look at the Implementation of MPI_Send and MPI Recv . . . ... ........

Optimizing the MPI-LAPI Implementation

5.1 The Base MPI-LAPI . . . . . . . . . . . e
5.2 MPI-LAPI with Counters . . . . . . . . . . ittt ittt
5.3 MPI-LAPI Enhanced . . . . . . . . . . . i e e

Performance Evaluation
6.1 Latency and Bandwidth . . . . . .. .. .. . L
6.2 NAS Benchmarks . . . . . . . . . e

Related Work

Conclusion Remarks and Future Work

15
15
15
16

17
17
19

20

21



1 Introduction

The IBM RS/6000 SP! system [1, 16, 17] (referred to as SP in the rest of this paper) is a general-purpose
scalable parallel system based on a distributed-memory, message-passing architecture. Configurations
ranging from 2-node systems to 128-node systems are available from IBM. Larger configurations can be
obtained via special order. The uniprocessor nodes are available with the latest Power2-Super (P2SC)
microprocessors and the TB3 adapter. The SMP nodes are available with the 4 way, Power-PC 332MHz
microprocessors and the TBMX adapter. The nodes are interconnected via a switch adapter to a high-
performance, multistage, packet-switched network [7] for interprocessor communication capable of deliv-
ering bi-directional data-transfer rate of up to 160 MB/s between each node pair. Each node contains its

own copy of the standard AIX operating system and other standard RS/6000 system software.

A portable parallel programming environment [6] is key to the success of high performance computing
systems. Over the last few years, researchers have developed standard interfaces such as PVM [18, 20] and
Message Passing Interface (MPI [3, 12]) to provide portability. These interfaces and standards attempt to
abstract the intricate details of the hardware, software, and network characteristics from the application
developer. However, the performance of applications depends heavily on the latency and bandwidth

required for interprocessor communication, and synchronization across the nodes.

IBM SP systems support several communication libraries like MPI [12], MPL and LAPI [10, 14].
MPL, an IBM designed interface, was the first message passing interface developed by IBM on SP systems.
Subsequently, after MPI became a standard it was implemented by reusing most of the infrastructure of
MPL. This reuse allowed for SP systems to provide an implementation of MPI quite rapidly, but also
imposed some inherent constraints on the MPI implementation which are discussed in detail in Section 2.
In 1997, the LAPI library interface was designed and implemented on SP systems. The primary design
goal for LAPI was to define an architecture with semantics that would allow efficient implementation
on the underlying hardware and firmware infrastructure provided by SP systems. LAPI is a user space
library, which provides a one-sided communication model thereby avoiding the complexities associated
with two-sided protocols (like message matching, ordering, etc.).

In this paper we describe the implementation of the MPI standard on top of LAPI (MPI-LAPI) to
avoid some of the inherent performance constraints of the current implementation of MPI (native MPT)
and to exploit the high performance of LAPI. There are some challenges involved in implementing a 2-
sided protocol such as MPI on top of a 1-sided protocol such as LAPI. The major issue is finding the
address of the receiving buffer. In 2-sided protocols, the sender does not have any information about the
address of the receive buffer where the message should be copied into. There are some existing solutions
to this problem. A temporary buffer can be used at the receiving side to store the message before the
address of its destination is resolved. This solution incurs the cost of a data copy which increases the
data transfer time and the protocol overhead especially for large messages. An alternative solution to this
problem is using a rendezvous protocol, in which in response to the request from the sender, the receiver
provides the receive buffer address to the sender, and then the sender can send the message. In this
method the unnecessary data copy (into a temporary buffer) is avoided, but the cost of roundtrip control

messages for providing the receive buffer address to the sender impacts the performance (especially for

IBM, RS/6000, SP, AIX, Power-PC, and Power2-Super are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both.



small messages) considerably. The impact is increased latency and control traffic. It is therefore important
that a more efficient method be used for resolving the receive buffer address. In this paper, we explain
how the flexibility of the LAPI architecture is used to solve this problem in an efficient manner. Another
challenge in implementing MPT on top of LAPI is to keep the cost of enforcing the semantics of MPI small
so that the efficiency of LAPI is realized to the fullest. Another motivation behind our effort has been
to provide better reuse by making LAPI the common reliable transport layer for other communication

libraries.

This paper is organized as follows: In Section 2, we detail the different messaging layers in the
current implementation of MPI. In Section 3, we present an overview of LAPI and its functionality. In
Section 4, we discuss different MPI communication modes and show how these modes are supported
by using LAPI. In Section 5, we discuss different strategies that are used to implement MPI on top of
LAPT and the various changes we made to improve the performance of MPI-LAPI. Experimental results
including latency, bandwidth, and benchmark performance are presented in Section 6. Related work is

discussed in Section 7. In Section 8, we outline some of our conclusions.

2 The Native MPI Overview

The protocol stack for the current implementation of MPI on SP systems is shown in Figure la. This
protocol stack consists of several layers. The functions of each of the layers is described briefly below:

MPI - MPI semantics layer

MPCI - pt-to-pt msg layer

MPI - MPI semantics layer

New MPCI - pt-to-pt msg layer

Pipes - reliable bytes stream

LAPI - reliabletransport layer

LAPI - reliabletransport layer

HAL - Packet Layer

HAL - Packet Layer

HAL - Packet Layer

Adapter Microcode

Adapter Microcode

Adapter Microcode

Adapter Hardware

Adapter Hardware

Adapter Hardware

Switch Hardware

Switch Hardware

Switch Hardware

(a) MPI (Messaging L ayers)

(b) LAPI (Messaging Layers)

(c) MPI on LAPI (Messaging Layers)

Figure 1: Protocol Stack Layering.

e The MPI layer enforces all MPI semantics. It breaks down all collective communication calls into a
series of point-to-point message passing calls in MPCI (Message Passing Client Interface).

o The MPCI layer provides a point-to-point communication interface with message matching, buffer-
ing for early arrivals, etc. It sends data by copying data from the user buffer into the pipe buffers.
The pipe layer then has responsibility for sending the data. Likewise data received by the pipe layer
is matched, and if the corresponding receive has been posted, copied from the pipe buffers into the

user buffer, otherwise the data is copied into an early arrival buffer (if the receive is not posted).

e The Pipes layer provides a reliable byte stream interface [15]. It ensures that data in the pipe
buffers is reliably transmitted and received. This layer is also used to enforce ordering of packets
at the receiving end pipe buffer if packets come out of order (the switch network has four routes
between each pair of nodes and packets on some routes can take longer than other routes based on



the switch congestion on the route). A sliding window flow control protocol is used. Reliability is

enforced using an acknowledgment-retransmit mechanism.

e The HAL layer (packet layer, also referred to as the Hardware Abstraction Layer) provides a packet
interface to the upper layers. Data from the pipe buffers are packetized in the HAL network send
buffers and then injected into the switch network. Likewise packets arriving from the network
are assembled in the HAL network receive buffers. The HAL network buffers are pinned down.
The HAL layer handshakes with the adapter microcode to send/receive packets to/from the switch

network.

e The Adapter DMASs the data from the HAL network send buffers onto the switch adapter and then
injects the packet into the switch network. Likewise, packets arriving from the switch network into
the switch adapter are DMAed onto the HAL network receive buffers.

The current MPI implementation, for the first and last 16K bytes of data, incurs a copy from the
user buffer to the pipes buffer and from the pipe buffers to the HAL buffers for sending messages [15].
Similarly, received messages are first DM Aed into HAL buffers and then copied into the pipe buffer. The
extra copying of data is performed in order to simplify the communication protocol. These two extra data
copies affect the performance of MPI. In the following sections we discuss LAPI (Fig. 1b) and explain
how LAPI can replace the Pipes layer (Fig. 1c) in order to avoid the extra data copies and improve the
performance of the message passing library.

3 LAPI Communication Model Overview

LAPI is a low level API designed to support efficient one-sided communication between tasks on SP sys-
tems [16]. The protocol stack of LAPT is shown in Figure 1b. An overview of the LAPI communication
model (for LAPI_Amsend) is given in Figure 2 which has been captured from [14]. Different steps involved
in LAPT communication functions are as follows. Each message is sent with a LAPT header, and possibly
a user header (step 1). On arrival of the first packet of the message at the target machine, the header is
parsed by a header handler (step 2) which is responsible for accomplishing three tasks (step 3). First, it
must return the location of a data buffer where the packets of the message must be assembled. Second,
it may optionally specify a pointer to a completion handler function which is called when all the packets
have arrived in the buffer location returned. Finally, if a completion handler function is provided, it also
returns a pointer to data which is passed to the completion handler. The completion handler is executed
after the last packet of the message has been received and copied into a buffer (step 4). In general, three
counters may be used so that a programmer may determine when it is safe to reuse buffers and to indicate
completion of data transfer. The first counter (org_cntr) is the origin counter, located in the address space
of the sending task. This counter is incremented when it is safe for the origin task to update the origin
buffer. The second counter, located in the target task’s address space, is the target counter (tgt_cntr).
This counter is incremented after the message has arrived at the target task. The third counter, the com-
pletion counter (cmpl_cntr) is updated on completion of the message transfer. This completion counter is
similar to the target counter except it is located in the origin task’s address space.

The use of LAPI functions may require that the origin task specify pointers to either functions or

addresses in the target task address space. Once the address of the header handler has been determined,



LAPI_Amsend ( handle, target, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
tgt_cntr, org_cntr, cmpl_cntr )

org_cntr udata buffer
B =
cmpl_cntr uhdr tgt_cntr

[] []

process process
I I

- Header Handler
,,,,, hdr_hdl
LAPI_Amsend [~ """ T LAPI Dispatcher | buffer !

cmpl_hdl
@,
Completion Hndlr|
cmpl_hdl

Figure 2: LAPI overview.

jeszesg

the sending process does not necessarily need to know the receive buffer address in the receiver’s address
space since the header handler is responsible for returning the receive buffer address. The header handler
may, for example, interpret the header data as a set of tags which, when matched with requests on the
receiving side, may be used to determine the address of the receive buffer. As we shall see, this greatly
simplifies the task of implementing a two sided communication protocol with a one sided infrastructure.
To avoid deadlocks, LAPI functions cannot be called from header handlers. The completion handlers are
executed on a separate thread and can make LAPIT calls.

LAPI functions may be broadly broken into two classes of functions. The first of these are communi-
cation functions using the infrastructure described above. In addition to these communication functions,
there are a number of utility function provided so that the communication functions may be effectively
used. All the LAPI functions are shown in Table 1. For more information about LAPI we refer the reader
to [14].

4 Supporting MPI on top of LAPI

The protocol stack used for the new MPI implementation is shown in Figure 1c. The PIPE layer is
replaced by the LAPI layer. The MPCI layer used in this implementation is thinner than that of the
native MPI implementation since it does not include the interface with the PIPE layer. In this section, we
first discuss different communication modes defined by MPI and then explain how the new MPCI layer

has been designed and implemented to support MPI on top of LAPI.

The MPI standard defines four communication modes: Standard, Synchronous, Buffered, and Ready
modes [12]. These four modes are usually implemented by using two internal protocols called Eager and
Rendezvous protocols. The translation of the MPI communication modes into these internal protocols in
our implementation is shown in Table 2. The Rendezvous protocol is used for large messages to avoid the
potential buffer exhaustion caused by unexpected messages (whose receives have not been posted by the



Table 1: LAPI Functions.

LAPI Function Purpose

LAPI Init Initialize the LAPT subsystem
LAPI Term Terminate the LAPT subsystem
LAPI Put Data transfer function

LAPI Get Data transfer function
LAPI_Amsend Active message send function
LAPI Rmw Synchronization read-modify-write
LAPI Setcntr Set the value of a counter

LAPI Getcntr Get the value of a counter
LAPI_Waitcntr Wait for a counter to reach a value
LAPI_Address_init Exchange addresses of interest
LAPI Fence Enforce ordering of messages
LAPI Gfence Enforce ordering of messages
LAPI_Qenv Query the environment state
LAPI Senv Set the environment state

time they reach the destination). The value of Eager Limit can be set by the user and has a default value
of 4096 bytes. This value can be tuned based on the size of the buffer available for storing unexpected
early arrival messages and the requirements of the applications.

In Eager protocol, messages are sent regardless of the state of the receiver. Arriving messages whose
matching receives have not yet been posted are stored in a buffer called the Farly Arrival Buffer until the
corresponding receives is posted. If an arriving message finds a matching receive, the message is copied
directly to the user buffer. In the Rendezvous protocol, a Request_to_send control message is first sent to
the receiver which is acknowledged as soon as the matching receive gets posted. The message is sent to

the receiver only after the arrival of this acknowledgment.

Table 2: Translation of MPI communication modes to internal protocols.

[ MPI Communication Mode | Internal Protocol |

Standard if (size < Eager Limit)
Eager else Rendezvous

Ready Eager

Synchronous Rendezvous

Buffered if (size < Eager Limit)
Eager else Rendezvous

The blocking and nonblocking versions of the MPI communication modes have been defined in the
MPI standard. In the blocking version, after a send operation, control returns to the application only after
the user data buffer can be reused by the application. In the blocking version of the receive operation,
control returns to the application only when the message has been completely received into the application
buffer. In the nonblocking version of send operations, control immediately returns to the user once the
message has been submitted for transmission and it is the responsibility of the user to ensure safe reuse
of its send buffer (by using MPI_WAIT or MPI_TEST operations). In the nonblocking version of receive,



the receive is posted and control is returned to the user. It is the responsibility of the user to determine
if the message has arrived. In the following sections we explain how the internal protocols and MPI
communication modes are implemented by using LAPIL.

4.1 Implementing the Internal Protocols

As mentioned in Section 3, LAPI provides one-sided operations such as LAPI_Put and LAPI_Get. LAPI
also provides Active Message style operations through the LAPI_Amsend function. We decided to imple-
ment the MPI point-to-point operations on top of this LAPT active message infrastructure. The LAPI
active message interface (LAPI_Amsend) function provides some enhancements to the active message se-
mantics defined in GAM [19]. The LAPI_Amsend function allows the user to specify a header handler
function to be executed at the target side once the first packet of the message arrives at the target. The
header handler must return a buffer pointer to LAPI where the packets of the message must be reassem-
bled. The ability of the target task of the LAPI_Amsend call to specify the destination address for the
messages being sent, makes it ideally suited for implementing MPI-LAPI. The header handler is used to
process the message matching and early arrival semantics, thereby avoiding the need for an extra copy
at the target side. The header handler also allows the user to specify a completion handler function to
be executed after all the packets of the message have been copied into the target buffer. The completion
handler therefore serves to allow the application to incorporate the arriving message into the ongoing
computation. In our MPI implementation the completion handler serves to update local state of marking
messages complete, and possibly sending control message back to the sender. The LAPI_Amsend there-
fore provides the hooks to allow applications to get control when the first packet of a message arrives
and when the complete message has arrived at the target buffer, making it ideal to be used as a basis for
implementing MPI-LAPI. In Sections 4.1.1 and 4.1.2, we explain how the Eager and Rendezvous protocols

have been implemented.

4.1.1 Implementing the Eager Protocol

In the MPI-LAPI implementation, LAPT_Amsend is used to send the message to the receiver (Fig. 3a).
The message descriptions (such as message TAG and Communicator) are encoded in the user header which
is passed to the header handler (Fig. 3b). Using the message description, the posted “Receive Queue”
(Receive_queue) is searched to see if a matching receive has already been posted. If such a receive has been
posted, the address of the user buffer is returned to LAPIT and LAPT assembles the data into the user buffer.
Tt should be noted that LAPT will take care of out of order packets and copy the data into the correct offset
in the user buffer. If the header handler doesn’t find a matching receive, it will return the address of an
“Early Arrival Buffer” (EA_buffer) for LAPI to assemble the message into. (The buffer space is allocated
if needed.) The header handler also posts the arrival of the message into the “Early Arrival Queue”
(EA_queue). If the message being received is a Ready-mode message and its matching receive has not yet
been posted, a fatal error is raised and the job is terminated. If the matching receive is found, the header
handler also sets the function Eager_cmpl_hdl to be executed as the completion handler. The completion
handler is executed, when the whole message has been copied into the user buffer, and the corresponding
receive is marked as complete (Fig. 3c). In order to make the description of the implementation more
readable, we have omitted some of the required parameters of the LAPI functions from the outlines.



(a)

Function Eager_send
LAPI_Amsend(eager_hdr_hdl, msg_description, msg)

end Eager_send
(b)
Function Eager_hdr_hdl(msg_description)
if (matching receive_posted(msg_description)) begin
completion_handler = Eager_cmpl_hdl
return (user_buffer)
end else begin
if (Ready_Mode)

Error_handler(Fatal, “Recv not posted”)
post msg_description in EA_queue
completion_handler = NULL
return (EA _buffer)

endif

end Eager_hdr_hdl
(c)

Function Eager_cmpl_hdl(msg_description)
Mark the msg as COMPLETE
end Eager_cmpl hdl

Figure 3: Outline of the Eager protocol: (a) Eager send, (b) the header handler for the Eager
send and (c) the completion handler for the Eager send.

4.1.2 TImplementing the Rendezvous Protocol

The Rendezvous protocol is implemented in two steps. In the first step a request_to_send control message is
sent to the receiver by using LAPI_Amsend (Fig. 4). The second step is executed when the acknowledgment
of this message is received (indicating that the corresponding receive has been posted). The message is
sent by using LAPI_Amsend the same way the message is transmitted in Eager protocol (Fig. 3a). In the
next section, we explain how these protocols are employed to implement different communication modes
as defined in the MPI standard.

4.2 Implementing the MPI Communication Modes

Standard-mode messages which are smaller than the Eager Limit and Ready-mode messages are sent by
using the Eager protocol (Fig. 5). Depending on whether the send is blocking or not, a wait statement
(LAPI_Waitcntr) might be used to ensure that the user buffer can be reused.

Standard-mode messages which are longer than the Eager Limit and Synchronous-mode messages
are transmitted by using the 2-phase Rendezvous protocol. Figure 6 illustrates how these sends are
implemented. In the non-blocking version, the second phase of the send is executed in the completion
handler which is specified in the header handler corresponding to the active message sent for acknowledging

the Request_to_send message as shown in Figure 7.



(a)
Function Request_to_send
LAPI_Amsend(Request_to_send hdr_hdl,
msg_description, NULL)

end Request_to_send
(b)
Function Request_to_send_hdr_hdl(msg_description)
if (matching receive_posted(msg_description)) begin
completion_handler = Request_to_send_cmpl_hdl
return (NULL)
end else begin
post msg_description in EA queue
completion_handler = NULL
return (NULL)
endif

end Request_to_send_hdr_hdl
(c)

Function Request_to_send_cmpl hdl(msg_description)

LAPI_Amsend(Request_to_send_acked_hdr_hdl,
msg-description, NULL)

end Request_to_send_cmpl_hdl

Figure 4: Outline of the first phase of the Rendezvous protocol: (a) Request to Send, (b) The
Header handler for the request to send and (c) the completion handler for the request to send.

Buffered mode messages are transmitted using the same procedure as used for sending nonblocking
standard messages. The only difference is that messages are first copied into a user specified buffer (defined
by MPI Buffer_attach). The receiver informs the sender when the whole message has been received so

that the sender can free the buffer used for transmitting the message (Figure 8).

Figure 9 shows how blocking and non-blocking receive operations are implemented. It should be
noted that in response to a Request_to_send message, a LAPI_Amsend is used to acknowledge the request.
When this acknowledgment is received at the sender side of the original communication, the entire message
will be transmitted to the receiver. If the original send operation is a blocking send, the sender is blocked
until the Request_to_send message is marked as acknowledged and the blocking send will send out the
message. If the original message is a nonblocking send, the message is sent out in the completion handler
specified in the header handler of Request_to_send_acked (Fig. 7). When a message is found marked as
COMPLETE, if the message has been stored in the EA buffer, message will be copied into the user buffer.

4.3 A Closer Look at the Implementation of MPI_Send and MPI_Recv

In this section, we examine how the procedures discussed in Section 4.2 are used to implement two major
MPI communication primitives: MPI_Send and MPI Recv. We also discuss the sequence of actions taken

at the sending and receiving tasks in detail. For clarity, we present the details of MPI_Send for messages

10



Function StndShort_ready_send

Eager_send
if (blocking)
Wait until Origin counter is set

end StndShort_ready send

Figure 5: Outline of the standard send for messages shorter than the Eager Limit and the ready-
mode send.

Function StndLong sync_send

Request_to_send

if (blocking) begin
Wait until request_to_send is acknowledged
Eager_send
Wait until Origin counter is set

endif

end StndLong sync_send

Figure 6: Outline of the standard send for messages longer than the Eager Limit and the
synchronous-mode send.

shorter than the Eager Limit and other messages separately.

Figure 10 illustrates how the MPI_Send function is implemented for messages shorter than the Eager
Limit. MPI_Send calls the Eager_send routine. The Eager_send routine uses a LAPI_Amsend call to send
the message to the destination task. The corresponding header handler routine at the destination is set
to be the Eager hdr_hdl routine. The message description (which consists of information such as the
communicator, tag, and the sender rank in the communicator) is also sent with the message to be passed
to this header handler. When the message arrives at the destination task, Eager_hdr_hdl is executed. By
using the message description passed to this routine, the queue of posted receives is searched to see if a
matching receive has been already posted. If a matching receive is found, the address of the user buffer
into which the message should be copied is returned to the LAPI subsystem. Otherwise, the address of
an EA buffer is returned and an entry in the EA_queue is created for this message. The Eager_cmpl_hdl
routine is set to be executed as the completion handler. The buffer address returned from the header
handler is used by the LAPI communication subsystem to copy the data. After the whole message has
been copied (into the user buffer or an early arrival buffer) Eager_cmpl_hdl is executed. The only action
taken in this completion handler is that the message is marked as COMPLETE (such that the matching
receive can detect this condition).

Figure 11 illustrates how the MPI _Send function is implemented for messages whose size is greater
than or equal to the Eager Limit. For these messages, MPI Send calls the function Request_to_send to
initiate the first phase of the Rendezvous protocol. The Request_to_send routine uses a LAPI_Amsend
call to send the description of the message to the destination task. It should be noted that the user data

is not being sent in this message. The header handler to be executed at the destination task is set to

11



Function Request_to_send_acked_hdr_hdl
if (blocking(msg_description))

mark the request as acknowledged
else
completion_handler =
Request_to_send_acked_cmpl hdl

end Request_to_send_acked_hdr_hdl
Function Request_to_send_acked_cmpl_hdl
Eager_send

end Request_to_send_acked_cmpl_hdl

Figure 7: Outline of receive for messages sent using the Rendezvous protocol.

Function Buffered send
Copy the msg to the attached buffer
if (msg-size < EagerLimit)
Eager_send
else

Request_to_send

end Buffered send

Figure 8: Outline of the buffered-mode send.

Function Receive

if (found_matching msg(EA_queue, msg_description))
if (request_to_send) begin
LAPI_Amsend(Request_to_send_acked,
msg_description, NULL)
endif
else
Post the receive in Receive_queue
if (blocking)
Wait until msg is marked as COMPLETE
if (this_msg_in_EA _buffer)
Copy the msg from the EA buffer to the user buffer

end Receive

Figure 9: Outline of receive for messages sent by the Eager protocol.

12



Sending Task Receiving Task

MPI_Send (data, msg_description)
Eager_send

LAPI_Amsend
(hdr_hdl = Eager_h_M
uhdr = msg_description, Eager_hdr_hdl (msy_description)

udata = data
: if amatching recv is posted
return user buffer address
else
dlocate early arrival buffer
return early arrival buffer address
cmpl_hdl = Completion Handlerl

Copy the data (done by LAPI)

Completion_Handler1
mark the message as COMPLETE

Figure 10: Outline of MPI_Send and the sequence of actions taken at the sending and receiving
tasks when the message size is less than the Eager Limit.

the Request_to_send_hdr_hdl routine. When this routine is executed at the destination task, the posted
messages queue is searched for a matching receive. If a matching receive is found, an acknowledgment
is sent to the sender task. However, since calling LAPI functions in header handlers is not allowed, the
completion handler needs to perform this operation. Therefore, the Request_to_send_cmpl_hdl completion
handler is set to be executed as the completion handler. Since there is no data to be copied, a NULL
pointer is returned to the LAPI subsystem. The Request_to_send_cmpl_hdl sends the acknowledgment by
using a LAPI_Amsend call. When this acknowledgment arrives at the sender task, the user data is sent
using a method similar to the one used for sending short messages. In cases where no matching receive
is found, an entry in the EA_queue is created for the message. Since no other action needs to be taken
and the completion handler and buffer address returned by the header handler are NULL. In these cases,
the acknowledgment is sent to the sender task when a matching receive get posted. This point becomes

clearer when MPI_Recv is discussed.

As illustrated in Fig. 12, whenever MPI Recv is called, the EA _queue is searched for a matching
message. If a message with matching descriptions is not found, a receive is posted (i.e., an entry in
the Receive_queue with the description of the message is created). If a matching message is found, the
description of the received message is checked to see if the received message is a Request_to_send message.
If that’s the case, an acknowledgment is sent back to the sender task by using a LAPI_Amsend call to
initiate the second phase of the Rendezvous protocol at the sending task. In all cases, the status of the
message is checked until it is marked as COMPLETE. If the message has been received in an EA _buffer,
it is copied into the user buffer.

13



Sending Task Receiving Task

MPI_Send (data, msg_description)

Request_to_send
LAPI_Amsend ~ _ _
(hdr_hdi = "‘\\
u@?jﬁigjﬁﬁgﬂﬂrj“d' ’ "M Request_to send_hdr_hdl  (msy description)
udata = Null) if amatching recv is posted
cmp_hdl = Completion_Handler2
else

post an early arrival with RequestToSend mark
cmpl_hdl = NULL

_ - Request_to_send_cmpl_hdl
.- . send an OKToSend to sender |

LAPI_Amsend

(dat) \

Figure 11: Outline of MPI _Send and the sequence of actions taken at the sending and receiving
tasks when the message size is equal to or greater than the Eager Limit.

Receiving Task

MPI_Recv (user_buffer, msg_description)

if found a matching message
if the message is a Request_to_send message
send an acknowledgment message to the sender
endif /* Rendezvous*/
else
post the receive
wait until the message is marked as COMPLETE
if messageisin EA_buffer
copy the message to the user buffer

Figure 12: Outline of MPI _Recv.

14



5 Optimizing the MPI-LAPI Implementation

In this section we first discuss the performance of the base implementation of MPI-LAPI which is based
on the description outlined in Section 4. After discussing the shortcomings of this implementation, we

present two methods to improve the performance of MPI-LAPI.

5.1 The Base MPI-LAPI

We compared the performance of our base implementation with that of LAPI itself. We measured the
time to send a number of messages (with a particular message size) from one node to another node. Each
time the receiving node would send back a message of the same size, and the sender node will send a
new message only after receiving a message from the receiver. The number of messages being sent back
and forth was long enough to make the timer error negligible. The granularity of the timer was less than
a microsecond. LAPI Put and LAPI Waitcntr were used to send the message and to wait for the reply,
respectively. The time for the MPI-LAPI implementation was measured in a similar fashion. MPI_Send
and MPI_Recv were the communication functions used for this experiment. It should be noted that in
all cases, the Rendezvous protocol was used for messages larger than the Eager Limit (4K bytes). Figure
13 shows the measured time for messages of different sizes. We observed that message transfer time of
the MPI-LAPI implementation was too high to be attributed only to the cost of protocol processing like

message matching which are required for the MPI implementation but not for the 1-sided LAPI primitives.

16384 T T T T T T T T

8192  MPI-LAPI Base —<— =
RAW LAP| —+-
4096 2
2048 |- 4
1024 | .
512 | 4

256 | A i

Time (microsec)
EN

128 | ]
64 [ A N

32k ju,/*—»jv/' |

16 1 1 1 1 1 1 1 1
4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (byte)

Figure 13: Comparison between the performance of raw LAPI and MPI-LAPI.

5.2 MPI-LAPI with Counters

Careful study of the design and profiling of the base implementation showed that the cost of thread context
switching required from the header handler to the completion handler was the major source of increase
in the data transfer time. It should be noted that completion handlers are executed on a separate thread
(Section 3) in LAPI. To verify this hypothesis, we modified the design such that we do not require the

15



execution of completion handlers. As described in Section 4, when the Eager protocol is used, the only
action taken in the completion handler is marking the message as completed (Fig. 3) such that the receive
(or MPI_WAIT or MPI_TEST) can recognize the completion of the receipt of the message. LAPI provides a
set of counters to signal the completion of LAPI operations. The target counter specified in LAPT_Amsend
is updated (incremented by one) after the message is completely received (and the completion handler,
if there exist any, has executed). We used this counter to indicate that message has been completely
received. However, the address of this counter which resides at the receiving side of the operation should
be specified at the sender side of the operation (where LAPI_Amsend is called). In order to take advantage
of this feature, we modified the base implementation to use a set of counters whose addresses are exchanged
among the participating MPI processes during initialization. By using these counters we avoided using the
completion handler of messages sent through the Eager protocol. We could not employ the same strategy
for the first phase of the Rendezvous protocol. The reception of the Request_to_send control messages at
the receiving side does not imply that the message can be sent. If the receive has not yet been posted,
the sender cannot start sending the message even though the Request_to_send message has been already
received at the target. The time for the message transfer of this modified version is shown in Figure 14. As
it can be observed, this implementation provided better performance for short messages (which are sent
in Eager mode) compared to the base implementation. This experiment was solely performed to verify

the correctness of our hypothesis.

16384 T T T T T T T T
8192 +  MPI-LAPI Counters —<— £
MPI-LAPI Base -+--- /
4096 |- RAW LAPI -B-- .
2048 | 7
_
) o
9 1024 7
o gy
9 B s _
é 512 P /
qé 256 | // ”,ET( -
= g
128 + T4 7
| B +,>+»»-¢—*’*/+ e
64 - -
sl
=
RE g =P 1
16 1 1 1 1 1 1 1 1

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (byte)

Figure 14: Comparison between the performance of raw LAPI and improved version of MPI-LAPI

5.3 MPI-LAPI Enhanced

The results in Figure 14 confirmed our hypothesis that the major source of overhead was the cost of
context switching required for the execution of the completion handlers. We showed how we can avoid
using completion handlers for messages which are sent in Eager mode. However, we still need to use
completion handlers for larger messages (sent in Rendezvous mode). In order to avoid the high cost
of context switching for all messages, we enhanced LAPI to include pre-defined completion handlers in

the same context. In this modified version of LAPI, operations such as updating a local variable or a

16



remote variable (which requires a LAPI function call), indicating the occurrence of certain events, were
executed in the same context. The results of this version is shown in Figure 15. The time of this version
of MPI-LAPI comes very close to that of the bare LAPI itself. The difference between the curves can be
attributed to the cost of posting and matching receives required by MPI, and also the cost of locking and

unlocking of the data structures used for these functions at the MPI level.

16384 T T T T T T T T
8192 I MPI-LAPI Enhanced —~— o
MPI-LAPI Counters -+
4096 |- MPI-LAP| Base -&-- i
RAW LAPI -

2048

1024

512

256

Time (microsec)

128

T
64

16 1 1 1 1 1 1 1 1
4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (byte)

Figure 15: Comparison between the performance of raw LAPI and different versions of MPI-
LAPL

In the following section, we compare the latency and bandwidth of our MPI-LAPI Enhanced im-
plementation with that of the native MPI implementation. We also explain the difference between the

performance of these two implementations.

6 Performance Evaluation

In this section, we first present a comparison between the native MPI and MPI-LAPI (the Enhanced
version) in latency and bandwidth. Then we compare the results obtained from running the NAS bench-
marks using MPI-LAPT with those obtained from running NAS benchmarks using the native MPI. In all
of our experiments we used a SP system with Power-PC 332MHz nodes and the TBMX adapter. The

Eager Limit was set to 4K bytes for all experiments.

6.1 Latency and Bandwidth

We compared the performance of MPI-LAPI with that of the native MPI available on SP systems. The
time for message transfer was measured by sending messages back and forth between two nodes as described
in Section 5. The MPI primitives used for these experiments were MPI_Send and MPI_Recv. The Eager
Limit for both systems was set to 4K bytes. To measure the bandwidth, we repeatedly sent messages
out from one node to another node for a number of times and then waited for the last message to be

acknowledged. We measure the time for sending these back to back messages and stop the timer when the

17



acknowledgment of the last message is received. The number of messages being sent is large enough to
make the time for transmission of the acknowledgment of the last message negligible in comparison with
the total time. For this experiment we used MPI Isend and MPI Irecv primitives.

Figure 16 illustrates the time of MPI-LAPT and the native MPI for different message sizes. The time
of MPI-LAPI for very short messages is slightly higher than that of the native MPI. This increase is in
part due to the extra parameter checking by LAPI which, unlike the internal Pipes interface, is an exposed
interface. The difference between the size of the packet headers in these two implementations is another
factor which contributes to the slightly increased latency. The size of headers in the native MPI is 16
bytes, and the size of headers for MPI-LAPT is 48 bytes. It can be also observed that for messages larger
than 256 bytes, the latency of MPI-LAPI becomes less than that of the native MPI. An improvement
of up to 17.3% was measured. As mentioned earlier, unlike the native implementation of MPI, in the
MPI-LAPI implementation messages are copied directly from the user buffer into the NIC buffer and vice
versa. Avoiding the extra data copying helps improve the performance of the MPI-LAPI implementation.

4096 T T T T T T T

MPI-LAPI Enhanced ——
2048 |- Native MPI -+ _|

1024

512

256

128

Time (microsec)

64

32 4

16 1 1 1 1 1 1 1
4 16 64 256 1024 4096 16384 65536 262144
Message Size (byte)

Figure 16: Comparison between the performance of the native MPI and MPI-LAPI.

The obtainable bandwidth of the native MPI and MPI-LAPI is shown in Figure 17. It can be seen
that, for a wide range of message sizes, the bandwidth of MPI-LAPI is higher than that of the native
MPIL. For 64K byte messages, MPI-LAPI achieves a bandwidth of 83.35M B/sec which indicates a 20.9%
improvement in comparison with the 68.93M B/sec bandwidth obtained by using the native MPI.

For measuring the time required for sending messages from one node to another node in interrupt
mode, we used a method similar to the one used for measuring latency. The only difference was that the
receiver would post the receive (using MPI Irecv) and check the content of the receive buffer until the
message has arrived. Then it would send back a message with the same size. The results of our mea-
surements are shown in Figure 18. It can be seen that MPI-LAPI performs consistently and considerably
better than the native MPI implementation. For short messages of 4 bytes an improvement of 35.8% is
observed. The native MPI performs poorly in this experiment. One reason behind the poor performance
of the native MPI is the hysteresis scheme used in it. In the interrupt handler of the native MPI, the

interrupt handler waits for a certain period of time to see if more packets are coming to avoid further

18



128

64

32

16

Bandwith (MB/sec)

0.5

0.25

0.125 L

MPI-LAPI Enhanced ——
Native MPI —+-

64 256

1024 4096 16384 65536

Message Size (byte)

Figure 17: Comparison between the performance of the native MPI and MPI-LAPI.

4096

2048

1024

512

Time (microsec)

256

128 |

64

MPI-LAPI Enhanced ——
Native MPI ,i,,

64 256

1024 4096 16384 65536 262144

Message Size (byte)

Figure 18: Comparison between the performance of the native MPI and MPI-LAPI in interrupt

mode.

interrupts. If more are coming then they increase the time the interrupt handler waits in the loop. The

value of this waiting period can be set by the user. LAPI does not use any such hysteresis in its interrupt

handler and thus, provides better performance.

6.2 NAS Benchmarks

In this section we present the execution times of programs from the NAS benchmarks for the native
MPI and MPI-LAPI. NAS Parallel Benchmarks (version 2.3) consist of eight benchmarks written in MPI.
These benchmarks were used to evaluate the performance of our MPI implementation in a more realistic

environment. We used the native implementation of MPI and MPI-LAPI to compare the execution times

19



of these benchmarks on a four-node SP system. The benchmarks were executed several times. The best

execution time for each application was recorded.

As presented in Table 3, the MPI-LAPI performs consistently better than the native MPI. Improve-
ments of 1.9%, 4.1%, 4.6%, 5.1% and 13.8% were obtained for LU, IS, CG, BT and FT benchmarks,
respectively. The percentages of improvement for EP, MG, and SP were less than 1.0%.

Table 3: The percentage of improvement for NAS Benchmarks

| NAS Benchmark | Improvement(%) |

BT 5.1
CG 4.6
EP 0.1
FT 13.8
IS 4.1
LU 1.9
MG 0.3
SP 0.0

7 Related Work

Previous work on implementing MPI on top of low-level one-sided communication interfaces include (a) the
effort at Cornell in porting MPICH on top of their GAM (generic active message) implementation on the
SP [4], and (b) the effort at University of Illinois in porting MPICH on top of the FM (fast messages)
communication interface on a workstation cluster connected with the Myrinet network [11]. In both cases
the public domain version of MPI (MPICH [8]) has been the starting point of these implementations.
In the MPI implementation on top of AM, short messages are copied into a retransmission buffer after
they are injected into the network. Lost messages are retransmitted from the retransmission buffers. The
retransmission buffers are freed when a corresponding acknowledged is received from the target. Short
messages therefore require a copy at the sender side. The other problem is that for each pair of nodes in the
system a buffer should be allocated which limits scalability of the protocol. MPI-LAPI implementation
avoids these problems (which degrade the performance) by using the header handler feature of LAPI.
Unlike MPI-LAPI, the implementation of MPI on AM described in [4] does not support packet arrival
interrupts which impacts performance of applications with communication behavior that is asynchronous.
In the implementation of MPI on top of FM [5, 11], FM was modified to avoid extra copying at the sender
side (gather) as well as the receive side(upcall). FM has been optimized for short messages.

MPT on the - WAY [9] is another available implementation of the MPI standard. However, in this
implementation the emphasis has been on features such as authentication and multimethod communication
rather than the pure performance of the implementation. MPI-BIP is another implementation of the MPI
standard on top of BIP [13]. BIP is an API designed, and implemented for the Myrinet network. BIP
ensures reliable and ordered transmission of messages in the absence of network fault.

20



8 Conclusion Remarks and Future Work

In this paper, we have presented how the the MPI standard is implemented on top of LAPI for the IBM SP
system. The details of this implementation and the mismatches between the MPI standard requirements
and LAPIT functionality have been discussed. We have also shown how LAPI can be enhanced in order
to make the MPI implementation more efficient. The flexibility provided by having header handlers and
completion handlers makes it possible to avoid any unnecessary data copies. The performance of MPI-
LAPI is shown to be very close to that of bare LAPI and the cost added because of the MPI standard
semantics enforcement is shown to be minimal. MPI-LAPI performs comparably or better than the native
MPTin terms of latency and bandwidth. MPI-LAPIT also outperforms the native MPI for NAS benchmarks.

The performance of MPI-LAPI is much better than that of the native MPI in interrupt mode. We
expect to see a more significant improvement in the execution time of irregular applications. We plan to
gather the results of running irregular applications using MPI-LAPI (i.e. HPC benchmarks). We also plan
to implement MPI data types which have not been implemented yet. The complexity of this task is to
efficiently deal with non-contiguous data. The HAL layer already provides a mechanism for copying the
user data to the network send buffers from different locations. This mechanism can be extended such that
non-contiguous data is copied directly into the network send buffers or from the network receive buffers
to the user buffers.

Acknowledgments

We would like to thank several members of the CSS team: William Tuel and Robert Straub for their
help in providing us details of the MPCI layer, and Dick Treumann for helping with the details of the
MPT layer. We would also like to thank Kevin Gildea, M. T. Raghunath, Gautam Shah, Paul DiNicola,
and Chulho Kim from the LAPT team for their input and the early discussion which helped motivate this
project.

Disclaimer

MPI-LAPI is not a part of any IBM product and no assumptions should be made regarding its availability
as a product.

References

[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M.Snir. SP2 System Archi-
tecture. IBM Systems Journal, 34(2):152-184, 1995.

[2] M. Banikazemi, R. K. Govindaraju, R. Blackmore, and D. K. Panda. Implementing Efficient MPI
on LAPI for IBM RS/6000 SP Systems: Experiences and Performance Evaluation. In Proceedings of
the 13th International Parallel Processing Symposium, pages 183-190, April 1999.

[3] J. Bruck et al. Efficient Message Passing Interface (MPI) for Parallel Computing on Clusters of
Workstations. Journal of Parallel and Distributed Computing, pages 19-34, Jan 1997.

21



[4]

[5]

[7]

[8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Chang, G. Czajkowski, C. Hawblitzel, and T. V. Eicken. Low Latency Communication on the
IBM RISC System/6000 SP. Supercomputing 96, 1996.

A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova. High Per-
formance Virtual Machines (HPVM): Clusters with Supercomputing APIs and Performance. In
Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, March
1997.

D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware-Software Approach.
Morgan Kaufmann, March 1998. To appear.

J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach. The
IEEE Computer Society Press, 1997.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation of
the MPI, Message Passing Interface Standard. Technical report, Argonne National Laboratory and
Mississippi State University.

J. G. I. Foster and S. Tuecke. MPI on the -WAY: A Wide-Area, Multimethod Implementation of the
Message Passing Interface. In Proceedings of the Second MPI Developer’s Conference, pages 10-17,
1996.

IBM. PSSP Command and Technical Reference - LAPI Chapter. IBM, 1997.

M. Lauria and A. Chien. MPI-FM: High Performance MPI on Workstation Clusters. Journal of
Parallel and Distributed Computing, pages 4-18, Jan 1997.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar 1994.

L. Prylli and B. Tourancheau. BIP: A New Protocol Designed for High Performance Networking on
Myrinet. In Proceedings of the International Parallel Processing Symposium Workshop on Personal
Computer Based Networks of Workstations, 1998. http://lhpca.univ-lyonl.fr/.

G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju, K. Gildea, P. DiNicola,
and C. Bender. Performance and Experience with LAPI - a New High-Performance Communication
Library for the IBM RS/6000 SP. In Proceedings of the International Parallel Processing Symposium,
March 1998.

M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea. The communication software and parallel
environment of the IBM SP2. IBM Systems Journal, 34(2):205-221, 1995.

C. B. Stunkel, D. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao. The SP1 High Performance
Switch. In Scalable High Performance Computing Conference, pages 150-157, 1994.

C. B. Stunkel, D. G. Shea, B. Abali, et al. The SP2 High-Performance Switch. IBM System Journal,
34(2):185-204, 1995.

V.S. Sunderam. PVM: A Framework for Parallel and Distributed Computing. Concurrency: Practice
and Ezperience, 2(4):315-339, December 1990.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In International Symposium on Computer Architecture,
pages 256266, 1992.

H. Zhou and A. Geist. LPVM: A Step Towards Multithread PVM. Technical report, Oak Ridge
National Laboratory, 1995.

22



