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I. INTRODUCTION

Scientific computing is credited for many of the technological breakthroughs of our generation. It is used in
fields ranging from drug discovery, aerospace, weather prediction to seismic analysis and many others. Scientific
computation often deals with very large amounts of data and its algorithms need to compute results from
mathematical models. Due to its compute and data intensive nature, these applications are often parallel, i.e.
they perform calculations simultaneously on multiple computers.

The TOP500 list [2] ranks the top supercomputing sites across the world. Recently, top systems have crossed
the Petaflop (1015 floating point operations) barrier. It is expected that Exaflop (1018) levels will be reached by
the turn of the decade. This fast growth in the HPC field is being sustained by the low costs that are afforded by
commodity components. Commodity components include general purpose processors from Intel, AMD, and IBM;
GPGPUs from NVIDIA etc.; I/O buses such as PCI express and interconnection networks such as InfiniBand.

As machines grow ever larger and more powerful, the entire networking stack and application stack needs
to evolve. An underlying design principle in HPC is to expose, not hide, system features that lead to better
performance. However, as system complexity grows, this must be done in a manner that does not overwhelm
application developers with detail.

In order to keep scaling applications on increasingly more powerful systems, it is imperative to explore new
architectures from system point of view and new programming paradigms from application point of view. In
this article we explore the co-design approach to taking advanced features from commodity network such as
InfiniBand, incorporating the design into a state-of-the-art MPI communication library and finally modifying the
applications to leverage these new features.

A. Major Bottlenecks in Continued Scaling of Applications
In practice, parallel applications experience additional overheads of messaging. One of the costs is due to un-

necessary synchronization of processors (sending process must ensure that the receiving process has successfully
received the message). The over-synchronization problem can be solved by adopting novel programming model
concepts, such as, one-sided communication. In one-sided communication space to store messages is allocated
before the actual exchange takes place.

Another factor is the overhead from processors communicating in groups (collective communication). Collective
communication often involves large volumes of data and communication schedule to optimize usage of the network.
While communication scheduling yields better utilization of the network, one delayed process may delay all
other processes in the collective operation. Additionally, performing the communication scheduling tasks, such as
waiting for messages and forwarding them leads to lost processor cycles. During these tasks, the main CPU cannot
perform any useful work, thus lowering overall efficiency. With the help of advanced and intelligent networks,
the communication schedule and progress tasks can be offloaded to the network adapter, freeing up the CPU for
useful tasks.



At the same time, if all of the major components of the system architecture, messaging libraries and end
applications evolved separately, the end result will be a loosely coupled system. Performance would then be
bounded by the weakest link. It is important that these components are ”co-designed” to extract the maximum
performance from a system.

II. BACKGROUND

A. InfiniBand Network Architecture
InfiniBand [1] is a very popular switched interconnect standard being used by over 40% of the Top500

Supercomputing systems [2]. Current generation InfiniBand network cards and switches with QDR speed can
deliver 32 Gbps end-to-end bandwidth and about 1-1.5 µsec latency.

One of the major features of InfiniBand is Remote Direct Memory Access (RDMA). Using RDMA one process
can remotely read or write memory contents of another process without any involvement of the remote processor.
This feature is very powerful and when used intelligently in communication library design can provide benefits
of reduced synchronization requirements in addition to pure latency benefits. The ConnectX-2 network interface
is the latest InfiniBand adapter from Mellanox. Along with all the standard InfiniBand features, it offers a new
network offloading feature called the CORE-Direct. Using this feature, arbitrary lists of send, receive and wait
operations can be created. These lists can then be posted onto a work-request queue of the network adapter.
Then, the network interface executes the tasks without involvement of the host processor. Using such task-lists,
non-blocking collective operations may be designed by upper-level libraries.

B. The Message Passing Interface: MVAPICH2 High-Performance Design for InfiniBand
MPI has been the dominant parallel programming model for the past couple of decades. It has been widely

ported and several open-source implementations have been made available. It has achieved very good performance
and scalability. As a result, all modern super-computers support it. InfiniBand offers a low-level verbs interface
with several types of Queue Pairs, with varying levels of services. This enables upper-level software, such as MPI
implementations, to design flexible and high-performance connection management, buffer management, coalescing
strategies, etc.

MVAPICH2 [8] is a high-performance implementation of MPI-2 standard on InfiniBand, Internet Wide Area
RDMA Protocol (iWARP) and RoCE (RDMA over Converged Ethernet). The internal design of MVAPICH2
has been systematically designed to achieve very good scalability by exploiting various InfiniBand features, such
as Unreliable Datagrams, Shared Receive Queues (SRQ), and eXtended Reliable Connections (XRC) along with
connection management strategies such as on-demand connections and buffering strategies for message coalescing
to improve memory efficiency. All of these optimizations have been combined into one unified runtime. To the
best of our knowledge, this is the most scalable runtime on InfiniBand that offers high-performance and is open-
source. Over the last ten years, MVAPICH2 has been used as a state-of-the-art MPI for research in communication
runtimes. It has also been used as a production MPI library on a large number of InfiniBand clusters around the
world.

C. Parallel Scientific Applications
Scientific applications employ a wide-range of numerical techniques. In our work, we used two applications

that use two different techniques: finite difference methods and Fourier transforms. These are described below.
1) AWP-ODC: The Anelastic Wave Propagation code by Olsen, Dey and Cui, AWP-ODC, is a community

model [7] used by researchers at the Southern California Earthquake Center (SCEC). AWP-ODC solves the
3D velocity-stress wave equation explicitly by a staggered-grid Finite Difference (FD) method. The volume
representing the ground area to be modeled is decomposed into 3D rectangular sub-grids to parallelize the code.
Each processor is responsible for performing stress and velocity calculations for its portion of the grid, as well as
applying boundary conditions at the external edges of the volume if its sub-grid is on the boundary. Ghost cells,
comprising a two-cell-thick padding layer, manage the most recently updated wave-field parameters exchanged
from the edge of the neighboring sub-grids. Some of the most detailed simulations to date of earthquakes along
the San Andreas fault were carried out using this code, including the well-known TeraShake, SCEC ShakeOut
simulations. This application was a finalist for the Gordon Bell Prize in 2010 [3].



2) P3DFFT: The Parallel Three-Dimensional Fast Fourier Transforms (P3DFFT) library [10] from the San
Diego Supercomputer Center (SDSC) is a portable, high performance, open source implementation based on the
MPI programming model. It has been used in Direct Numerical Simulation (DNS) turbulence applications [4].
P3DFFT leverages the fast serial FFT implementations of either IBM’s ESSL or the FFTW library for efficient 1D
FFT calculation. The FFT computations require two costly MPI Alltoall communication operations to perform
matrix transpose operations. As shown in [6], it is possible to re-structure the P3DFFT library to leverage our
proposed implementation of the MPI Ialltoall operation.

III. CO-DESIGNING SCIENTIFIC APPLICATIONS WITH MPI LIBRARY

In this Section we describe our approach towards co-designing applications with MPI library. First, we discuss
the enhancements to the MVAPICH2 library to leverage novel network features. Then, we describe the changes
to applications to leverage the improved MVAPICH2 MPI library. Our overall co-design approach is described in
Figure 1.

A. Designing the MPI Library with Novel Network Features
In this Section we describe our enhancements to the MPI library to incorporate novel network features. The

network layer provides new features such as RDMA, Offload, Loop-back that can be leveraged in the MPI
layer as shown in Figure 1. Additionally, modern multi-core computing platforms also provide several additional
features for optimal data transfer among the cores within a node. These features also need to be exploited for
best performance. The following sub-sections describe the design of two important MPI enhancements that utilize
these features.
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Fig. 1. Co-design Approach for MPI Library, Network and Scientific Applications

1) Improving One-sided Communication with RDMA: The one-sided model in MPI aims at reducing synchro-
nization overheads that are inherent to communication using send/receive. Each process exposes a region of its
memory (a window) to all the other processes in its communication group. Every process can then directly read
from, write to or update window memory at any other process. All the parameters required for communication
are provided by the origin process and does not require any intervention from the target. The communication
operations are non-blocking in nature allowing for the data transfer to proceed asynchronously while the processor
is free to do other useful work. The semantics of one-sided communication form a perfect match with the RDMA
operations offered by the InfiniBand network. For example, an MPI Put (write to a window) can be directly
mapped on to an RDMA Write call by the MPI library. The asynchronous nature of both RDMA operations and
MPI Put allow for efficient computation and communication overlap [5].

The issue and completion of one-sided communication calls is controlled through synchronization operations.
Though, all the communication operations require the participation of the origin process alone, synchronization op-
erations can either be active (participation of both origin and target) or passive (participation of origin only). Passive
synchronization is provided through MPI Win lock and MPI Win unlock calls. This mode of synchronization can
be done only in a point-to-point fashion i.e., a process has to individually lock and unlock window at each process



it wants to communicate with. This leads to inefficiencies in applications which have a fixed communication pattern
that involves multiple target processes. MPI Win fence is an example of active synchronization with collective
semantics which requires the participation of all processes in the communicator. A flexible mode of active
synchronization is provided through MPI Win post, MPI Win wait, MPI Win start and MPI Win complete
calls. Using these calls, only a sub-group of processes in the communicator are allowed to synchronize. This
leads to better performance, particularly in the case of applications where a process communicates only with a
small set of processes, for example, its neighbors in the process grid. One of the applications we consider in this
article, AWP-ODC, is a good use-case.

2) Designing Non-Blocking Alltoall Exchange with Collective Offload: The Alltoall Personalized exchange is
the most communication intensive collective operation in the MPI-2.2 Standard. With N processes, the latency
of a large message Alltoall operation is proportional to N2 and this significantly affects the performance and
scalability of various scientific applications. A fruitful strategy to improve application performance could be to
design a high performance, non-blocking implementation for the Alltoall exchange, which may be leveraged by
applications to overlap the Alltoall communication with computation. It is possible to use host-based approaches
to design non-blocking collectives (libNBC) [12]. However, such methods require the host processor to progress
the collective operation and this directly limits the overlap and is also not very portable.

MPI libraries can leverage the network offload feature in the ConnectX-2 InfiniBand adapter to design non-
blocking collectives. However, with the current ConnectX-2 interface, the size of the task-lists that a process can
post to the adapter is limited and this directly affects the scalability of collective operations, such as MPI Alltoall.
To overcome this limitation, we divide the entire Alltoall operation across multiple task-lists and we rely on a light-
weight thread to post these task-lists. Since the adapter can execute the task-lists independently, the progress thread
is required to be active for a very short duration, minimizing its contention with the application thread. We create
a separate queue-pair trigger-qp, a completion-queue trigger-cq and a completion channel trigger comp channel,
to allow a process to communicate with itself through InfiniBand’s blocking progression mode. At the end of
a task-list, a process enqueues a send task to itself on the trigger qp. The offload-progress-thread posts the
task-list, calls ibv get cq event on the trigger comp channel and gets scheduled into a sleep state. The adapter
executes the task-list and finally executes the send on the trigger qp. This generates a network interrupt on the
trigger comp channel, signaling the progress-thread to post the next task-list (if any).

B. Re-designing Scientific Applications to Leverage Improved MPI Library
1) Leveraging One-sided Communication in AWP-ODC: AWP-ODC spends most of its execution time to

compute and exchange two variables: velocity and stress. Both velocity and stress have multiple components,
each of which corresponds to a data grid. During the exchange phase, each process sends its data grid boundaries
to the neighbors in all directions and similarly receives boundary data from them. The computation of each of the
individual components within velocity and stress are independent of one another. However, there is a dependency
across the velocity and stress components [11]. This understanding of the data dependencies and our knowledge
of RDMA based one-sided designs in MVAPICH2 forms the basis of our co-designed version of AWP-ODC.

We use MPI-2 one-sided communication primitives to provide communication buffers into which neighboring
processes can directly Put their data. This enables each process to complete the exchange of data without
synchronizing with its neighboring processes. The only synchronization needed is before the point where the
new data is used. In MVAPICH2, the Put operation is mapped directly to RDMA. This helps overlap the transfer
of one component with the computation of others.

Typical commodity compute nodes have 16 to 48 cores on each node. A significant portion of communication
happens intra-node which are carried out over shared memory. The shared memory communication channel requires
the CPU to do the data copies. This does not allow for overlap between the communication and any computation.
Kernel-assisted schemes provide better copy performance but still suffer from the lack of overlap. Technologies
like I/OAT (Input Output Acceleration Technology) provide overlap using a DMA [9]. InfiniBand provides a loop-
back model of communication which allows processes on the same node to communication through the network
adapter. In our design, we use this channel to enable overlap. As the communication is completely hidden under
useful computation, the increased latencies do not have any negative impact on the application performance.

2) Leveraging Collective Offload and Overlap in P3DFFT: The Cooley-Tukey algorithm for FFT used for
1D FFTs is computationally efficient, but the butterfly pattern of memory accesses of this algorithm makes it a
challenge to scale. P3DFFT first performs a 1D FFT along the X dimension, followed by a transpose between the
X and the Y dimensions. The same pattern is then repeated across the Y and the Z dimensions, followed by a 1D



FFT along the Z dimension. The original data array is typically distributed as pencils along the X dimension, with
the Y, Z dimensions being split among processors in rows and columns of the 2D processor grid. There are two
expensive Alltoall operations to transpose data among ROW and COLUMN (COL) communicators. Typically, the
ROW communicator is mapped to cores within a node or adjacent nodes. The COL communicator spans multiple
nodes. In our work, we focus on replacing the MPI Alltoall on the column communicator with MPI Ialltoall.

The FFT routines (forward and back) are re-structured as shown in Figure 2. The loop index j runs over the
variables that need to be transformed. During the j iteration, we overlap the FFT operations and the XY (ROW)
transpose for the j variable with the YZ (COL) transpose of the (j−1) iteration, which relies on the MPI Ialltoall
operation.

1D FFT in x for V1

transpose x and y of V1

1D FFT in y for V1

Initiate y and z transpose with MPI Ialltoall of V1

do Vj = V2 to Vn

1D FFT in x for Vj

transpose x and y of Vj

1D FFT in y for Vj

Initiate y and z transpose with MPI Ialltoall of Vj

Wait for transpose complete for Vj−1

1D FFT in z for Vj−1

enddo
Wait for transpose complete for Vn

1D FFT in z for Vn

Fig. 2. Algorithm for the forward transform in the redesigned multi variable, pipelined, overlapped version.

IV. CO-DESIGN EXPERIMENTS

A. Improvements in AWP-ODC
We first demonstrate the effectiveness of loop-back transfers in overlapping communication and computa-

tion. The AWP-ODC application was run with 48 processes on a pair of AMD Magny-Cours machines (24
processors/node) connected using Quad Data Rate (32 Gbit/s) InfiniBand interconnect. Each process operates
on 128x128x128 element data grids. Results in Figure 3(a) show a 132 second overhead when processes on
a node communicate through shared memory. When the loop-back channel is used, data movement is handled
asynchronously by the network adapter completely overlapping communication with computation. Therefore the
communication time drops to zero while the computation time remains the same. The platform used for our next
experiment, Ranger supercomputer at Texas Advanced Computing Center, is one of the largest InfiniBand clusters
available for open science research. Each node on Ranger contains 16 processors and 32 GB of memory. The
nodes are connected with Single Data Rate (8 Gbit/s) InfiniBand network. With a slower network, minimizing
communication costs is important for efficiency of applications on Ranger. Figure 3(b) compares the performance
of the original and our enhanced versions of AWP-ODC, on 8K processors. Using our overlap design and the
loop-back channel, an improvement of 15% in the total application run-time is observed.

B. Improvements with P3DFFT library
This experiment demonstrates the benefit of collective communication offload to network adapter. It is run on

a 512-core cluster. Each node has eight Intel Xeon cores running at 2.53 Ghz with 12 MB of L3 cache and
12 GB of memory. The nodes are connected through a Quad Data Rate (32 Gbit/s) InfiniBand network. We
used the the test sine kernel to evaluate the benefits of our modified P3DFFT library. In Figure 4, we compare
the application run-times of the baseline blocking version with the library re-designed for overlapped collective
communication using host-based and network-offload-based MPI Ialltoall implementations. We run our test on
128 cores while varing the problem size, N , between 512 and 800. We can see that the kernel with our proposed
MPI Ialltoall consistently performs better than the one with blocking MPI Alltoall by about 10%-23% and the
kernel that uses the non-blocking MPI Ialltoall operation using the host-based approach by about 10%-17%.
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V. CONCLUSION

The field of High Performance Computing (HPC) is forging ahead with complex and high performing system
architectures. It is predicted that by the turn of the decade, we would have surpassed Exaflop level of computing
power. In order to provide balanced system performance, it is necessary to design processor, memory hierarchies
and network architecture and topology in a cohesive manner. At the same time, end applications also need to be
modified to fully leverage the features offered by the system. Our work is a step towards this goal. This article
presented two examples of co-design of communication libraries with network architectures and applications. The
MVAPICH2 MPI library was extended to incorporate support for collective offload through the recently introduced
InfiniBand adapter based offload support. Using these techniques, a seismic simulation application, AWP-ODC
can be sped up by 15% on 8K processor cores and three dimensional Fourier transforms can be improved up to
23% on 128 cores. This study demonstrates the effectiveness of co-designing MPI library and applications. Similar
approaches can be used to co-design other components of the MPI library, components of other programming
models and applications to realize the goal of exascale computing.
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