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Abstract

Message Oriented Middleware (MOM) is a key technol-
ogy in financial market data delivery. In this context we
study the Advanced Message Queuing Protocol (AMQP),
an emerging open standard for MOM communication. We
design a basic suite of benchmarks for AMQP’s Direct,
Fanout, and Topic Exchange types. We then evaluate these
benchmarks with Apache Qpid, an open source implemen-
tation of AMQP. In order to observe how AMQP performs
in a real-life scenario, we also perform evaluations with a
simulated stock exchange application. All our evaluations
are performed over InfiniBand as well as 1 Gigabit Ether-
net networks. Our results indicate that in order to achieve
the high scalability requirements demanded by high perfor-
mance computational finance applications, we need to use
modern communication protocols, like RDMA, which place
less processing load on the host. We also find that the cen-
tralized architecture of AMQP presents a considerable bot-
tleneck as far as scalability is concerned.
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1 Introduction

Message Oriented Middleware (MOM) plays a key role
in financial data delivery. The strength of MOM is that it
allows for communication between applications situated on
heterogeneous operating systems and networks. MOM al-
lows developers to by-pass the costly process of building
explicit connections between these varied systems and net-
works. Instead applications need only communicate with
the MOM. Typical MOM implementations feature asyn-
chronous message delivery between unconnected applica-
tions via a message queue framework. However, there are
prominent MOM implementations that operate without a
queue framework [22].

Advanced Message Queue Protocol (AMQP) originated
in the financial services industry in 2006 [1] [12]} [23].
AMQP is an open standard for MOM communication.
AMQP grew out of the need for MOM system integra-
tion both within and across corporate enterprise boundaries.
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Due to the proliferation of proprietary, closed-standard,
messaging systems such integration is considered challeng-
ing. As such, the primary goal of AMQP is to enable better
interoperability between MOM implementations.

In this paper we evaluate, Apache Qpid, an AMQP com-
pliant, open source, MOM distribution [2]. Our evalua-
tion draws on the Message Passing Interface (MPI) [10]
experience of the Network-Based Computing Laboratory
at the Ohio State University. The MPI standard is used
extensively in the scientific, High Performance Comput-
ing (HPC) arena. Our laboratory’s main software product,
MVAPICH {[11], is an open source adaptation of MPI to
HPC networks such as InfiniBand. As such, we are particu-
larly interested in messaging performance with high speed
interconnects. This paper’s main contributions are:

e The design of a set of benchmarks for AMQP.

e Implementation of these AMQP benchmarks with the
Apache Qpid C++ API, and their evaluation on Infini-
Band and 1 Gigabit Ethernet networks.

¢ Evaluation of a Stock Market Simulation, adapted to
Apache Qpid on these networks.

We designed our benchmarks to evaluate the various
communication models offered by AMQP. Three variables
inherent in any AMQP communication model are the num-
ber of Publishers (senders), the number of Consumers (re-
ceivers), and the Exchange type (message routing engine).
Each of our benchmarks exercises one or more of these vari-
ables. In particular our benchmarks focus on AMQP’s Di-
rect, Fanout, and Topic Exchange types. Furthermore our
benchmarks measure performance for data capacity, mes-
sage rate, and speed.

Our experiments achieved 350 MegaBytes per second
throughput using a basic AMQP Direct Exchange using
[PolB (TCP/IP over InfiniBand). With an increased num-
ber of Consumers receiving messages, we found that the
achievable message rate decreases for all Exchange types.
Further investigation showed that an increased CPU utiliza-
tion creates a performance bottleneck on the AMQP Bro-
ker. In our experiments with SDP (Sockets Direct Protocol
over InfiniBand), we found that due to the low Kernel stack
overhead of SDP, we were able to obtain higher throughput.
With the stock exchange application, using the TCP Nagle
algorithm moderately increased [PoIB performance at high
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message generation rates. However, the algorithm wors-
ens performance at lower message generation rates. Overall
our results indicate the need for better AMQP Broker de-
signs, including a more distributed Broker scheme to allevi-
ate AMQP’s centralized Broker bottleneck. Our results also
indicate the need to use modern communication protocols,
like RDMA, which impose less of a processing load on host
resources.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of AMQP and InfiniBand tech-
nologies. In Section 3, we describe the design of our AMQP
Benchmarks. Section 4 presents the experimental results of
our Benchmark tests. Section 5 describes our tests with a
Stock Market Simulation application. Section 6 overviews
related work. Finally, we summarize our conclusions and
possible future work in Section 7.

2 Background

In this section we provide a brief overview of Advanced
Message Queuing Protocol and InfiniBand.

2.1 Advanced Message Queuing Protocol

Figure 1 shows the general architecture of an AMQP
compliant messaging system. An AMQP messaging sys-
tem consists of three main components: Publisher(s), Con-
sumer(s) and Broker/Server(s). Each component can be
multiple in number and be situated on independent hosts.
Publishers and Consumers communicate with each other
through message queues bound to exchanges within the
Brokers. AMQP provides reliable, guaranteed, in-order
message delivery. We briefly explain the functionality of
each component below.

Publisher/Producer: An application that constructs mes-
sages with AMQP compliant headers. A prominent feature
within the header is a text string known as the Routing Key.

Consumer: An application that receives the messages
from one or more Publishers.

Message Queue: A data structure that stores messages
in memory or on disk. Messages are stored in delivery se-
quence order. A Message Queue is created by a Consumer
and is used exclusively by that Consumer.

Exchange: A matching and routing engine which accepts
messages from Publishers and copies the messages to zero
or more Message Queues.

Binding: A rule which helps the Exchange decide to
which Message Queues (and therefore to which Consumers)
it needs to copy a message. A Consumer typically creates a
Binding at the same time it creates a Message Queue, and
uses the Binding to associate the Queue with an Exchange.
A Binding typically is identified with a text string known as
a Binding Key. An Exchange routes messages by matching
the messages’ Routing Keys against the Queues’ Binding
Keys. Exchanges are classified into types based on the kind
of key matching they perform. Of the Exchange types that
AMQP supports, we evaluate the following: Direct, Fanout,
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and Topic. Details of each Exchange type follow in Section
3.

Virtual Host: A user-defined name space that groups and
identifies a set of Exchanges, Message Queues, and Bind-
ings.

Broker/Server: A server or daemon program that con-
tains one or more Virtual Hosts, Exchanges, Message
Queues, and Bindings.

Broker

Virtual Host

{=]

{ Binding

Message Consumer
Queue A pplication(s)

R

Publisher
Applicaton(s)

Figure 1. The AMQP Architecture
2.2 InfiniBand Architecture

InfiniBand Architecture (IB) [5] is an industry standard
for low latency, high bandwidth, System Area Networks
(SAN). An increasing number of InfiniBand network clus-
ters are being deployed in high performance computing
(HPC) systems as well as in E-Commerce oriented data
centers. IB supports two types of communication mod-
els: Channel Semantics and Memory Semantics. Chan-
nel Semantics involve discrete send and receive commands.
Memory Semantics involve Remote Direct Memory Ac-
cess (RDMA) [18] operations. RDMA allows processes
to read or write the memory of processes on a remote
computer without interrupting that computer’s CPU. Within
these two communication semantics, various transport ser-
vices are available that combine reliable/unreliable, con-
nected/unconnected, and/or datagram mechanisms.

The popular TCP/IP network protocol stack can be
adapted for use with InfiniBand by either the IP over IB
(IPoIB) driver or the Sockets Direct Protocol (SDP) [8].
IPoIB is a Linux kernel modulc than enables InfiniBand
hardware devices to encapsulate IP packets into IB data-
gram or connected transport services. When I[PoIB is ap-
plied, an InfiniBand device is assigned an IP address and
accessed just like any regular TCP/IP hardware device. SDP
contains a kernel module and a software library that allow
applications written with TCP sockets to transparently use
IB without re-writing existing code. During SDP-enabled
execution, an application’s TCP sockets are automatically
replaced with SDP sockets. Although IPoIB and SDP are
similar in purpose, they provide different modes of execu-
tion and in some cases SDP can provide lower latency and
better throughput than IPolB.

3 Design of AMQP Benchmarks

In this section we describe the design of our AMQP
benchmarks which are modeled after the OSU Micro-
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benchmarks for MPI [15]. One thing to note here is that,
unlike the OSU benchmarks, our benchmarks do not as-
sume a direct, one link, point-to-point network connection.
Within AMQP, a message must always traverse the Broker
host in route to the destination Consumer. This incorporates
at least two network links into any message’s travel path.

Three variables inherent in any AMQP operation are the
number of Publishers, the number of Consumers, and the
Exchange type. Each of our benchmarks exercises one or
more of these variables. Furthermore each of our bench-
marks measures performance for data capacity, message
rate, and speed. Data capacity is the amount of raw data
in MegaBytes (MB) that may be transmitted per second, ir-
respective of the number of messages. This is also known
as Bandwidth. Message rate is similar to data capacity, but
measures the number of discrete messages transmitted per
second. Message rate is also known as Throughput. Speed
is the average time one message takes to travel from the
publisher to the consumer. This speed measure is com-
monly referred to as Latency.

3.1 Direct Exchange - Single Publisher
Single Consumer (DE-SPSC) Bench-
mark

This benchmark tests basic Publisher-Consumer mes-
sage transmission across AMQP’s direct exchange type.
This test is analogous to a network point-to-point test. The
direct exchange type provides routing of messages to zero
or more queues based on an exact match between the Rout-
ing Key of the message, and the Binding Key used to bind
the Queue to the Exchange. So the Exchange performs a
text string equality computation for each message.

The Publisher sends out a pre-defined number of mes-
sages, with sizes varying from | Byte to | MegaByte (MB),
to a Direct exchange running on a single Broker host. Once
the Consumer has received the pre-defined number of mes-
sages of a particular size, it sends back a 0 byte reply to
the Publisher. Upon receiving this reply, the Publisher com-
putes the performance metrics for that message size, and
then starts transmitting the next set of messages to the Con-
sumer. (Note: 1o receive reply messages from the Con-
sumer, the Publisher is also a Consumer with its own receive
queue. Unlike the Consumer, the publisher only processes
a small number of these reply messages.)

3.2 Direct Exchange - Multiple Publish-
ers Multiple Consumers (DE-MPMC)
Benchmark

This benchmark tests the scalability of the AMQP archi-
tecture with the Direct Exchange type. Here we use mul-
tiple, independent, Publisher-Consumer pairs. These pairs
simultaneously communicate with each other through the
same Direct Exchange residing on a single Broker host.
This increases text string equality computations, as well as
network connection overhead on the Broker host. The op-
erations of this benchmark are the same as DE-SPSC, just
with a higher number of Publishers and Consumers.
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3.3 Direct Exchange - Ping Pong (DE-
PP) Benchmark

This benchmark tests round trip transmission between a
Publisher-Consumer pair. This test is similar to the sending
of market trade orders and the receipt of order confirma-
tions.

The Publisher sends out a pre-defined number of mes-
sages, with sizes ranging from 1 Byte to | MegaByte (MB),
to a Direct exchange running on a single Broker host. How-
ever after sending a single message, the publisher waits for
a reply from the Consumer. Upon receiving one message
from the Publisher, the Consumer sends a same sized reply
back to the Publisher. When a reply for each sent message
is received, the Publisher computes the performance met-
rics for that message size, and then starts transmitting the
next set of messages to the Consumer.

3.4 Fanout Exchange - Single Publisher
Multiple Consumers (FE-SPMC)
Benchmark

This benchmark tests Fanout Exchange delivery to a
varying number of Consumers. The Fanout Exchange is
similar to the traditional multi-cast model of network trans-
mission. A Fanout Exchange routes messages to all bound
queues regardless of the message’s Routing Key. Therefore
it does not have the text string matching overhead of the
Direct Exchange type.

The Publisher sends out a pre-defined number of mes-
sages, with sizes varying from 1 Byte to | MegaByte (MB),
to a Fanout exchange running on a single Broker host. Upon
receiving a message, the exchange copies the message to all
queues which have been bound by a pre-defined number
of Consumers. Once each Consumer has received the pre-
defined number of messages ol a particular size, it sends
back a reply to the Publisher. After receiving a reply from
all Consumers, the Publisher computes the performance
metrics for that message size, and then starts transmitting
the next set of messages to the Consumers. To understand
how the Fanout Exchange scales, this test may then be re-
peated with an increased number of Consumers.

3.5 Topic Exchange - Single Publisher
Single Consumer (TE-SPSC) Bench-
mark

This benchmark tests Topic Exchange delivery with a
varying amount of Binding Key topics. A Topic Exchange
routes a message to bound queues if the message’s Routing
Key matches a pattern provided by the Binding Key. For
example a Routing Key of “"news.usa” would match a Bind-
ing Key of "news.*”. So the exchange’s Broker host incurs
the computational overhead of text string pattern matching
for each message.

The Publisher sends out a pre-defined number of mes-
sages, with sizes varying from | Byte to | MegaByte (MB),
to a Topic exchange running on a single Broker host. Each
message has the same Routing Key. A pre-defined number
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of Consumers have bound their queues to the Exchange us-
ing different Binding Key patterns. However, only one of
these Binding Keys will pattern match the messages’ Rout-
ing Key. Therefore only one Consumer will receive mes-
sages. Once this Consumer has received the pre-defined
number of messages of a particular size, it sends back a
reply to the Publisher. Upon receiving this reply, the Pub-
lisher computes the performance metrics for that message
size, and then starts transmitting the next set of messages.
To understand the pattern matching overhead incurred by
the Exchange, the number of non-match, Binding Key pat-
terns may be increased. Therefore the Exchange must work
through an increased number of failed pattern matches to
find the one true match.

4 Experimental Results

In this section, we present results from our evaluation of
Apache Qpid over the InfiniBand and 1 Gigabit Ethemet (1
GigE) networks.

Publisher | Server
Applicaton(s) (. (Broker)
- . ) ‘~.A_.
Puhlich e, —_—
P
Applicaton(s) B . Consumer
_ " |Application(s)
: . : S )
Binding
‘ ,| Consumer
Publisher |[.-” Message Application(s)
Applicaton(s) Queue —_

Consumer
Application(s)

¥

Figure 2. Experimental Setup
4.1 Experimental Setup

Figure 2 shows the basic setup which we used to conduct
our tests. We use a cluster consisting of Intel Xeon Quad
dual-core processor host nodes. Each node has 6GB RAM
and is equipped with a 1 GigE Network Interface Controller
(NIC), as well as with an InfiniBand Host Channel Adapter
(HCA). The IB HCAs are DDR ConnectX using Open Fab-
rics Enterprise Distribution (OFED) 1.3 [13] drivers. The
operating system for each node is Red Hat Enterprise Linux
4U4. We used Qpid Version M3 Alpha. We started the Bro-
ker with the “TCP no delay” option and set the maximum
allowed size for any queue to be 4,294,967,295 bytes, which
was the maximum allowed to us by the software. The Qpid
Broker ran with a single default virtual host.

4.2 Basic Performance

To establish the maximum IPoIB performance that we
might achieve in our experimental setup, we first performed
a low-level network test using Socket Benchmarks [20].
This test is independent of AMQP and establishes base-
line network performance. Since the Broker has to service
both the Publisher(s) and Consumer(s) at the same time, the
Socket Benchmarks have each host send and receive pack-
ets to/from the Broker host. This tests how multiple streams
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affect basic performance across the Broker host. Our Socket
Benchmark tests established an average maximum band-
width of 550 MegaBytes per second (MBps) using IPoIB
and 650 MBps using SDP for our experimental setup.

4.3 Benchmark Tests

4.3.1 Direct Exchange - Single Publisher Single Con-
sumer (DE-SPSC) Benchmark

Figures 3 (a), (b) and (c) show the speed and message rates
achieved for varying message sizes using the DE-SPSC
Benchmark over IPoIB, 1 GigE and SDP, respectively. As
we can see, for small messages, [PoIB achieves the best la-
tency. For larger messages, SDP achieves better latency.
SDP requires a larger connection setup time as compared
to [PoIB. As a result, the connection setup time dominates
the total data transfer time for smaller messages resulting in
higher latencies when we use SDP. This behavior of SDP
has been well studied in [3].

A discussion of the results in Figure 3 (d) is included in
the next subsection.

4.3.2 Direct Exchange - Multiple Publishers Multiple
Consumers (DE-MPMC) Benchmark

Figure 4 (a) shows the bandwidth (data capacity) curve with
multiple Publisher-Consumer pairs. The 1 GigE interface
saturates the link early on and hence shows no variation.
For IPoIB, we are able sustain performance up to four si-
multaneous Publisher-Consumer pairs. But, performance
drops drastically as we increase the number of pairs up to
eight.

To gain more insights into this drop in performance, we
looked at the CPU utilization on the Publisher, Consumer
and the Broker while running the DE-MPMC benchmark.
As pointed out in [3], lower CPU utilization is the reason
why SDP is able to maintain performance for larger number
of Publisher-Consumer pairs. Figure 4 (b) shows the nor-
malized CPU utilization with IPoIB for a varying number
of Publisher-Consumer pairs. It is to be noted that our ex-
periments are performed on machines with multiple (8) pro-
cessing cores. Hence, CPU utilization of more than 100% is
not unexpected. As we can see, with an increasing number
of pairs, the CPU utilization on the Broker shows a linear
increase. With the kind of scalability that is expected of
High Performance Finance applications these days, there is
a strong motivation for us to explore better designs for the
Broker, including distributing the functionality of the Bro-
ker among multiple cores/machines.

In this context, modern high performance protocols such
as RDMA, which incurs very low overhead on the host
CPU, will help. Figure 3 (d) compares the MPI level mes-
sage rate achieved over IPoIB as well as IB RDMA. As we
can see, message rates achieved over RDMA are an order
of magnitude higher than what we can achieve using IPoIB.
This coupled with the fact that the communication using
RDMA incurs very low overhead on the host CPU makes
this an ideal choice for the underlying protocol.
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4.3.3 Direct Exchange - Ping Pong (DE-PP) Bench-
mark

Figures 4 (c) and (d) show the Ping Pong latency measured
between one Publisher-Consumer pair for small messages
and for large messages, using IPoIB, 1 GigE and SDP. The
graphs show the same trends as seen in the Section 4.3.1.

4.3.4 Fanout Exchange - Single Publisher Multiple
Consumers (FE-SPSC) Benchmark

Figure 5 (a) shows a comparison of the data capacity ob-
tained over IPoIB and 1 GigE for a fanout factor of 32. Fig-
ures 5 (b), (c), and (d) show the number of messages sent
per second using Fanout Exchange with a varying fanout
factor over IPoIB, 1 GigE and SDP, respectively. The
CPU utilization follows the same trends as seen in the DE-
MPMC benchmark and hence are not included here.

4.3.5 Topic Exchange - Single Publisher Single Con-
sumer (TE-SPSC) Benchmark

Figure 6 (a) shows the bandwidth comparison between
IPoIB, 1 GigE and SDP with 1024 Binding Key patterns in
the Exchange. Figures 6 (b), (¢), and (d) show the message
rate achieved with varying number of Binding Key patterns
over IPoIB, | GigE and SDP, respectively. We can see that
messages per second drops as the number of binding rules
on the Exchange increase.

5 Stock Exchange Simulation Application
and Evaluation

In this experiment we moditied the stock exchange ex-
ample application provided with the open source, ZeroMQ
MOM distribution [25]. Our modifications were confined to
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having the application sending messages in Qpid’s AMQP
framework instead of ZeroMQ’s framework.

5.1 Description

As Figure 7 shows, this application consists of three
components: a gateway, a matching engine, and a statistics
reporter. The gateway produces random, simulated buy and
sell orders. 1t then sends the orders to the matching engine’s
order queue on the Qpid broker. The matching engine reads
orders from the order queue and simulates a functional stock
exchange by matching the prices in buy orders to the prices
in sell orders. An exact price match results in a trade. The
matching engine produces three types of messages which
arc scnt to the gateway’s trade queue: trade confirmations,
order confirmations, and price quotes. Order confirmations
are produced when there is no matching price to make a
trade. Price quotes occur when the stock’s maximum bid or
ask price changes due to trading activity.

During the course of their operation, both the gateway
and the matching engine produce performance measure-
ment messages and send them via Qpid to the statistics re-
porter’s queue. These measurements are taken with a sam-
pling interval, which we set for every 10,000 orders. The
statistic reporter writes these measurement messages to a
file. The gateway produces the following measurements:

1. Orders per second sent from the gateway to the match-
ing engine’s order queue.

(8]

. Sum of trade confirmations, order confirmations, and
quotes received per second from matching engine via
the gateway’s trade queue.

3. Order Completion Time: Time in microseconds be-
tween when an order is sent to the order queue and
when either a trade confirmation or order confirmation
is received from the trade queue.
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The matching engine produces the the following mea-
surements:

1. Orders per second received from the gateway via the
matching engine’s order queue.

2. Sum of trade confirmations, order confirmations, and
quotes sent per second from the matching engine to
the gateway’s trade queue.

5.2 Experimental Setup

For the purposes of our tests, the Gateway, Matching En-
gine, and Statistics Reporter each run on their own indepen-
dent host, with the Qpid Broker running on yet another in-
dependent host. Each component has its own Queue on the
Broker’s Direct Exchange and each Queue is bound with a
unique Routing Key. The application creates order, order
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confirmation, trade, quote, throughput rate, and completion
timestamp message types. Each message type has a differ-
ent sized payload. We counted the number of each message
type created during a typical run and calculated a weighted
average message size of around 9 bytes. The application’s
performance may be tested by varying the number of ran-
dom orders per second created on the gateway. In our tests
we used creation rates of 1000, 2000, 4000, 6000, and 8000
orders/second and created 1,000,000 orders at each rate.
We recorded the resulting measurements at each rate. Be-
yond 8000 orders/second, the application began failing and
would not record a full set of measurements.

5.3 Experimental Results

Figures 8 and 9 show our experimental results. Figure 8
(a) summarizes measurements 1 and 2 from both the gate-
way and matching engine. The lower line shows that mea-
surement 1 for both components is the same. The matching
engine was able to read orders from its order queue at the
same rate as the gateway was able to generate them. The
upper line shows measurement 2 for both components is
the same. The gateway was able to read confirmations and
quotes from its trade queue at the same rate as the matching
engine was able to generate them.

Figure 8 (b) summarizes gateway measurement 3, order
completion time. InfiniBand SDP achieved the best aver-
age order completion times across all order generation rates.
However, Figure 9 (a) shows that SDP utilized a consider-
ably higher amount of CPU on the Broker than the other
network schemes. The other InfiniBand-TCP adaptation,
IPoIB achieved better performance than regular TCP on 1
GigE for all generation rates except 8000 orders/sec. As
shown in Figure 8 (b), IPoIB’s average order processing
time increases drastically at this generation rate. Qur first
attempt to explain this was to look for CPU utilization bot-
tlenecks. However, as Figure 9 shows, IPoIB’s CPU utiliza-
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tion never exceeds 35% on any component.

In an attempt to improve IPoIB performance, we re-ran
our experiments without the "TCP No Delay” option on the
Broker. While this did not not alter the number of mes-
sages at the Qpid application level, it did alter the number
of packets at the the network level. The "TCP No Delay”
option allows a sender to submit packets as fast as possible
to the network. Omitting this option enables TCP’s Nagle
algorithm for all network transmissions. The Nagle algo-
rithm prevents a sender from sending many small packets.
If possible, it forces TCP to wait until there is enough data
to send a full packet. This reduces TCP processing overhead
by reducing the number of packets generated.

Figure 8 (c) shows that the Nagle algorithm reduced
IPoIB’s average order completion from 9300 to 7000 mi-
croseconds at 8000 orders/second. However. the figure
also shows that the Nagle algorithm drastically increased
completion time at 1000 and 2000 orders/second. Seek-
ing explanatory evidence, we re-ran the 1000 and 8000 or-
ders/second experiments, capturing network traffic to and
from the Qpid Broker with the fepdump utility. Table |
shows the results of this experiment. Without the Nagle
algorithm (i.e. running with "TCP No Delay”) each or-
der generation rate produces a high number of small sized
packets. With the Nagle algorithm enabled, the number of
packets decreased and average packet size increased. How-
ever, the average time between packets, which also indi-
cates the time required to build a full packet, also increased.
This did not cause too much delay at 8000 orders/second as
the increased time is still quite small. However at 1000 or-
ders/second, the time between packets is higher. We believe
that this high delay is exacerbated by the inherently slow
1000 orders/second generation rate.
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6 Related Work

A number of vendors offer proprietary products to meet
the demand for MOM applications. Examples include
IBM’s Websphere MQ [4], Microsoft Message Queuing
Server [9], TIBCO’s Rendezvous and Enterprise Messaging
Servers [22], and Progress Software Corporation’s Sonic
MQ [16]. Furthermore Sun Microsystems has incorporated
the Java Message Service (JMS) API into the Java Plat-
form Enterprise Edition [6]. The Standard Performance
Evaluation Corporation (SPEC) has also built a standard
MOM benchmark oriented to JMS called SPECjms2007
[21]. Within the AMQP standard, other open source im-
plementations have emerged in addition to Apache Qpid.
These implementations include OpenAMQ [14] and Rab-
bitMQ [17]. Furthermore, RedHat Enterprise Messaging
uses Qpid as it’s underlying base [19].

The stock exchange simulation application was created
by ZeroMQ, which is another, open source, messaging im-
plementation [24]. ZeroMQ’s evaluation of their appli-
cation resulted in higher performance numbers than ours.
However, there are some differences between our exper-
imental setups. ZeroMQ’s architecture is different than
Qpid’s AMQP architecture. ZeroMQ is more minimal, does
not have central Broker queues, and is optimized for high
throughput of small sized messages. AMQP is a more gen-
eral purpose messaging architecture. Next, the hardware
used in ZeroMQ's cvaluation was purposcfully configurcd
for the stock exchange simulation. For example the gate-
way and matching engine hosts each had two NICs, one
for sending messages and the other for receiving messages.
Furthermore the gateway and matching engine’s NICs were
connected to each other via direct cables without an inter-
mediary switch [25]. Our experimental cluster on the other
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Table 1. Performance of Stock Exchange Simulation: Impact of Nagle Algorithm Delay on IPoIB and

TCP
| Delay Type | Orders/ Sec | Total Packets | Avg Packet Size (bytes) | Avg Time Btw Packets (us) |
Without Nagle | 1000 5,097,597 159 196
8000 4,775,966 170 26
With Nagle 1000 2,269,111 359 440
8000 2,277,870 358 55

hand is more general purpose.

Maheshwari and Pang [7] have also published bench-
marks for MOM. Their benchmarks are similar to ours in
that they test the interaction between varying numbers of
publishers and consumers. However, they compare two
MOM software products. Our focus is on the evaluation
of one product (Apache Qpid) using advanced networking
technologies like InfiniBand, on modern multi-core plat-
forms. We also developed a more extended set of bench-
marks applicable to Direct, Fanout and Topic Exchange

types.
7 Conclusions and Future Work

In this paper we devised a set of AMQP benchmarks in-
spired from those developed for MPI, a messaging standard
from the High Performance Computing field. We then eval-
uated Apache Qpid, an AMQP compliant messaging soft-
ware, against these benchmarks using the InfiniBand and 1
GigE networks. The DE-SPSC and DE-PP benchmark tests
both found that IPoIB performed better for small message
sizes, while SDP performed better for large message sizes.
This was due the larger connection establishment overhead
for SDP. Our DE-MPMC benchmark test showed that per-
formance decreases with the addition of multiple Publish-
ers and Consumers. This was caused by an increasing load
on the Broker’s CPU. The FE-SPSC and TE-SPSC bench-
marks both found that IPoIB performance is comparable to
that of 1 GigE.

In our stock exchange application experiment, we found
that IPoIB is highly sensitive to the message generation rate.
Applying the Nagle algorithm did not yield performance
improvements at all message generation rates. However,
the algorithm appears to be useful when the message gen-
eration rate is high (e.g. 8000 orders/second) and full sized
packets may be built quickly. Furthermore the algorithm
does little for this application’s performance with SDP and
slightly worsens 1 GigE performance.

Our analysis leads us to believe that the IPoIB limitations
seen in our tests are due to the high IPoIB stack overhead.
We believe that applying modern communication protocols,
like RDMA, would improve this performance. This is be-
cause such protocols impose less processing load on host re-
sources such as CPU. In the future we plan to work with the
forthcoming RDMA adaptation for Apache Qpid. Further-
more our results indicate the need to combine these mod-
ern protocols with better designs for the Broker, including a

978-1-4244-3311-7/08/$25.00 ©2008 IEEE

distributed Broker scheme to alleviate AMQP’s centralized
Broker bottleneck.
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