
EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet
Message Passing

Piyush Shivam
Computer/Information Science

The Ohio State University
2015 Neil Avenue

Columbus, OH 43210

shivam@cis.ohio-state.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212
(Corresponding author)

pw@osc.edu

Dhabaleswar Panda
Computer/Information Science

The Ohio State University
2015 Neil Avenue

Columbus, OH 43210

panda@cis.ohio-state.edu

ABSTRACT
Modern interconnects like Myrinet and Gigabit Ethernet of-
fer Gb/s speeds which has put the onus of reducing the com-
munication latency on messaging software. This has led to
the development of OS bypass protocols which removed the
kernel from the critical path and hence reduced the end-
to-end latency. With the advent of programmable NICs,
many aspects of protocol processing can be offloaded from
user space to the NIC leaving the host processor to dedicate
more cycles to the application. Many host-offload messaging
systems exist for Myrinet; however, nothing similar exits for
Gigabit Ethernet. In this paper we propose Ethernet Mes-
sage Passing (EMP), a completely new zero-copy, OS-bypass
messaging layer for Gigabit Ethernet on Alteon NICs where
the entire protocol processing is done at the NIC. This mes-
saging system delivers very good performance (latency of
23 us, and throughput of 880 Mb/s). To the best of our
knowledge, this is the first NIC-level implementation of a
zero-copy message passing layer for Gigabit Ethernet.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Architecture

General Terms
Design, Performance

Keywords
Gigabit ethernet, message passing, OS bypass, user level
protocol

1. INTRODUCTION
High-Performance computing on a cluster of workstations
requires that the communication latency be as small as pos-
sible. The communication latency is primarily composed

c©2001 Association for Computing Machinery. ACM ac-
knowledges that this contribution was authored or co-
authored by a contractor or affiliate of the U.S. Government.
As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

c©2001 ACM 1-58113-293-X/01/0011$5.00

SC2001 November 2001, Denver, CO, USA

of two components: time spent in processing the message
and the network latency (time on wire). Modern high speed
interconnects such as Myrinet and Gigabit Ethernet have
shifted the bottleneck in communication from the intercon-
nect to the messaging software at the sending and receiving
ends. In older systems, the processing of the messages by
the kernel caused multiple copies and many context switches
which increased the overall end-to-end latency. This led to
the development of user level network protocols where the
kernel was removed from the critical path of the message.
This meant that the parts of the protocol or the entire pro-
tocol moved to the user space from the kernel space. One of
the first examples in this case is U-Net [18].

Another development which took place was the improve-
ment of the network interface card (NIC) technology. In the
traditional architecture, the NIC would simply take the data
from the host and put it on the interconnect. However, mod-
ern NICs have programmable processors and memory which
makes them capable of sharing some of the message pro-
cessing work with the host. Thus, the host can give more of
its cycles to the application, enhancing application speedup.
Under these two developments, modern messaging systems
are implemented outside the kernel and try to make use of
available NIC processing power.

Since its inception in the 1970s, Ethernet has been an im-
portant networking protocol, with the highest installation
base. Gigabit Ethernet builds on top of Ethernet but in-
creases speed multiple times (Gb/s). Since this technology
is fully compatible with Ethernet, one can use the exist-
ing Ethernet infrastructure to build gigabit per second net-
works. A Gigabit Ethernet infrastructure has the potential
to be relatively inexpensive, assuming the industry contin-
ues ethernet price trends and completes the transition from
fiber to copper cabling.

Given so many benefits of Gigabit Ethernet it is imperative
that there exist a low latency messaging system for Giga-
bit Ethernet just like GM [2], FM [13], AM2 [5], and others
for Myrinet. However, no NIC-level, OS-bypass, Zero-copy
messaging software exists on Gigabit Ethernet. All the ef-
forts until now like the GAMMA [4], MESH [3], MVIA [11],
GigaE PM [16], and Bobnet [6] do not use the capabilities of
the programmable NIC to offload protocol processing onto

1

Table 1: Classification of existing message passing systems.
Programmable NIC Non Programmable NIC

Myrinet GM, FM, AM2 (n/a)
Gigabit Ethernet EMP MVIA, GigaE-PM, Bobnet

(This Work) MESH, GAMMA

the NIC. Table 1 shows the classification of existing message
passing systems along with EMP.

These Ethernet messaging systems use non-programmable
NICs. Thus, no more processing can be offloaded onto the
NIC than which has been already been burned into the card
at design time. There was work done in the area of message
fragmentation where the NIC firmware was modified to ad-
vertise a bigger MTU to IP which was then fragmented at
the NIC [7]. The Arsenic project [15] extends a packet send
and receive interface from the NIC to the user application.
And a port of the ST protocol has been written which ex-
tends the NIC program to bypass the operating system [14].
However, these are not complete reliable NIC-based messag-
ing systems. As indicated in [10] it is desirable to have most
of the messaging overhead in the NIC, so that the processing
power at the host can be used for applications.

In this paper we take on a challenge of designing, developing
and implementing a zero-copy, OS-bypass, NIC-level mes-
saging system for Gigabit Ethernet with Alteon NICs. OS
bypass means that the OS is removed from the critical path
of the message. Data can be sent/received directly from/into
the application without intermediate buffering making it a
true zero-copy architecture. The protocol has support for
retransmission and flow control and hence is reliable. All
parts of the messaging system are implemented on the NIC,
including message-based descriptor management, packetiza-
tion, and reliability. In fact, the host machine does not
interfere with a transfer after ordering the NIC to start it,
thus the adjective NIC-driven.

Section 2 of this paper provides an overview of the Alteon
NIC. Section 3 describes the design challenges faced while
developing EMP. In Section 4 we give the implementation
details. Finally we provide the results of our experiments in
Section 5, which show small message latencies around 20 us,
and large message bandwidths around 880 Mb/s.

2. ALTEON NIC OVERVIEW
Alteon Web Systems, now owned by Nortel Networks, pro-
duced a Gigabit Ethernet network interface chipset based
around a general purpose embedded microprocessor design
which they called the Tigon2. It is novel because most Eth-
ernet chipsets are fixed designs, using a standard descriptor-
based host communication protocol. A fully programmable
microprocessor design allows for much flexibility in the de-
sign of a communication system. This chipset was sold on
boards by Alteon, and also was used in board designs by
other companies, including Netgear. Broadcom has a chip
(5700) which implements the follow-on technology, Tigon3,
which should be similar enough to allow use of our messag-
ing environment on future gigabit ethernet hardware.

The Tigon chip is a 388-pin ASIC consisting of two MIPS-
like microprocessors running at 88 MHz, an internal memory

bus with interface to external SRAM, a 64-bit, 66 MHz PCI
interface, and an interface to an external MAC. The chip
also includes an instruction and data cache, and a small
amount of fast per-CPU “scratchpad” memory. The instruc-
tion set used by the Tigon processors is essentially MIPS
level 2 (as in the R4000), without some instructions which
would go unused in a NIC application. Hardware registers
can be used by the processor cores to control the operation
of other systems on the Tigon, including the PCI interface,
a timer, two host DMA engines, transmit and receive MAC
FIFOs, and a DMA assist engine. Our particular cards have
512 kB of external SRAM, although implementations with
more memory are available. The NIC exports a 4 kB PCI
address space, part of which can be positioned by the host
to map into any section of the full 512 kB external SRAM.

Although we do not use it, Alteon freely distributes the
source code for their driver and firmware which mimics a
standard fixed descriptor host interface model suitable for
kernel-level IP networking. The rest of this paper details
how we replace the entire standard driver and firmware
with our own novel protocol designed specifically for mes-
sage passing.

3. DESIGN CHALLENGES
Our goal was to develop a design for a new firmware for the
Tigon, and associated code running in the host, to facilitate
OS-bypass high-throughput and low-latency message pass-
ing communications, with no buffer copies and no interven-
tion by the operating system. We reuse none of the original
firmware written by Alteon, and know of no other original
firmware designs, although quite a number of projects have
made small modifications to the original Alteon firmware.

The following sections highlight some of the major chal-
lenges we faced in designing both the network protocol and
the interface to a user application through MPI. Figure 1
shows the core components addressed in the following. The
existing solution in the figure refers to the current messaging
layer implementations on the Gigabit Ethernet.

3.1 Protocol Processing
One of the most important design challenges was to decide
how to distribute the various functions related to protocol
processing such as reliability, fragmentation, etc.: on the
host, NIC, or shared in both? In EMP we have offloaded all
the protocol processing to the NIC because of its unique pro-
cessing capabilities (two 88 MHz MIPS processors). That is
the reason for calling EMP NIC-driven.

3.1.1 Framing
Once the NIC has been informed that there is data to send,
it retrieves the data from the host in preparation for moving
the data to the network. Here, we had to decide whether we
should buffer the data at the NIC while sending and receiv-
ing the message. We decided against it because buffering

2

MPI
NIC Initialization

Management
Virtual Memory

Descriptor
Management

Reliability

Framing

Framing

Reliability

Protocol Processing

Framing

Reliability

Protocol Processing

KERNELSPACE

EXISTING SOLUTION

USER SPACE

Descriptor
Management

MPI

Management
DescriptorVirtual Memory

NIC Initialization

NIC

Management

PROPOSED SOLUTION

MPI

NIC

Protocol Processing

USER SPACE

KERNEL SPACE

Figure 1: Our approach in the redistribution of the various components of the messaging system.

would add greatly to the system overhead. Instead, when-
ever the NIC has data to send, it pulls the data from the
host one frame at a time and puts it on the wire. Similarly
on the receiving side, if there is no pre-posted receive for
the incoming frame, the frame is simply dropped to avoid
buffering. MPI programs frequently arrange to pre-post all
receives to avoid buffering by the messaging system, because
users know that it hurts performance and that the buffering
limit varies among implementations, thus our design caters
to this type of usage. VIA [17] also imposes this condition
in its design.

3.1.2 Reliability
EMP presents a reliable transport interface to the host.
While designing the reliability of EMP, one of the design
issues [1] we faced was the unit of acknowledgement (the
number of frames to acknowledge at one time). We decided
to acknowledge a collection of frames instead of a single
frame (each message is made up of multiple frames). There
were two main reasons for that. The Ethernet frame size is
small so acknowledging every frame would introduce a lot of
overhead. Moreover, since we were developing our messag-
ing layer for LAN clusters where the rate of frame loss is not
as excessive as WAN, we could decide not to acknowledge
every frame. EMP has the flexibility of configuring the unit
of acknowledgement on the fly depending upon application
and network configuration. This feature also allows us to
research reliability issues in the future for different kinds of
applications.

3.2 Virtual memory management
There are two mechanisms available by which data can be
moved to the NIC to allow it to be sent to the network, or
the reverse, as defined by the PCI specification. The first is
programmed input/output (PIO), where the host CPU ex-
plicitly issues a write instruction for each word in the mes-
sage to be transferred. The second is direct memory access
(DMA), where the NIC can move the data directly from the

host memory without requiring the involvement of the host
CPU. We quickly decided that PIO would require extremely
much host overhead, and thus use DMA for the movement
of all message data.

However, this decision leads us to solve another problem.
All widely used operating systems employ virtual memory
as a mechanism of allowing applications to exceed physical
memory constraints, and to implement shared libraries, and
to provide a wide array of other handy features. Although
an application on the host machine does not need to know
about the actual physical layout of its data, the NIC is re-
quired to perform all its DMA transfers to and from the host
using physical addresses. Some entity must translate from
user virtual to PCI physical addresses for every page in the
transfer.

One option would be to have the NIC maintain a copy of the
page tables which the kernel and processor use to establish
the mapping. If we devoted all of the memory on the NIC to
page tables, we could map no more than 512 MB of process
address space on the x86 architecture. This may be suffi-
cient for some applications, but was discarded as being too
constraining. We considered caching just the “active” parts
of the page tables, meaning only those pages which are be-
ing used in send/receive messages are available on the NIC,
again with some sort of kernel interaction. Kernel virtual
memory operation overhead, complexity, and again limited
NIC memory all suggest that even a caching version would
not perform well.

This leads us to mandate that the user application specif-
ically inform the NIC of the physical address of each page
involved in the transfer. However, user space does not have
access to this information which resides in the kernel. In the
implementation section below we point out that it does not
cost too much to use a system call to ask the kernel for the
translations.

3

Applications which use the NIC with our firmware must en-
sure that the physical pages comprising a message, either for
transmit or receive, stay resident at all times during their
potential use by the NIC. Unix provides a system call, mlock,
which selectively guarantees this for individual pages, or the
variant, mlockall, which can be used to inform the operat-
ing system that all parts of the address space should remain
in physical memory. We choose the latter method which re-
quires only one system call during initialization and is appro-
priate for most memory-resident codes, but that technique
precludes the use of swap space. The alternative of individ-
ual page mapping is potentially more expensive depending
on the exact distribution of memory used for communica-
tion with the network, although the per-page mapping cost
is less than a microsecond on our hardware.

3.3 Descriptor management
We use the term “descriptor” to refer to the pieces of in-
formation that describe message transfers, and which must
pass between the host system and the NIC to initiate, check,
and finalize sends and receives. Descriptors are usually small
in comparison to the message payloads they represent.

To initiate a send, or to post a receive, the host must give
to the NIC the following information: location and length of
the message in the host address space, destination or source
node, and the MPI-specified message tag.

This information is passed to the NIC by “posting” a de-
scriptor. The NIC needs access to descriptor fields, which
are generated in the host. It can get this information either
by individually DMAing fields on demand from the host or it
can keep a local copy of the descriptor in NIC memory. The
tradeoff is between expensive DMA operations (1–3 us per
transfer) and the number of descriptors which can reside in
the limited NIC memory. Too many accesses to descriptor
fields via DMA will degrade performance immensely.

We found that the NIC indeed needs to access the fields of
a descriptor at many stages during the lifetime of a send or
receive message, thus it requires a copy of this descriptor
locally and can not use DMA on demand to retrieve it with
any reasonable performance. The host, on the other hand,
fills descriptors then does not need to be concerned with
them until message completion time, i.e., at the conclusion
of a possibly asynchronous operation.

Since we require a local copy on the NIC, and since the host
will not frequently use the descriptor, we chose to allocate
permanent storage for an array of descriptors in the NIC
memory. The host accesses these using PIO, which is slow
in bulk compared to DMA, but provides lower latency for
small transfers. Details of our extended descriptor formats
for transfers greater than a page are provided in the imple-
mentation sections below.

The one piece of information that the host needs from the
NIC after an asynchronous send or receive has been initiated
is, “Is it done yet?” Traditional Ethernet devices commu-
nicate this by an interrupt to the operating system kernel,
which is clearly inappropriate given our low latency goals.
Other systems (e.g., VIA, Infiniband [8]) use a completion
queue, which is a list describing the transfers that have com-

Ethernet
header ID

Sender Frame
type

Frame
length

Message
ID

Frame
number

Frame
header

Total
length

Number
of frames

MPI
tag

Frame

Message

header

header

Figure 2: Two main headers used in EMP.

pleted. Our project goals state that no buffering will ever
be performed, which implies that no unexpected messages
will ever be received at any node, which reduces the concept
of a completion queue to simply reporting statuses of trans-
fers that the host explicitly initiated. Since the host has
this knowledge, it can instead remember which descriptors
it has posted, and explicitly poll them when it is interested
in determining if the transfer has completed.

4. IMPLEMENTATION
Our firmware consists of 12,000 lines of C code, and another
100 lines of MIPS assembly. Roughly half of the code deals
with the basic hardware functionality of the various Tigon
subsystems, including DMA engines, MAC interface, link
negotiation and control. The core of the code is an event
loop written in three assembly instructions which tests for
the next pending event and dispatches control to the appro-
priate handling routine. Details of our implementation of
fundamental modules are provided in the following sections.

4.1 Protocol Processing
A message is composed of multiple frames. A message is a
user defined entity whereas the frame is defined by the hard-
ware. The length of each frame is 1500 bytes, but could be
larger if the particular Ethernet switch infrastructure pro-
vides support for 9000 byte “jumbo” frames. The first frame
of the message contains a message header which embeds
frame header. All frames contain a frame header, and the
first frame of a message also contains extra per-message in-
formation as shown in Figure 2.

For each host we keep a small amount of information in-
cluding expected next message ID, but we have no concept
of a connection, and thus expect not to be limited in scala-
bility by that. Other protocols generally arbitrate a unique
connection between each pair of communicating hosts which
preserves the relatively large state for that pairwise conver-
sation. The per-host state we keep is on each NIC in the
cluster is: remote MAC address, send and receive sequence
numbers (message ID).

For each message we keep a data structure describing the
state of the transfer for just that message, which includes
a pointer to the descriptor filled by the host. The limits to
scalability of the system thus mirror the scalability limits
inherent in each application, as represented by the number
of outstanding messages it demands. Each of these mes-
sage states is much larger than the per-host state mentioned
above.

Once the NIC is informed that a message is there to send
it DMAs the data from the application space and prepends
the message/frame header before sending it on the wire.
As mentioned before we have something called a collection

4

USER

WAIT/ACK

PHY
RETRANSMIT

DONE

BOOK KEEPING

framing, DMA
post transmit

ack from receiver

If ack
If timeout

framing DMA

SENDING PROCESS

BOOK KEEPING

USER DONE

PHY
SEND ACK

post receive If last frame of message

frame
arrives

If last frame of collection
RECEIVING PROCESS

Figure 3: Processing flow for sending and receiving.

of frames. In the current implementation this number is 3.
Thus, once 3 consecutive frames have been sent the timer for
that collection starts. Any time the receiver receives all the
frames in that collection, the acknowledgement for that col-
lection is sent. The acknowledgement consists of the frame
header of one of the frames for that collection. Essentially it
is the header of the last received frame of that collection. If
the sender receives an acknowledgement it verifies whether
all the frame collections have been acknowledged. If yes,
then the host is informed that the message has been sent
and it is removed from consideration by the NIC. If any col-
lection times out then all the frames of that collection are
resent. We have provided support for out of order frames
too in EMP.

The sequence of operations involved in sending/receiving are
shown in Figure 3. The USER (application space) posts a
transmit or a receive. The data structures corresponding
to that operation are updated (BOOKKEEPING). In case
of transmit a DMA is done and the message is sent to the
wire (PHY) as explained above. A timer corresponding to
that transmit starts and a RETRANSMIT is performed if
that timeout value is reached before the remote ACK arrives.
Similarly, on the receive side when the frame arrives, a check
is made if it is the last frame (BOOKKEEPING), in which
case the receive is marked DONE and an acknowledgement
is sent (SEND ACK).

4.2 Virtual memory and descriptors
As discussed in the design section, we translate addresses
from virtual to physical on the host. This is done by the
kernel and invoked from the user application (library) as an
ioctl system call. This overhead is included in the perfor-
mance results below.

The descriptors which are used to pass the information be-
tween the host and the NIC each require 20 bytes of memory,
and we currently allocate static storage on the NIC for 640
of these to serve both message receives and sends. The phys-

u64 addr
u32 totlen
u16 stat, len
u16 peer, tag

u64 addr
u32 totlen
u16 stat, len
u16 peer, tag

HOST

NIC

Figure 4: Some short-format descriptors in the NIC
memory, showing ownership by either the HOST or
the NIC.

ical address of every page in a transfer must be passed to the
NIC, which leads us to define multiple descriptor formats to
include these addresses.

The first simply includes a single 8-byte address in the 20-
byte descriptor and can describe a message up to a page in
size. The second is built by chaining up to four descriptors
which among them describe a message up to seven pages
long (28 kB on x86). The descriptor format used for mes-
sages larger than this is similar to the short format in that
only one address is given to the NIC, but this address is
a pointer to a page full of addresses which the NIC uses
indirectly to get the address of any single page in the trans-
fer. In all these formats we always provide a 16-bit length
field along with each page address which allows us to do
scatter/gather transfers, so that if an application specifies a
message which is not even contiguous in user memory (such
as with an arbitrary MPI Datatype), the NIC can gather the
individual chunks when preparing a message for the network,
and the reverse when receiving a network frame.

A diagram of the descriptor layout is shown in Figure 4,
where all the descriptors physically reside in NIC memory,
but the host will take ownership of some when it needs to
post a new send or receive. After writing the relevant infor-
mation for the transfer, ownership is passed to the NIC (by
modifying the “stat” field), which will then carry out the
transfer and return ownership to the host.

5. PERFORMANCE EVALUATION
We compare basic networking performance with two other
systems which are frequently used for MPI message passing.
The base case for using Gigabit Ethernet is to use stan-
dard TCP/IP, which uses exactly the same Alteon NIC, but
running the default firmware coupled with a TCP stack in
the kernel. The second system is GM over Myrinet, which
uses different hardware, but shares with EMP the NIC pro-
grammability features and the focus on message passing.

5.1 Experimental Setup
For the Gigabit Ethernet tests, we used two dual 933 MHz
Intel PIII systems, built around the ServerWorks LE chipset

5

Figure 5: Latency and bandwidth comparisons. The quantity measured on the abscissa is message size in
kilobytes, for all three plots.

which has a 64-bit 66 MHz PCI bus, and unmodified Linux
version 2.4.2. Our NICs are Netgear 620 [12], which have
512 kB of memory. The machines are connected back-to-
back with a strand of fiber. For the Myrinet tests, we used
the same machines with LANai 7.2 cards connected with a
single LAN cable. We do not measure switch overheads, but
expect them to be roughly 2–4 us for ethernet and less than
1 us for Myrinet. All tests using ethernet were performed
with a maximum transfer unit (MTU) of 1500 bytes. The
TCP tests used 64 kB socket buffers on both sides; more
buffering did not increase performance.

5.2 Results and Discussion
Figure 5 shows plots for the latency and bandwidth for each
of the three systems as a function of the message size. The
latency is determined by halving the time to complete a
ping-pong test, and the bandwidth is calculated from one-
way sends with a trailing return acknowledgement. Each
test is repeated 10 000 times to average the results.

The latency for TCP over Gigabit Ethernet is much higher
than the other two systems due to the overhead of invok-
ing the operating system for every message. GM and EMP
both implement reliability, framing, and other aspects of
messaging in the NIC. In the very small message range un-
der 256 bytes, GM imposes a latency which is up to 10 us
lower than that of EMP, but the per-byte scaling of both
EMP and GM is similar and message latencies are compa-
rable.

The theoretical wire speed of our test version of Myrinet is
1200 Mb/s, and GM delivers very near to that limit. Gigabit
ethernet, though, is limited at 1000 Mb/s, but EMP only
delivers 80% of that limit. The packet size used in GM is
4 kB, and it exhibits the same periodic performance drop as

does EMP, since that coincides with the host page boundary.
The jumps at the frame size of 1500 bytes where the NIC
must process an extra frame are clearly visible, and jumps
at the page size of 4096 bytes where the NIC must start an
extra DMA are also visible. The bandwidth of TCP never
exceeds about 600 Mb/s, and is consistently spiky at the low
message sizes, probably due to the kernel aggregating many
small messages into a single IP packet.

One further point of comparison is the cost to the host of
sending or receiving a message. As was emphasized earlier,
previous work by others suggests that the CPU overhead of
sending a message impacts the overall performance of a par-
allel application more than does the network latency. We
measure CPU utilization by running a synthetic MPI ap-
plication which mimics a common cycle seen in many user
codes [9]. Each iteration of a measurement loop includes
four steps: post receives for expected incoming messages,
initiate asynchronous sends, perform computational work,
and finally wait for messages to complete. As the amount
of computational work is increased, the host CPU fraction
available to message passing decreases, resulting in the de-
clining graphs in Figure 6. The exact timings for each op-
eration of an iteration are shown in Table 2.

The advantages of offloading the work of messaging onto the
NIC are clearly seen where the available EMP bandwidth re-
mains flat with increasing host CPU load, while both GM
and TCP slope downwards when any CPU cycles are spent
on activities other than moving bytes through the network.
Although the times in GM and EMP to post a send or re-
ceive are quite similar, it is the wait time which is much
more expensive in GM (and in TCP). In all three systems,
the call to MPI Waitall waits for incoming messages to ar-
rive, but in GM and TCP, the call to further performs a

6

Table 2: Asymptotic message passing function tim-
ings (us), per function call for 10kB messages in
batches of five messages at a time.

Function MPI Call TCP GM EMP
Post transmit MPI Isend 137 66 53
Post receive MPI Irecv 4 1 9
Wait MPI Waitall 126 123 3
Total 266 190 65

Figure 6: Throughput as a function of CPU fraction
used by user code for 10kB messages.

memory copy from the network buffers into the desired final
location in the memory of the application. In EMP, how-
ever, the NIC itself DMAs directly into the application while
the host CPU is performing other work.

As the computational demand on the host increases toward
the right side of Figure 6, the bandwidth achieved by EMP
as a function of computational work falls toward zero. This
is due to the network being starved for work. The NIC has
completed sending and receiving its messages for that iter-
ation before the host completes its corresponding computa-
tional work. Since we measure throughput by dividing the
sum of user payload sent or received by the total amount of
time consumed in the loop, all graphs must end up at zero.

6. CONCLUSIONS AND FUTURE WORK
Our objective was to produce a reliable, low latency and
high throughput, NIC-driven messaging system for Gigabit
Ethernet. We came across numerous design challenges for
accomplishing this which were overcome by redistributing
the various functions of the messaging system in a novel way.
We moved all the protocol related functions to the NIC and
utilized the processing capabilities of the Alteon NIC, re-
moving the kernel altogether from the critical path. All the
work of moving the multiple frames of the message, ensuring
reliability, demultiplexing incoming frames, and addressing

are performed by the NIC.

The NIC handles all queuing, framing, and reliability details
asynchronously, freeing the host to perform useful work. We
obtained a latency of 23 us for 4 byte message, 36 us for
1500 bytes; and a throughput of 880 Mb/s for 4 kB mes-
sages. From these results, we can conclude that EMP holds
tremendous potential for high performance applications on
Gigabit Ethernet.

We plan to explore the design space of EMP in terms of
NIC vs. host. Currently we have aimed to implement the
entire protocol processing at the NIC. In future we want to
know how to optimize the processing in the best possible
way by distributing the work across the host and the NIC.
This gains importance in the light of current host processing
power available to us.

We have an initial MPI implementation using the ADI2 in-
terface of MPICH which performs all the basic functionality
of MPI 1.2, but some features are lacking (Probe and Can-
cel). We plan to extend and improve our MPI support, as
well as provide support for security and for multiple concur-
rent applications on a single node.

7. ACKNOWLEDGEMENTS
We would like to thank the Sandia National Labs for sup-
porting this project (contract number 12652 dated 31 Aug
2000). We would also like to thank the graduate students
and the faculty of the NOWLab at the Ohio State Univer-
sity for giving us their invaluable advice on numerous issues
related to the project. The anonymous referees for this pa-
per also deserve our thanks for their useful feedback and
recommendations for improving the quality of this paper.

8. REFERENCES
[1] R. Bhoedjang, K. Verstoep, T. Ruhl, H. Bal, and

R. Hofman. Evaluating design alternatives for reliable
communication on high-speed networks. In
Proceedings of ASPLOS-9, November 2000.

[2] N. Boden, D. Cohen, and R. Felderman. Myrinet: a
gigabit per second local-area network. IEEE Micro,
15(1):29, February 1995.

[3] M. Boosten, R. W. Dobinson, and P. D. V. van der
Stok. MESH: Messaging and scheduling for fine-grain
parallel processing on commodity platforms. In
Proceedings of PDPTA, June 1999.

[4] G. Chiola and G. Ciaccio. GAMMA,
http://www.disi.unige.it/project/gamma.

[5] B. Chun, A. Mainwaring, and D. Culler. Virtual
network transport protocols for Myrinet. Technical
Report CSD-98-988, UC Berkeley, 1998.

[6] C. Csanady and P. Wyckoff. Bobnet:
High-performance message passing for commodity
networking components. In Proceedings of PDCN,
December 1998.

[7] P. Gilfeather and T. Underwood. Fragmentation and
high performance IP. In CAC Workshop, October
2000.

7

[8] Infiniband. http://www.infinibandta.org.

[9] B. Lawry, R. Wilson, and A. B. Maccabe. OS bypass
implementation benchmark.
http://www.cs.unm.edu/˜maccabe/SSL, 2001.

[10] R. Martin, A. Vahdat, D. Culler, and T. Anderson.
Effects of communication latency, overhead, and
bandwidth in a cluster architecture. In Proceedings of
ISCA, June 1997.

[11] MVIA. http://www.nersc.gov/research/FTG/via,
1998.

[12] Netgear. http://www.netgear.com.

[13] S. Pakin, M. Lauria, and A. Chien. High performance
messaging on workstations: Illinois Fast Messages
(FM) for Myrinet, 1995.

[14] P. Pietikainen. Hardware acceleration of Scheduled
Transfer Protocol. http://oss.sgi.com/projects/stp.

[15] I. Pratt and K. Fraser. Arsenic: a user-accessible
gigabit ethernet interface. In Proceedings of Infocom,
April 2001.

[16] S. Sumimoto, H. Tezuka, A. Hori, H. Harada,
T. Takahashi, and Y. Ishikawa. High performance
communication using a gigabit ethernet. Technical
Report TR-98003, Real World Computing
Partnership, 1998.

[17] VI. http://www.viarch.org, 1998.

[18] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-net: A user-level network interface for parallel and
distributed computing. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
December 1995.

8

