
Dynamic Reconfigurability Support for providing Soft QoS Guarantees in
Cluster-based Multi-Tier Data-Centers over InfiniBand

S. KRISHNAMOORTHY, P. BALAJI, K. VAIDYANATHAN, H. -W. JIN AND D. K. PANDA

Technical Report
OSU-CISRC-2/04-TR10

Dynamic Reconfigurability Support for providing Soft QoS Guarantees in
Cluster-based Multi-Tier Data-Centers over InfiniBand

�

S. Krishnamoorthy P. Balaji K. Vaidyanathan H. -W. Jin D. K. Panda

Computer and Information Science,
The Ohio State University,

2015 Neil Avenue,
Columbus, OH43210�

savitha, balaji, vaidyana, jinhy, panda � @cis.ohio-state.edu

Abstract

Current cluster-based data-centers are configured as multiple
tiers, each with specific functionalities and containing multiple
nodes. Over-provisioning of nodes in these data-center tiers is an
accepted approach to provide Quality of Service (QoS) guarantees
due to the unpredictability of incoming requests. However, this
approach is not cost-effective due to the wastage of resources it
could potentially incur. Current high performance networks such
as InfiniBand, Myrinet, Quadrics, etc., not only provide high per-
formance in terms of latency and bandwidth, but also a number of
advanced features such as one-sided communication operations
including remote memory operations (RDMA) and network based
atomic operations. In this paper, we present a novel architecture to
provide dynamic reconfigurability of the nodes in a cluster-based
data-center which enables them to adapt their functionality based
on the system load and the QoS guarantees provided by the data-
center; this avoids the need for over-provisioning of nodes. Dy-
namic reconfigurability in this scheme is achieved with the help
of the one-sided communication operations offered by InfiniBand
without requiring any modifications to the existing data-center ap-
plications. We evaluate this scheme with different patterns of static
and dynamic content requests using three kinds of traces: (i) Sin-
gle file traces, (ii) Zipf based traces and (iii) a real life world-cup
trace. Our experimental results show that the dynamic reconfig-
urability scheme can be used to provide better QoS guarantees (up
to 20% better), meet the same guarantees with lesser resources (up
to 25% lesser nodes), or even both in some cases.

Keywords: QoS, Clusters, High Performance Networking,
Data-Center, InfiniBand, RDMA, Atomic Operations

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542

1 Introduction

Commodity clusters are now becoming popular with
the high performance community with the growth of ad-
vanced and high-performance networks. Some of lead-
ing products in the network interconnects market include
Myrinet [12], Ethernet [20, 1, 23, 19], GigaNet cLAN [17],
Quadrics [36, 35, 37, 4, 32]. Some of these interconnects
provide very low latencies (even less than 10 � s) and very
high bandwidth (of the order of Gbps). These interconnects
provide memory-protected user-level access to the network
interface, thereby allowing data transfer operations to be
performed without kernel intervention. Thus the intercon-
nect no longer is the bottleneck in the critical path of the
communication. Some of the interconnects like InfiniBand
Architecture (IBA) [5, 2] provide hardware-based support
for Quality of Service(QoS) and for multicast operations.
These provisions at the hardware level open avenues to de-
velop higher-level layers using a novel approach. Being
built from commodity hardware, Network of Workstations
(NOWs) are becoming a cost-effective and viable alterna-
tives to mainstream supercomputers for a broad range of
applications and environments. Out of the current Top 500
Supercomputers, 149 systems are clusters [22].

During the last few years, the research and industry com-
munities have been proposing and implementing user-level
communication systems to address some of the problems
associated with the traditional networking protocols for
cluster-based systems. These user-level protocols such as
U-Net [44], BIP [33, 34], FM [31], GM [18], EMP [42, 43]
Virtual Interface Architecture (VIA) [13, 3, 10, 16, 9] was
proposed earlier to standardize these efforts. InfiniBand Ar-
chitecture (IBA) [5, 2] has been recently standardized by
the industry to design next generation high-end clusters.

IBA is envisioned as the default interconnect for several

1

environments in the near future. IBA relies on two key fea-
tures, namely User-level Networking and One-Sided Com-
munication Operations. User-level Networking allows ap-
plications to directly and safely access the network inter-
face without going through the operating system. One-sided
communication allows the network interface to transfer data
between local and remote memory buffers without any in-
teraction with the operating system or processor interven-
tion by using DMA engines. It also provides features for
performing network based atomic operations on the remote
memory regions which can be leveraged in providing effi-
cient support for multiple environments [27, 45].

On the other hand, the increasing adoption of Internet as
the primary means of electronic interaction and communi-
cation has made highly scalable, highly available and high
performance web servers a critical requirement for compa-
nies to reach, attract, and keep customers. Over the past
few years, several researchers have been looking at the
feasibility and the potential of using clusters in the data-
center environment to form cluster-based multi-tier data-
centers [6, 28, 40].

Figure 1 represents a typical cluster-based multi-tier
data-center. The front tiers consist of front-end servers such
as proxy servers that provide web, messaging and various
other services to clients. The middle tiers usually comprise
of application servers that handle transaction processing and
implement the data-center business logic. The back-end
tiers consist of database servers that hold a persistent state
of the databases and other data repositories. As mentioned
in [40], a fourth tier emerges in today’s data-center environ-
ments: a communication service tier between the network
and the front-end server farm for providing edge services
such as load balancing, security, caching, and others.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

���������
���������
���������

���������
���������
���������
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

���
���
���
���

�
�
�
�

����
����
����

���������
���������
���������
���������
���������
���������
���������

���
���
���
���

�
�
�
�

���������
���������
���������
���������

���������
���������
���������
������������������
���������
���������
���������

���
���
���
���

�
�
�
�

���������
���������
���������

���������
���������
���������
������������������

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������

 � � � �
 � � � �
 � � � �
 � � � � !�!�!�!�!�!"�"�"�"�"

#
#
#
#

$
$
$
$%�%�%�%�%�%&�&�&�&�&

'
'
'
'

(
(
(
(

)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)

��*�*�*
��*�*�*
��*�*�*

+�+�+�+�+�+
+�+�+�+�+�+
,�,�,�,�,
,�,�,�,�,

-
-
-
-

.
.
.
.

/�/�/�/�/�/
/�/�/�/�/�/
/�/�/�/�/�/

0�0�0�0�0
0�0�0�0�0
0�0�0�0�0

1�1�1�1�1�1
1�1�1�1�1�1
2�2�2�2�2
2�2�2�2�2

3
3
3
3

4
4
4
4

5�5�5�5�5�5
5�5�5�5�5�5
5�5�5�5�5�5
5�5�5�5�5�5

6�6�6�6�6
6�6�6�6�6
6�6�6�6�6
6�6�6�6�67�7�7�7�7�78�8�8�8�8

9
9
9
9

:
:
:
:

;�;�;�;�;�;
;�;�;�;�;�;
;�;�;�;�;�;
;�;�;�;�;�;

<�<�<�<�<
<�<�<�<�<
<�<�<�<�<
<�<�<�<�<=�=�=�=�=�=

=�=�=�=�=�=
>�>�>�>�>
>�>�>�>�>

?
?
?
?
?
?

@
@
@
@
@
@

A�A�A�A�A�A�A
A�A�A�A�A�A�A
A�A�A�A�A�A�A
A�A�A�A�A�A�A

B�B�B�B�B�B�B
B�B�B�B�B�B�B
B�B�B�B�B�B�B
B�B�B�B�B�B�BC�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C
D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D

E
E
E
E
E
E

F
F
F
F
F
F

G�G�G�G�G�G
G�G�G�G�G�G
G�G�G�G�G�G
G�G�G�G�G�G
G�G�G�G�G�G

H�H�H�H�H�H
H�H�H�H�H�H
H�H�H�H�H�H
H�H�H�H�H�H
H�H�H�H�H�H

I
I
I
I
I
I

J
J
J
J
J
J

K�K�K�K�K�K
K�K�K�K�K�K
K�K�K�K�K�K
K�K�K�K�K�K

L�L�L�L�L�L
L�L�L�L�L�L
L�L�L�L�L�L
L�L�L�L�L�LM�M�M�M�M�M�M
M�M�M�M�M�M�M
N�N�N�N�N�N�N
N�N�N�N�N�N�N

O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O

P�P
P�P
P�P
P�P
P�P
P�P
P�P

Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
S�S�S�S�S�S�S�S�S
S�S�S�S�S�S�S�S�S
T�T�T�T�T�T�T�T�T
T�T�T�T�T�T�T�T�T

U�U
U�U
U�U
U�U

V
V
V
V

W�W�W�W�W�W
W�W�W�W�W�W
W�W�W�W�W�W
W�W�W�W�W�W

X�X�X�X�X
X�X�X�X�X
X�X�X�X�X
X�X�X�X�X

Y�Y�Y�Y�Y�Y�Y
Y�Y�Y�Y�Y�Y�Y
Y�Y�Y�Y�Y�Y�Y

Z�Z�Z�Z�Z�Z�Z
Z�Z�Z�Z�Z�Z�Z
Z�Z�Z�Z�Z�Z�Z

Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design [40])

With ever-increasing online businesses and services and
the growing popularity of personalized Internet services in
the recent past, differentiation in the service provided to the
end users is becoming critical in such data-center environ-

ments. Such differentiation becomes essential in several
scenarios. For example, a data-center may try to provide
some kind of guarantees in the response time perceived by
frequent customers. So, requests from such customers need
to be given a higher priority as compared to those coming
from a new customer. Similarly, if a data-center is host-
ing web-sites for multiple companies, it may want to give a
higher priority to all requests pertaining to company #1 (a
high paying customer) as compared to company #2 (a low
paying customer). Further, a data-center may try to give
a better performance to all financial transactions such as
web requests involving purchasing something from an on-
line market as compared to web requests involving normal
site browsing. These scenarios emphasize the need to have a
provision for the data-centers to provide Quality of Service
(QoS) guarantees to users.

There have been several studies on the relative frequen-
cies of accesses between documents. However, there has
not been much study on the actual arrival patterns of “sim-
ilar” requests with respect to the resources they demand.
Traditional data-centers base the configuration of their sys-
tems on assumptions on resource requirement for the client
requests. For example, a data-center which expects requests
for static documents might require more nodes in the proxy
tier due to the ability of such documents to be cached. On
the other hand, for a data-center which expects dynamic re-
quests requiring some kind of computation to be performed,
more nodes in the application tier would be beneficial to
the compute intensive nature of these requests. However,
due to interesting documents or dynamic web-pages becom-
ing available and unavailable, there might be bursty traffic
for certain kinds of documents at some times and for some
other kinds of documents at a different time. Such scenar-
ios cause request patterns to be unknown apriori. In this
scenario, a burst of one kind of data requests would leave
one tier in the data-center environment over-loaded while
the nodes in the other tiers would be idle. Such dynamism
in the incoming requests becomes especially concerning for
data-centers which host multiple web-sites or services.

Over-provisioning of nodes in the data-center tiers is an
accepted and much used approach to provide Quality of Ser-
vice (QoS) guarantees due to the unpredictability of incom-
ing requests. In this approach, nodes are allocated to the
multiple tiers in the data-center environment based on the
worst case requirements of the guaranteed QoS. This essen-
tially means that each tier in the data-center is Provisioned
with as many nodes as required by that tier alone to sat-
isfy the QoS guarantees. Though this approach avoids the
problem of the nodes in one tier being overloaded during
bursty traffic, it is not cost-effective due to the potential
wastage of resources incurred in the scheme. Also, with
this increased resources the data-center can now intuitively
provide much higher throughput than it actually guarantees.

2

However, it cannot exploit its resources in terms of QoS
guarantees due to the unpredictability of incoming request
patterns which makes the complete utilization of the data-
center nodes rather indeterminate.

In this paper, we present a novel architecture to provide
dynamic reconfigurability of nodes in the data-center which
enables them to adapt their functionality based on the sys-
tem load and QoS guarantees provided by the data-center.
Dynamic reconfigurability in this scheme is achieved with
the help of the one-sided communication operations (both
remote memory access and network based atomic) offered
by InfiniBand without requiring any modifications to the ex-
isting data-center applications. We evaluate this scheme
with different patterns of static and dynamic content re-
quests using three kinds of traces: (i) Single file traces, (ii)
Zipf based traces and (iii) a real life world-cup trace. Our
experimental results show that the dynamic reconfigurabil-
ity scheme can be used to provide better QoS guarantees
(up to 20% better), meet the same guarantees with lesser
resources (up to 25% lesser nodes), or even both in some
cases.

The remaining part of the paper is organized as follows:
Section 2 provides a brief background in two aspects, (i)
the tiered architecture of the data-center environment and
details about the functionalities of each tier and (ii) the In-
finiBand architecture. In Section 3, we describe the design
and implementation details of the dynamic reconfigurabil-
ity approach. In Section 4, we discuss more details into
the issues related in providing Soft QoS guarantees to web-
sites and the existing approaches used in this domain. We
describe our experimental results in Section 5 and present
some concluding remarks and possible future work in Sec-
tion 7.

2 Background

In this section, we provide a brief background in two as-
pects, (i) the tiered architecture of the data-center environ-
ment and details about the functionalities of each tier and
(ii) the InfiniBand architecture.

2.1 Data-Center Tiered Architecture

A typical data-center architecture consists of multiple
tightly interacting layers known as tiers. Each tier can con-
tain multiple physical nodes. Requests from clients are
load-balanced on to the nodes in the proxy tier. This tier
mainly does caching of content generated by the other back-
end tiers. The other functionalities of this tier include em-
bedding inputs from various application servers into a sin-
gle HTML document (for framed documents for example),
balancing the requests sent to the back-end based on cer-
tain pre-defined algorithms such as the load on the different

nodes and other such services.
The second tier consists of two kinds of servers. First,

those which host static content such as documents, im-
ages, music files and others which do not change with time.
These servers are typically referred to as web-servers. Sec-
ond, those which compute results based on the query itself
and return the computed data in the form of a static docu-
ment to the users. These servers, referred to as application
servers, usually handle compute intensive queries which in-
volve transaction processing and implement the data-center
business logic.

The last tier consists of database servers. These servers
hold a persistent state of the databases and other data repos-
itories. These servers could either be compute intensive or
I/O intensive based on the query format. For simple queries,
such as search queries, etc., these servers tend to be more
I/O intensive requiring a number of fields in the database to
be fetched into memory for the search to be performed. For
more complex queries, such as those which involve joins
or sorting of tables, these servers tend to be more compute
intensive.

Other than these three tiers, various data-center models
specify multiple other tiers which either play a supporting
role to these tiers or provide new functionalities to the data-
center. For example, the CSP architecture [40] specifies an
additional edge service tier which handles security, caching,
SAN enclosure of packets for TCP termination and several
others. In this paper, we only deal with the traditional 3-tier
data-center architecture.

Since the kind of requests coming in to the data-center
is not known apriori, the nodes present in the cluster are
distributed to the various tiers based on a certain expected
workload. Thus, as discussed earlier, in a data-center which
expects more requests for static documents would have
more nodes in the proxy tier, while a data-center which
expects dynamic requests involving computing results for
each request would have more nodes in the application tier
and so on.

2.2 InfiniBand Architecture

The InfiniBand Architecture (IBA) is an industry stan-
dard that defines a System Area Network (SAN) to de-
sign clusters offering low latency and high bandwidth. In
a typical IBA cluster, switched serial links connect the pro-
cessing nodes and the I/O nodes. The compute nodes are
connected to the IBA fabric by means of Host Channel
Adapters (HCAs). IBA defines a semantic interface called
as Verbs for the consumer applications to communicate with
the HCAs. VAPI is one such interface developed by Mel-
lanox Technologies.

IBA mainly aims at reducing the system processing over-
head by decreasing the number of copies associated with

3

a message transfer and removing the kernel from the crit-
ical message passing path. This is achieved by providing
the consumer applications direct and protected access to the
HCA. The specification for Verbs includes a queue-based
interface, known as a Queue Pair (QP), to issue requests to
the HCA. Figure 2 illustrates the InfiniBand Architecture
model.

Send Rcv

Q
P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network
Layer

Transport
Layer

PHY Layer

Link Layer

Network
Layer

Transport
Layer

Operations,etc
Consumer Transactions,

(IBA Operations)
Consumer Consumer

Transport

WQE

Adapter
Channel

Port Port Port

Packet Relay

Port

Physical link Physical link

(Symbols)(Symbols)

Packet

IBA Operations

(IBA Packets)

IBA Packets

Packet Packet
C

ha
nn

el
 A

da
pt

er

Fabric

Figure 2. InfiniBand Architecture (Courtesy
InfiniBand Specifications)

Each Queue Pair is a communication endpoint. A Queue
Pair (QP) consists of the send queue and the receive queue.
Two QPs on different nodes can be connected to each
other to form a logical bi-directional communication chan-
nel. An application can have multiple QPs. Communica-
tion requests are initiated by posting Work Queue Requests
(WQRs) to these queues. Each WQR is associated with
one or more pre-registered buffers from which data is either
transferred (for a send WQR) or received (receive WQR).
The application can either choose the request to be a Sig-
naled (SG) request or an Un-Signaled request (USG). When
the HCA completes the processing of a signaled request,
it places an entry called as the Completion Queue Entry
(CQE) in the Completion Queue (CQ). The consumer appli-
cation can poll on the CQ associated with the work request
to check for completion. There is also the feature of trigger-
ing event handlers whenever a completion occurs. For un-
signaled requests, no kind of completion event is returned
to the user. However, depending on the implementation, the
driver cleans up the Work Queue Request from the appro-
priate Queue Pair on completion.

2.2.1 RDMA Communication Model

IBA supports two types of communication semantics: chan-
nel semantics (send-receive communication model) and
memory semantics (RDMA communication model).

In channel semantics, every send request has a corre-
sponding receive request at the remote end. Thus there is
one-to-one correspondence between every send and receive

operation. Failure to post a receive descriptor on the remote
node results in the message being dropped and if the con-
nection is reliable, it might even result in the breaking of the
connection.

In memory semantics, Remote Direct Memory Access
(RDMA) operations are used. These operations are trans-
parent at the remote end since they do not require a receive
descriptor to be posted. In this semantics, the send request
itself contains both the virtual address for the local transmit
buffer as well as that for the receive buffer on the remote
end.

Most entries in the WQR are common for both the Send-
Receive model as well as the RDMA model, except an ad-
ditional remote buffer virtual address which has to be spec-
ified for RDMA operations. There are two kinds of RDMA
operations: RDMA Write and RDMA Read. In an RDMA
write operation, the initiator directly writes data into the re-
mote node’s user buffer. Similarly, in an RDMA Read op-
eration, the initiator reads data from the remote node’s user
buffer.

2.2.2 Atomic Operations Over IBA

In addition to RDMA, the reliable communication classes
also optionally atomic operations directly against the mem-
ory at the end node. Atomic operations are posted as de-
scriptors at the sender side as in any other type of commu-
nication. However, the operation is completely handled by
the NIC and involves very little host intervention and re-
source consumption.

The atomic operations supported are Fetch-and-Add and
Compare-and-Swap, both on 64-bit data. The Fetch and
Add operation performs an atomic addition at the remote
end. The Compare and Swap is use to compare two 64-bit
values and swap the remote value with the data provided if
the comparison succeeds.

Atomics are effectively a variation on RDMA: a com-
bined write and read RDMA, carrying the data involved as
immediate data. Two different levels of atomicity are op-
tionally supported: atomic with respect to other operations
on a target CA; and atomic with respect to all memory op-
eration of the target host and all CAs on that host.

3 Design and Implementation

In this section, we describe the basic design issues in the
dynamic reconfigurability scheme and some details about
the implementation of this scheme using the native Verbs
layer over InfiniBand (VAPI).

4

3.1 Reconfigurability Support

Requests to a data-center may vary in terms of resources
such as the amount of computation (dynamic requests) or in
terms of the memory (static requests serviced from cache)
they demand. The basic idea of reconfigurability is to utilize
the idle nodes of the system to share the dynamically vary-
ing resource requirements (memory or CPU) of requests in
the data-center. Dynamic reconfigurability requires some
extent of functional equivalence between the nodes of the
data-center. We provide this equivalence by enabling soft-
ware homogeneity such that each node is capable of belong-
ing to any tier of a multi-tier data-center. Depending on the
resource that is currently in demand (e.g., due to a burst of
a certain kind of requests), nodes reconfigure themselves to
support these requests.

Designing such dynamic adaptability and reconfigurabil-
ity in the system involves various design issues and chal-
lenges. Some of the major ones are listed below.

� Support for Existing Applications

� Providing a System Wide Shared State

� Concurrency Control to avoid Live-locks and Starva-
tion

� Equating CPU and I/O loads for different tiers

� Avoiding server thrashing through history aware re-
configuration

� Tuning the reconfigurability module sensitivity

We present some of these challenges in the following few
subsections.

3.1.1 Support for Existing Applications

A number of applications have been developed to allow a
highly efficient and concurrent file access to the various web
requests. These applications have been developed over a
span of several years and modifying them to allow addi-
tional features such as dynamic reconfigurability support is
cumbersome and impractical. In light of this, we try to de-
sign our algorithms in such a way that there are no changes
required to the existing applications.

The basic idea in our design is to achieve reconfigurabil-
ity by using external helper modules which work along with
the traditional data-center applications such as Apache, but
in a transparent manner. All issues related to load verifi-
cation, maintaining a logical global view, reconfigurability,
etc., are handled by these modules and are obscured from
the data-center servers, i.e., using these modules, dynamic
reconfigurability is achieved with absolutely no changes to
the data-center applications.

These modules work independently on the nodes and
determine the best configuration for the data-center at any
point in time. Based on this decision, they automatically
start or stop the various servers on the physical nodes and
modify the appropriate run-time configuration files used by
the data-center servers to reflect this decision. The data-
center servers on the other hand, just continue with their re-
quest processing based on the run-time configuration files,
unaware of the modifications the modules have made.

3.1.2 System Wide Shared State

As discussed in Section 3.1.1, the external helper modules
present in the system, handle various issues related to re-
configurability. However, the decision each module needs
to make is pertinent to the global state of the system and can
not be made based on the view of a single node. So, these
modules need to communicate with each other to share such
information regarding the system load, current configura-
tion of the system, etc. Further, these communications tend
to be asynchronous in nature. For example, the nodes in
the front tiers are not aware about when the nodes in the
back-end tiers require their state information, etc.

An interesting point to note in this communication pat-
tern is the amount of replication in the information ex-
changed between the nodes. For example, let us consider
a case where the information is being shared between the
proxy tier and the application tier in the data-center. Here,
each proxy provides its state information to each one of the
nodes in the application tier every time they need it, i.e.,
the same information needs to be communicated with every
node in the application tier.

Based on these communication patterns, intuitively a
global shared state (as presented in Figure 3) seems to be the
ideal environment for efficient distribution of data amongst
all the nodes. In the architecture described by this figure, the
nodes in the proxy tier can write their relevant information
into the shared state and the nodes in the application tier
can asynchronously read this information without disturb-
ing the nodes in the proxy tier. This architecture essentially
depicts a producer-consumer scenario for non-consumable
resources.

One approach for implementing such a shared state, is by
distributing the data across the physical memories of vari-
ous nodes and allowing the nodes in the data-center to read
or write into these memory locations. While an implemen-
tation of such a logical shared state is possible using the tra-
ditional TCP/IP based sockets interface (with the modules
explicitly reading and communicating the data upon request
from other nodes), such an implementation would lose out
on all the benefits a shared state could provide. In particu-
lar: (i) All communication needs to be explicitly performed
by the nodes in the proxy tier by sending (replicated) infor-

5

Proxy
Server

Proxy
Server

Proxy
Server

Read

Read

Write

Write

Write

Read

Load Information

Current System
Configuration

Server
App

Server
App

Server
App

 Shared State

Figure 3. Shared State Architecture

Proxy
Server

Proxy
Server

Proxy
Server

App
Server

Convert

Server

Server

Server

App

App

App

Current System
Configuration

Load Information

 Shared State

Convert

Convert

Successful Atomic

Figure 4. Shared State Architecture With Co-
herency Requirement

mation to each of the nodes in the application tier and (ii)
Asynchronous requests from the nodes need to be handled
by either using a signal based mechanism (using the SIGIO
signal handler) or by having a separate thread block for in-
coming requests, both of which require the proxy node host
intervention.

Further, as we had observed in our previous work [28],
due to various factors such as the skew and the load on the
remote nodes, which are very common in the data-center
environment, even a simple two sided communication oper-
ation might lead to a significant degradation in the perfor-
mance.

On the other hand, InfiniBand provides several advanced
features such as one-sided communication operations, in-
cluding RDMA operations. In our implementation, each
node in the proxy tier writes information related to itself on
its local memory. The nodes in the application tier can di-
rectly read this information using an RDMA read operation
without disturbing the proxy node at all. This implementa-
tion of a logical shared state retains the efficiencies of the
initially proposed shared state architecture, i.e., the nodes in
the application tier can read data asynchronously from the
shared state and the nodes in the proxy tier do not explicitly
need to send the data to each of the nodes in the application
tier.

The reconfigurability modules occasionally check the
state of the system in the logical shared state and update
their information based on this. However, the frequency in
which each module checks the state is not the same. Mod-
ules on the proxy tiers need to check the information for
every request so that they can send it to the appropriate
back-end server on a cache miss. However, the modules
on the application tier only need to read the shared state
occasionally to check the system load and decide if a re-
configuration is required. Based on this, we decided to go
ahead with a shared state with non-uniform access for the
different nodes, i.e., the shared data is closer to the nodes in
the proxy tier (in their local physical memory) compared to
the nodes in the application tier.

3.1.3 Shared State with Concurrency Control

The logical shared state presented in Section 3.1.2 provides
a simplistic view of the shared state architecture where one
set of nodes write information pertinent to them to distinct
variables in the shared state while a different set of nodes
read these variables. Once a module reads this information
and makes a decision about the best configuration for the
data-center, it can modify the system configuration infor-
mation in the shared state. At this point, one basic issue
with the simple shared state architecture needs to be revis-
ited.

As described earlier, the simple shared state architec-

6

ture described in Section 3.1.2 forms a producer-consumer
scenario for non-consumable resources, i.e., the nodes in
the front tiers only write data to the shared state and the
nodes in the back-end tiers only read data from the shared
state. However, since the modules on the application tier
are the ones which are reading the shared state information
and making the decision about the best configuration for the
data-center, they will need to modify the system configura-
tion information in the shared state. Also, for this modified
system configuration to be reflected at the nodes in the front
tier, the corresponding modules will also need to read infor-
mation from the shared state. This means that all the nodes
in the data-center will need to concurrently read and write
from the shared state.

As shown in figure 4 multiple servers can simultane-
ously try to reconfigure the data-center under loaded con-
ditions. This shared-state should be modifiable but only
by one node while all other nodes are concurrently noti-
fied of this change to avoid thrashing. In order to solve
this problem, it is imperative to sequentialize any change in
configuration and keep all modules aware of these changes
as they occur. Otherwise a stable configuration may never
be reached even after the requirements of the current sys-
tem load are met. In order to achieve the required con-
currency between the multiple accesses of the data by the
nodes, in our implementation, we use the network based re-
mote atomic operations provided by InfiniBand.

In our implementation of the shared state with concur-
rency control, a node makes an atomic compare-and-swap
operation on the status of the remote node, when a configu-
ration change is required. If the node’s view of the system
configuration is accurate, the atomic operation is successful
and the swap operation is performed. However, if the node’s
view of the system configuration is not accurate, the atomic
operation fails and returns the current system configuration
to the node trying to perform the operation. Also, the node
succeeding in making the change is responsible to commu-
nicate the reconfiguration information to the other modules
in the system, so that they are aware of the current configu-
ration of the system. Figure 5 illustrates the approach used
to achieve concurrency control in this architecture.

3.1.4 I/O and CPU Load Equivalence

Though load is a factor greatly affecting the current configu-
ration of the data-center, the perceived load in different tiers
is different. While the load at the front end is mostly due
to the number of requests serviced from the apache cache
(file system I/O), the load at the back-end servers is mainly
perceived as CPU utilization due to the computational de-
mands of the incoming requests. Hence it is important to
determine the load conditions at the node depending on the
tier in which it currently belongs to. Other factors such as

RDMA Read

Change Proxy Status

Change Server Status

AtomicSuccessful

Proxy Servers Application
Servers

Loaded
Server

Loaded
Proxy

Load Query

Failed Atomic

Figure 5. Concurrency Control

number of active and passive connections also determine
the load on the system.

At the application tier, we use the load on the CPU as
well as the fraction of the total number of incoming requests
currently being serviced at the back-end to determine the
load at the back-end application tier. The fraction of re-
quests that were serviced from cache determines the front-
end tier load.

3.1.5 History Aware Reconfiguration

Due to the irregular nature of incoming requests, a small
burst of similar requests might potentially trigger a re-
configuration in the data-center tiers. Because of this, small
bursts of similar requests can cause nodes in the data-center
tiers to be moved between the various tiers to satisfy the in-
stantaneous load, resulting in thrashing in the data-center
configuration.

To avoid such thrashing, in our scheme, we allow a his-
tory aware reconfiguration of the nodes, i.e., the nodes in
one tier are re-allocated to a different tier only if the load in
the remote tier stays high for a pre-defined period of time T.
This approach has its own trade-offs. A small value for T
could result in thrashing in the data-center environment. On
the other hand, a large value of T could make the approach
less respondent to bursty traffic providing a similar perfor-
mance as that of the non-reconfigurable or rigid system.
The optimal value of T depends on the kind of workload
and request pattern. While we recognize the importance of
the value of T, in this paper, we do not concentrate on the
effect of its variation and fix it to a pre-defined value for all
the experiments.

7

3.1.6 Reconfigurability Module Sensitivity

As mentioned earlier, the modules on the nodes in the ap-
plication tier occasionally read the system information from
the shared state in order to decide the best configuration at
that instant of time. The time interval between two consec-
utive checks is a system parameter S referring to the sensi-
tivity of the reconfigurability modules. A small value of S
allows a high degree of sensitivity, i.e., the system is bet-
ter respondent to a variation in the workload characteristics.
However, it would increase the overhead on the system due
to the frequent monitoring of the state. On the other hand, a
large value of S allows a low degree of sensitivity, i.e., the
system is less respondent to variation in the workload char-
acteristics. At the same time, it would also result in a lower
overhead on the system to monitor the state. We have per-
formed experiments to study this variation and the results
for the same are presented in Section 5.

4 Soft Quality of Service Guarantees

In this section, we discuss the current trend in the data-
center environments to provide some kind of a differenti-
ated service to different requests. We also discuss the cur-
rently used over-provisioning approach for providing such
differentiated service and describe the use of the reconfig-
urability approach to facilitate similar QoS guarantees us-
ing a smaller number of nodes. Finally, we describe the
potential impacts of the reconfigurability approach for data-
centers which host multiple web-sites.

4.1 Quality of Service Considerations

As mentioned earlier, with the increasing online busi-
nesses and services and the growing popularity of person-
alized Internet services, differentiation of service provided
to the end users is becoming critical in the data-center envi-
ronment. There are multiple kinds of QoS guarantees that
have been studied in the literature.

The first kind of distinction in the various kinds of
QoS guarantees is between response-time guarantees and
throughput guarantees. In response time guarantees (or end-
to-end QoS), a guarantee on the response time perceived
by the end user is provided, i.e., the end users are the fi-
nal customers for the QoS provider. On the other hand, for
throughput guarantees, assuming a sufficiently high incom-
ing rate of requests, a certain throughput (transactions per
second) of servicing for these requests would be guaran-
teed. In this case, the web-site owner is the end customer
for the QoS provider.

Throughput based QoS guarantees become extremely
relevant for several web-hosting services and ISPs which
have multiple different websites hosted on the same data-

center nodes. In this paper, we concentrate on this kind of
QoS guarantees.

4.2 Over-Provisioning approach to provide QoS

Currently, the most common approach used to provide
throughput guarantees in the data-center environment is by
using over-provisioning of nodes. In this approach, nodes
are allocated to the multiple tiers in the data-center envi-
ronment based on the worst case requirements of the QoS
guarantees. For example, suppose the data-center provid-
ing a throughput guarantee of N transactions per second,
is expecting either static or dynamic content. Say, in the
case where there are only static requests, suppose the data-
center needs P1 nodes in the proxy tier and A1 nodes in the
application tier. Similarly in the case where there are only
dynamic requests, suppose the data-center needs P2 nodes
in the proxy tier and A2 nodes in the application tier. With
over-provisioning, max(P1, P2) nodes are provided in the
proxy tier and max(A1, A2) nodes are provided in the ap-
plication tier. It can be seen that this approach can easily
deliver the requested throughput.

However, during a burst of static content, most of the
nodes in the application tier remain idle since the requests
are cached in the proxy tier. Similarly, during a burst of the
dynamic content, most of the nodes in the proxy tier remain
idle since the requests can not be cached and need to be
forwarded to the application tier. This essentially points to
the fact that, though this approach is effective in terms of
performance, it is not cost-effective due to the wastage of
resources it could potentially incur.

4.3 Reconfigurability approach to provide QoS

In this paper, we propose the reconfigurability approach
to efficiently support throughput based QoS guarantees. As
described in Section 3, reconfigurability allows dynamically
shifting nodes from one tier in the data-center to another
tier based on the system load as well as the QoS guarantees
provided by the data-center. Considering the same example
as the one in Section 4.2, in this case we would only need
max(P1, P2, A1, A2) + 1 nodes to provide nearly the same
QoS guarantees as the over-provisioning case1. In this ap-
proach, when there’s a burst of static or dynamic requests,
the scheme automatically shifts nodes from the lesser uti-
lized tiers to the more utilized tiers. This would create a
more balanced load amongst the various nodes in the data-
center improving the overall performance provided. It is

1Ideally, the reconfigurability scheme should only use max(P1, P2, A1,
A2) number of nodes. However, the current implementation of the recon-
figurability modules do not support sharing the same physical node for
multiple servers. This puts a restriction to have at least one node in each
tier, requiring max(P1, P2, A1, A2) + 1 nodes in the above mentioned ex-
ample

8

to be noted that the reconfigurability approach is the most
useful when the traffic is very bursty, which is quite com-
mon in typical data-center environments. When the traffic
is not very bursty, even a rigid configuration of nodes would
utilize all the nodes in the data-center. In this case, the re-
configurability scheme would perform comparably with the
normal rigid configuration based scheme.

4.4 Reconfigurability in Multi-Website scenarios

As mentioned earlier, throughput based QoS guarantees
become extremely relevant for several web-hosting services
and ISPs which have multiple different websites hosted on
the same data-center nodes. In this case, the data-center
might want to provide a higher priority to all requests per-
taining to website #1 (a high paying customer) as compared
to website #2 (a low paying customer). In this scenario, the
over-provisioning based scheme would give more number
of nodes to the high priority website and a lesser number
of nodes to the low priority website. In this case, having a
burst of requests for the lower priority requests would over-
load the nodes allocated to the low priority requests while
the nodes allocated to the high priority requests would re-
main idle. However, the reconfigurability based scheme can
dynamically reassign nodes for the low priority requests,
improving their performance as well.

5 Experimental Results

In this section, we present four sets of results. First, we
present the ideal case performance achievable by the native
Verbs API (VAPI) over InfiniBand in the form of micro-
benchmark results. Second, in Section 5.2, we present the
improvement in the basic performance achievable through
dynamic reconfigurability. Third, we demonstrate the en-
hanced ability to provide soft Quality of Service guarantees
using dynamic reconfiguration in Section 5.3 and show the
results for multi-website hosting data-centers in Section 5.4.

For all our experiments we used 2 clusters whose de-
scriptions are as follows:

Cluster1: A cluster system consisting of 8 nodes built
around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus and 512 MB
of main memory. We used the RedHat 9.0 Linux distribu-
tion with the kernel.org SMP kernel version 2.4.22smp.

Cluster2: A cluster system consisting of 16 nodes which
include 64-bit 66 MHz PCI interfaces. Each node has four
Intel Pentium-III 700 MHz processors with 1 MB L2 cache
and a 400 MHz front side bus and 1 GB of main memory.
We used the RedHat 7.1 Linux distribution with the ker-
nel.org SMP kernel version 2.4.18.

All nodes in Cluster1 and Cluster2 are interconnected
with multiple networks:

Interconnect1: InfiniBand network with Mellanox In-
finiHost MT23108 DualPort 4x HCA adapter through an
InfiniScale MT43132 twenty-four 4x Port completely non-
blocking InfiniBand Switch. The Mellanox InfiniHost HCA
SDK version is thca-x86-3.0.1-build-003. The adapter
firmware version is fw-23108-rel-3 00 0001-rc4-build-001.
This interconnect connects all nodes in Cluster1.

Interconnect2: Myrinet network with 133 MHz LANai
9.1 processors, connected through a Myrinet 2000 network.
The GM version used is 1.6.3. This interconnect connects
all nodes in both Cluster1 and Cluster2.

For all the experiments, we used Cluster 1 to represent
the data-center environment and Cluster 2 to represent the
clients. We used Apache-2.0.48 for the data-center related
experiments. The experiments used 6 client nodes with 12
threads for each client with traces containing nearly 20 mil-
lion requests distributed among the client threads.

Interconnect 1 was used to perform the Remote DMA
operations and NIC-based atomic operations. The imple-
mentation of the design was carried out using the VERBS
interface API over Interconnect 1. Interconnect 1 and Inter-
connect 2 were used as the inter-node networks, for com-
munication within the data-center and for communication
between the external clients and the data-center.

The use of high-speed interconnects for external clients
serves as a means to generate high traffic and load on the
data-center nodes.

5.1 Micro-Benchmark Results

In this section, we present the ideal case performance
achievable by the Verbs API (VAPI) over InfiniBand using
micro-benchmark tests.

As mentioned earlier, InfiniBand provides two mecha-
nisms for completion notification. The first approach re-
quires the host application to continuously poll on the com-
pletion queue and check for the completion of the mes-
sage transmission or reception. The second approach allows
the host application to request a interrupt based notification
from the network adapter. The notification based approach
incurs the additional cost of an interrupt. The polling based
approach does not incur this additional cost, but results in
a high CPU utilization due to the continuous polling of the
completion queue. In this section, we present results for
both the polling based approach as well as the notification
based approach for Cluster 1.

VAPI provides multiple communication models for
transferring data namely: (a) send-receive, (b) RDMA
write, (c) RDMA write with immediate data and (d) RDMA
read.

Figure 6a shows the one-way latency achieved by the

9

VAPI Level Latency and CPU Utilization

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message size (Bytes)

L
at

en
cy

 (
u

s)

0

20

40

60

80

100

120

C
P

U
 U

ti
liz

at
io

n
 (

%
)

RW-CPU RR-CPU RW-Poll RR-Poll RW-Event RR-Event

VAPI Level Bandwidth and CPU Utilization

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8k 16

k
32

K
64

K
12

8K
25

6K
51

2K 1M

Message size (Bytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

0

5

10

15

20

25

30

35

40

45

50

C
P

U
 U

ti
liz

at
io

n
 (

%
)

RW-CPU RR-CPU RW-Poll RR-Poll RW-Event RR-Event

Figure 6. Micro-Benchmarks for RDMA write and read: (a) Latency and (b) Bandwidth

Latency Chart 2

Page 1

VAPI Level Latency and CPU Utilization

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message size (Bytes)

L
at

en
cy

 (
u

s)

0

5

10

15

20

25

30

C
P

U
 U

ti
liz

at
io

n
 (

%
)

S/R-CPU RIMM-CPU RIMM-Event S/R-Poll RIMM-Poll S/R-Event

VAPI Level Bandwidth and CPU Utilization

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8k 16

k
32

K
64

K
12

8K
25

6K
51

2K 1M
Message size (Bytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

0

2

4

6

8

10

12

C
P

U
 U

ti
liz

at
io

n
 (

%
)

S/R-CPU RIMM-CPU S/R-Poll RIMM-Poll S/R-Event RW-Event

Figure 7. Micro-Benchmarks for Send/Recv and RDMA with Immediate: (a) Latency and (b) Bandwidth

VAPI RDMA write and RDMA read communication mod-
els for various message sizes. RDMA write achieves a la-
tency of around 5.5 � s for 4 byte messages compared to the
10.5 � s achieved by RDMA read in the polling based ap-
proach. For the notification based approach, RDMA write
continues to achieve a latency of around 5.5 � s while that of
the RDMA read approach goes to 30 � s. This indifference
in the latency for the RDMA write communication model
toward the completion approach is attributed to the way the
micro-benchmark test was written. RDMA write is receiver
transparent. So, the only way the receiver can know about
the arrival of an incoming message is by polling on the last
byte of the message. This results in the notification based
approach for RDMA write to be equivalent to the polling
based approach, resulting in a high utilization of the CPU
and a latency similar to that of the polling based approach.

Figure 6b shows the uni-directional bandwidth achieved
by the two models. Again, we see that for both the com-
munication models, the polling based approach and the no-
tification based approach perform comparably. Further, the

CPU for both the approaches is around 20% for small mes-
sages and negligible for large messages.

Figure 7a shows the uni-directional latency achieved
using the Send-Receive and the RDMA write with im-
mediate data schemes for various message sizes. While
RDMA write with immediate achieves up to 7.9 � s, the
Send-Receive scheme achieves up to 6.7 � s for 4 byte mes-
sages. However, RDMA with immediate data shows a max-
imum CPU utilization of 13% and Send-Receive shows a
maximum of 30% CPU utilization.

Figure 7b shows the uni-directional bandwidth perfor-
mance using these two schemes. Both Send-Receive and
RDMA with immediate data achieve high bandwidths com-
parable to the Remote DMA schemes, with lower CPU uti-
lizations.

10

Best Rigid Configurations

0

5000

10000

15000

20000

25000

30000

35000

5:1 4:2 3:3 2:4 1:5

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 50% Static 0% Static

Best Rigid Configurations

0

5000

10000

15000

20000

25000

30000

4:1 3:2 2:3 1:4

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 50% Static 0% Static

Figure 9. Best Rigid Configurations for (a) A 6-Node Data-Center, (b) A 5-Node Data-Center

Best Rigid Configurations: 4K Request Size

0

5000

10000

15000

20000

25000

30000

35000

6:1 5:2 4:3 3:4 2:5 1:6

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 50% Static 0% Static

Best Rigid Configurations: 2K Request Size

0

5000

10000

15000

20000

25000

30000

35000

40000

6:1 5:2 4:3 3:4 2:5 1:6

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 50% Static 0% Static

Figure 10. Best Rigid Configurations: Different Average Request Sizes (a) 4KB , (b) 2KB

11

Best Rigid Configurations

0

5000

10000

15000

20000

25000

30000

35000

40000

6:1 5:2 4:3 3:4 2:5 1:6

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 50% Static 0% Static

Figure 8. Best Rigid Configurations: 7-Node
Data-Center

5.2 Basic Performance of Dynamic Reconfigura-
bility

In this section, we present the basic performance bene-
fits achieved by the reconfigurability based scheme as com-
pared to a standard data-center which does not have any
such support.

5.2.1 Best Rigid Configurations

In this section, we study the performance of the rigid con-
figuration scheme for different data-center configurations.
In the subsequent sections, we choose the best static config-
uration possible for a given workload based on these results.

Figure 8 shows the performance of the rigid configura-
tion based scheme for different workloads and data-center
configurations for a seven-node Data-Center. This is the
data-center size that has been considered for all future ex-
periments. As discussed earlier, static content is capable
of being cached and would benefit from a large number of
nodes being present in the proxy tier. On the other hand,
dynamic content require large amounts of back-end com-
putation and would benefit from a large number of nodes
being present in the application tier. This can be seen in Fig-
ure 8 where a trace with only static requests (100% static)
would perform the best for 6 nodes in the proxy tier and
1 node in the application tier. On the other hand, a trace
with only dynamic requests (0% static) would perform the
best for 1 node in the proxy tier and 6 nodes in the applica-
tion tier. Configurations for intermediate workloads such as
50% static and 50% dynamic content depend on the amount
of computation required for the requests. In our trace, a
combination of 2 nodes in the proxy tier and 5 nodes in the
application tier performed the best.

We have also evaluated the performance of traces in three
different dimensions: (a) The number of nodes present in

the data-center, (b) the average file sizes of the requested
data and (c) the percentage of dynamic and static content
present in the trace. Figure 9 shows the best configuration
for various patterns of requests for data-centers consisting
of 6 Nodes and 5 Nodes, for various mix of static and dy-
namic requests. Figure 10 shows the best configuration for
various percentages of static content when the average re-
quest size in the data-center is 4KB and 2KB.

5.2.2 Performance for bursty traffic

In this section, we present the performance of the dynamic
reconfigurability scheme as compared to the rigid configu-
ration scheme in several scenarios varying the burstiness of
the traffic.

Figure 11a shows the performance of the data-center
that is initially configured expecting purely static data. We
show the performance of the data-center for snapshot of re-
quest conforming to this expectation and a snapshot of re-
quests that is totally different from expected pattern. Fig-
ure 11 shows the performance for data-center when it ex-
pects purely dynamic requests. In both cases we see that a
re-configurable data-center is able to provide sustained per-
formance owing to increased utilization of resources at all
times as compared to a rigidly configured data-center.

Figure 12a shows the snap-shot performance of a data-
center that is configured for 50% static and 50% dynamic
mixed requests during periods incurring one type of request.
Based on the results from Section 5.2.1, we chose the best
configuration for the rigid scheme for this workload with 5
nodes in the application tier and 2 nodes in the proxy tier.
In this scenario, when there’s a burst of dynamic requests,
only 5 of the nodes are fully utilized (in the application tier)
while the 2 nodes in the proxy tier are relatively idle. Sim-
ilarly, when there’s a burst of static requests, only 2 of the
nodes are fully utilized (in the proxy tier) while the 5 nodes
in the application tier are idle. On the other hand, the re-
configurability based scheme is dynamically able to recon-
figure itself to give the best performance during each burst
of traffic.

This shows that reconfigurability can take advantage of
idle nodes during such bursts to give better throughput
by improving utilization. On the whole, reconfigurability
achieves an improvement of about 20% during a burst of
dynamic content and up to 150% during a burst of static
content. It is to be noted that the actual amount of benefit
achieved varies depending on the amount of computation
performed by the requests.

Figure 12b shows the overall performance of the data-
center for different traces with bursts of similar files (the
burst length is depicted on the x-axis of the graph), for dif-
ferent compute requirements. We can see that for small
burst lengths, both the rigid based approach and the recon-

12

Best, Worst Case Snapshots:Data-center
Expecting Static Requests

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4
Average Request Size (KB)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Rigid-Static Reconf-Static Rigid-Dynamic Reconf-Dynamic

Best, Worst Case Snapshots: Data-center
Expecting Dynamic Requests

0

5000

10000

15000

20000

25000

30000

35000

1 2 4
Average Request Size (KB)

T
hr

ou
gh

pu
t (

T
P

S
)

Rigid-Dynamic Reconf-Dynamic Rigid-Static Reconf-Static

Figure 11. Snapshot performance for Data-Center: (a) Expecting Static Requests (b) Expecting Dy-
namic Requests

Data-Center Expecting Static and Dynamic
Requests with Equal Probability

0

5000

10000

15000

20000

25000

30000

35000

1K 2K 4K
Average Request Size (Bytes)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Rigid-Dynamic Reconf-Dynamic
Rigid-Static Reconf-Static

Performance of Reconfigurability with Burstiness

0

5000

10000

15000

20000

25000

64K32K16K8K4K2K1K512

Burst Size (Number of Similar Requests)

T
hr

ou
gh

pu
t(

T
P

S
)

Reconf Rigid Reconf*2
Rigid*2 Reconf*4 Rigid*4

Figure 12. Performance for bursty traffic: (a) Snapshot performance, (b) Overall performance: Various
Compute requirements

Snapshots: High Burstiness

0

5000

10000

15000

20000

25000

30000

35000

40000

5 80 15
5

23
0

30
5

38
0

45
5

53
0

60
5

68
0

75
5

83
0

90
5

98
0
10

55
11

30
12

05
12

80

Snapshot (seconds elapsed)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Reconf Rigid

Snapshots: Low Burstiness

0

5000

10000

15000

20000

25000

30000

35000

40000

5 30 55 80 10
5

13
0

15
5

18
0

20
5

23
0

25
5

28
0

30
5

33
0

35
5

38
0

40
5

43
0

45
5

Snapshot (seconds elapsed)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Reconf Rigid

Figure 13. Throughput at Various Snapshots

13

figurability based approach perform equally for small com-
pute requirements. This is because, when the burst length
is very small, even a rigid scheme can make sure that all
the nodes are utilized as requests do not contend for a sin-
gle type of resource. However, when the burst length gets
larger, the rigid scheme drops in performance while the
reconfigurability scheme continues to give a high perfor-
mance. For a burst length of 64K requests, we see an im-
provement of around 80% for the reconfigurability scheme.
However, We can see from this result that as the compute
requirement increases an adaptable data-center can outper-
form a rigid one for all sizes of burstiness.

Figures 13a and 13b show the throughput given by the
system at different snap-shots for high and low burst lengths
respectively. For high burst lengths, the dynamic reconfig-
urability scheme provides a much higher performance as
compared to the rigid scheme. Again, for low burst lengths,
both the schemes give comparable performances.

Reconfigurability: Performance with Zipf Traces

0

5000

10000

15000

20000

25000

64K32K16K8K4K1K512

Burst Size (Number of similar requests)

T
h

ro
u

g
h

p
u

t(
T

P
S

)

Reconf Rigid

Figure 14. Performance of a Zipf Trace

Performance With A Real World Cup Trace

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Unit Unit*2 Unit*4

Compute Requirement (Units of 2ms)

T
hr

ou
gh

pu
t (

T
P

S
)

Reconf Rigid

Figure 15. Performance of a Real Trace

Performance of a Zipf trace: Figure 14 shows the per-
formance of the reconfigurability scheme for traces follow-
ing a Zipf pattern. We see that the performance of the
scheme is similar to that of the single file based trace. We

Reconfigurability: Sensitivity to Request Patterns

0

5000

10000

15000

20000

25000

30000

1K 4K 16K 64K

Burst of Single Type of Requests (No. of
Requests)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

0.2 sec 0.6 sec 1 sec 1.4 sec 1.8 sec

Figure 16. Impact of Sensitivity on the recon-
figurability module

have also performed experiments with real life workloads.

Figure 15 shows the performance of reconfigurability
with a real life world cup trace, consisting two-thirds of dy-
namic requests in bursts, having some static file requests at
intervals. The rigid data-center was configured to accept
an equal mix of both type of requests. This performance
was evaluated for different assumed requirements of com-
putation for these dynamic requests. In this case, we are
able to see up to three times improvement with an adaptable
data-center. We clearly see that in scenarios like work cup
traces, such extensive bursts of requests requiring a single
type of resource, namely computation can take advantage of
the adaptability to provide performance to the end clients.

Impact of sensitivity on the reconfigurability module:
Figure 16 shows the impact of sensitivity of the module
to reconfigure over the throughput achievable for different
types of request patterns. As mentioned earlier, a small
value for the sensitivity factor makes the system more re-
spondent to a change in the workload pattern (more sen-
sitive), but adds more overhead. On the other hand, a large
value for the sensitivity factor makes the system less respon-
dent to a change in the workload pattern (less sensitive), but
adds a lesser overhead.

As shown in the figure, for traces with small burst
lengths, we see a drop in performance when the sensitiv-
ity factor is high (1.8 sec). This is because, when the burst
length is low, reconfigurability is only beneficial if it is able
to respond to the small bursts quickly. A high sensitivity
factor reduces its capability to do so. On the other hand, for
traces with high burst lengths, we see a drop in performance
when the sensitivity factor is low (0.2 sec). This is because,
when the burst length is high, additional probes of the sys-
tem state are only adding a high overhead for the system
without any benefit.

14

Percentage of Times QoS was Kept

0

20

40

60

80

100

120

10000 14000 17500

QoS Guarantee (TPS)

P
er

ce
n

ta
g

e
T

im
es

 (
%

)

Reconf-64k Rigid-64k

Percentage of Times QoS was Kept

0

20

40

60

80

100

120

10000 14000 17500
QoS Guarantee (TPS)

P
er

ce
n

ta
g

e
T

im
es

 (
%

)

Reconf-512 Rigid-512

Figure 17. QoS guarantee keeping capability: (a) High Burstiness, (b) Low Burstiness

5.3 Quality of Service Guarantees

Figures 17a and 17b show the percentage of times the
two schemes (rigid and reconfigurability) keep the QoS
guarantees promised for traces with high (burst length =
64K) and low (burst length = 512) burst lengths respec-
tively. For the trace with low burstiness, we can see that
both the schemes are able to meet the promised QoS nearly
100% of the times. For large burst lengths (64K), when
the QoS guarantee provided is low, the rigid scheme is still
able to meet the QoS requirement nearly 100% of the times.
However, in this case, when the QoS guarantee provided is
increased, we can see that the QoS meeting capability of the
rigid scheme drops drastically to about 5%. On the other
hand, with the reconfigurability scheme, we can keep QoS
guarantees close to 100% of the times irrespective of the
burstiness of incoming request patterns even for high QoS
requirements.

Datacenter Over-provisioning to Meet QoS

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

3:1 2:2 1:3

Server:Proxy Ratio

T
h

ro
u

g
h

p
u

t
(T

P
S

)

100% Static 0% Static

Figure 18. Best Rigid Configuration for 4
nodes

Over-Provisioning To Meet QoS Guarantees: Fig-
ure 18 shows the performance of the rigid scheme for differ-

ent kinds of workloads and data-center configurations. As
we can see in the figure, the peak throughput guarantee we
can provide is bounded by the performance achieved for dy-
namic content. This is because dynamic content need to be
processed at the back-end before returning the data to the
user unlike static content which can be cached at the proxy
tier. Based on this, we picked a QoS guarantee of 9,000
TPS, which the over-provisioning based scheme can pro-
vide using 3 nodes in the application tier and 2 nodes in the
proxy tier (note that we don’t need 3 nodes in the proxy tier
since the same QoS for static content can be achieved with
just two nodes in the proxy tier).

Figure 19a shows the performance of the reconfigura-
bility scheme compared to the over-provisioning based
scheme. We see that when the burst length is low, recon-
figurability is able to meet the QoS guarantee only about
75% of the times while the over-provisioning based scheme
meets it almost 100% of the times. However, when the burst
length becomes larger, both schemes meet the QoS guaran-
tees nearly always. This again points to the efficient utiliza-
tion of all the nodes in the system by the reconfigurability
based scheme.

Figure 19b shows the normalized performance of the
reconfigurability scheme (normalized with respect to the
number of nodes used) compared to the over-provisioning
based scheme. We can see that both schemes are able to
meet the QoS requirements nearly 100% of the times.

5.4 Multi-Website Hosting Servers

In this section, we present a scenario where the data-
center hosts multiple websites. Though the scheme is
generic and can allow any number of different websites, for
ease of understanding, we have only considered two web-
sites where one of them is a high priority website for which
a QoS guarantee is given. The second website is a low pri-
ority website for which only the best effort service is guar-
anteed.

15

Performance of Reconfigurability Compared to
Over-provisioning

0

20

40

60

80

100

120

64K32K16K8K4K2K1K512

Burst Size (Number of Requests)

P
er

ce
n

ta
g

e
T

im
es

 Q
o

S

M
et

 (
%

)

Reconf Rigid

Cost Normalized Comparison of Over-
provisioning with Reconfigurability

0

20

40

60

80

100

120

64K32K16K8K4K2K1K512
Burst of Single Request Type (No. of Requests)

P
er

ce
n

ta
g

e
T

im
es

 Q
o

S

w
as

 M
et

 (
%

)

Normalized-Reconf Rigid

Figure 19. QoS guarantee keeping capability: (a) Against Over-Provisioning, (b) Normalized value
with number of nodes used

For the rigid approach, we allow over-provisioning for
the high priority requests by providing 5 nodes (3 nodes in
the application tier and 2 nodes in the proxy tier) - simi-
lar to the configuration in Section 5.3 for over-provisioning.
The remaining nodes (2 nodes) are provided to the low pri-
ority requests (1 node in the application tier and 1 node in
the proxy tier). However, it is to be noted that the concept
of over-provisioning is not strictly the best-case in this sce-
nario because of the presence of multiple websites, i.e., the
reconfigurability scheme can always shift nodes from the
low priority website to the high priority website to allow a
higher performance.

Figure 20a shows the QoS meeting capabilities for the
rigid scheme (with over-provisioning) as well as the recon-
figurability scheme. On guaranteeing the same QoS as the
single website case (9,000 TPS) or lower, we observe that
both the schemes are able to meet the guarantee 100% of
the times. On the other hand, when we increase the guaran-
teed throughput to 12,000 TPS, for low burst lengths (512),
the rigid scheme is still able to meet the QoS requirements
100% of the times. However, on increasing the burst length
to 64K, the rigid scheme is only able to meet the QoS
guarantee 40% of the times. The reconfigurability based
scheme, however, meets the QoS guarantee 100% of the
times in all cases.

Figure 21a shows the QoS meeting capability of the
over-provisioning scheme and the reconfigurability scheme
for the high priority requests with varying burst lengths.

Figure 21b shows the performance of the low priority
requests. Since only a minimal number of nodes are allo-
cated for the low priority requests, during a burst of low
priority requests, the rigid scheme would provide a very
low throughput. However, the reconfigurability scheme can
reassign nodes to service the low priority requests, thus
achieving a significantly higher throughput, especially for
large burst lengths.

Based on these results we can observe that the recon-
figurability scheme can: (i) achieve a much higher per-
formance for low priority requests in a multi-website sce-
nario and (ii) give better QoS guarantees than even the over-
provisioning scheme, which was traditionally considered
the best-case scenario with respect to QoS guarantee meet-
ing capabilities.

Snapshot of High Priority Requests followed by
Low priority

0

5000

10000

15000

20000

25000

5 70 13
5

20
0

26
5

33
0

39
5

46
0

52
5

59
0

65
5

72
0

78
5

85
0

91
5

98
0

10
45

11
10

Time elapsed (seconds)

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Reconf Rigid

Figure 22. Behavior of Reconfigurability with
Requests for Multiple sites

Figure 22 shows the snapshot performance for the data-
center with a trace having bursts of high priority and low
priority requests alternatively. We can see that the recon-
figurability scheme performs better than the rigid scheme in
nearly every case.

6 Related Work

There has been some previous research which focus on
dynamism in the data-center environment by HP labs and
IBM Research [26, 29]. These are notable in the sense that

16

Keeping QoS Guarantees for High Priority Sites
in Multi Website Data-center

0
20
40
60
80

100
120

6000 9000 12000
Throughput Guarantee (TPS)

P
er

ce
n

ta
g

e
T

im
es

G

u
ar

an
te

e
M

et
 (

%
)

Reconf-64K Rigid-64K

Keeping QoS Guarantees for High Priority
Sites in Multi Website Data-center

0
20
40
60
80

100
120

6000 9000 12000

Throughput Guarantee (TPS)

P
er

ce
n

ta
g

e
T

im
es

G

u
ar

an
te

e
M

et
 (

%
)

Reconf-512 Rigid-512

Figure 20. QoS guarantees with multiple sites hosted in the data-center: (a) High burstiness, (b) Low
burstiness

Percentage Times High Priority QoS Guarantee
was Met

0

20

40

60

80

100

120

64K32K16K8K4K2K1K512

Burst Size for Single Request Type

P
er

ce
n

ta
g

e
T

im
es

 (
%

)

Reconf Rigid

Performance of Low Priority Websites

0

5000

10000

15000

20000

25000

30000

64K32K16K8K4K2K1K512

Burst Size for Requests of Single Type

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Reconf Rigid

Figure 21. Performance with multiple sites hosted in the data-center: (a) QoS meeting capability for
high priority requests, (b) Performance for low priority requests

17

they were the first to show the capabilities of a dynamic allo-
cation of system resources in the data-center environment.
However, these solutions focused on lower level architec-
tural requirements mainly for storage related issues and are
not aware of the guarantees or requirements of the appli-
cation. Further, these rely on specific hardware to provide
these solutions and are hard to look at as commodity com-
ponent based solutions. In our approach, we try to propose a
solution that is not geared toward any specific hardware and
try to give a generic solution at the application level without
requiring any changes to existing applications.

Shah, Kim, Balaji, et. al., have done significant re-
search in User Level High Performance Sockets implemen-
tations [41, 24, 25, 7, 8, 6]. In one of our previous works [6],
we had evaluated the capabilities of such a pseudo-sockets
layer over InfiniBand in the data-center environment. How-
ever, as we had observed in [28], the two-sided nature of
Sockets API becomes an inherent bottleneck due to the high
load conditions common in data-center environments. Due
to this, we focused on the one-sided nature of InfiniBand
to develop our external modules. Further, the existing data-
center framework (Apache, PHP, etc.,) is still based on the
sockets API and can benefit from such high-performance
sockets implementations.

There has been previous research in QoS guarantees.
Senapathi, Gulati, et. al., have looked at providing differ-
entiated service in terms of network bandwidth for scien-
tific computing environments [39, 38, 21]. Bhatti et. al.,
have worked on architectures for supporting end-to-end re-
sponse time guarantees [11]. Most of the research focus
has been on improving QoS guarantees using novel meth-
ods of caching and load-balancing [15, 30]. The focus has
also been on providing guarantees for real time applica-
tions [14]. We believe that these approaches can be used
in a complementary manner with our re-reconfigurability
technique to provide better QoS guarantees.

7 Concluding Remarks and Future Work

Current data-centers are configured as multiple tiers with
each tier having a number of physical nodes. Each tier has
specific functionalities and services which they provide to
the users. With ever-increasing online businesses and the
growing popularity of personalized Internet services, dif-
ferentiation in the service provided to the end users in the
form of Quality of Service (QoS) guarantees is becoming
critical. Over-provisioning of nodes in the data-center tiers
is an accepted and widely used approach to provide Quality
of Service (QoS) guarantees due to the unpredictable nature
of incoming requests. However, this approach is not cost-
effective due to the wastage of resources it could potentially
incur. On the other hand, current high performance net-
works such as InfiniBand, Myrinet, Quadrics, etc., not only

provide high performance in terms of latency and band-
width, but also a number of advanced features such as one-
sided communication operations including remote memory
operations (RDMA) and network based atomic operations.

In this paper, we presented a novel architecture to pro-
vide dynamic reconfigurability of nodes in the data-center
which enables them to adapt their functionality based on
the system load and QoS guarantees provided by the data-
center; this avoids the need for over-provisioning of nodes.
Dynamic reconfigurability in this scheme is achieved with
the help of the one-sided communication operations offered
by InfiniBand without requiring any modifications to the ex-
isting data-center applications. We evaluated this scheme
with different patterns of static and dynamic content re-
quests using three kinds of traces: (i) Single file traces, (ii)
Zipf based traces and (iii) a real life world-cup trace. Our
experimental results show that the dynamic reconfigurabil-
ity scheme can be used to provide better QoS guarantees
(up to 20% better), meet the same guarantees with lesser
resources (up to 25% lesser nodes), or even both in some
cases.

We are currently working on multi-stage reconfigura-
tions. In the scheme presented, the least loaded node re-
configures itself to belong to the highest loaded tier in an
attempt to share the load. However, due to the heterogeneity
(hardware components available) in the cluster, this might
not be the optimal solution. On the other hand, a multi-level
reconfiguration, where a sequence of changes in the differ-
ent tiers allowing the most appropriate node be reconfigured
to the high load tier, could be more beneficial.

8 Acknowledgments

We would like to thank Sundeep Narravula for all the
help he provided in understanding the details and capabil-
ities of the apache server. We would also like to thank
Jiesheng Wu and several other members of the Network
Based Computing group at the Ohio State University for
all the valuable discussions we had during the course of the
project.

References

[1] 10 Gigabit Ethernet Alliance. http://www.10gea.org/.

[2] InfiniBand Trade Association Specifications.
http://www.infinibandta.org/estore.html.

[3] M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/research/FTG/via.

[4] Quadrics Supercomputers World Ltd. http://www.
quadrics.com/.

18

[5] InfiniBand Trade Association. http://www.
infinibandta.org.

[6] Pavan Balaji, Sundeep Narravula, Karthikeyan
Vaidyanathan, Savitha Krishnamoorthy, Jiesheng Wu,
and Dhabaleswar K. Panda. Sockets Direct Protocol
over InfiniBand in Clusters: Is it Beneficial? In the
Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), Austin, Texas, March 10-12 2004.

[7] Pavan Balaji, Piyush Shivam, Pete Wyckoff, and Dha-
baleswar K. Panda. High Performance User Level
Sockets over Gigabit Ethernet. In the Proceedings of
the IEEE International Conference on Cluster Com-
puting, pages 179–186, Chicago, Illinois, September
23-26 2002.

[8] Pavan Balaji, Jiesheng Wu, Tahsin Kurc, Umit
Catalyurek, Dhabaleswar K. Panda, and Joel Saltz.
Impact of High Performance Sockets on Data Inten-
sive Applications. In the Proceedings of the IEEE
International Conference on High Performance Dis-
tributed Computing (HPDC), pages 24–33, Seattle,
Washington, June 22-24 2003.

[9] M. Banikazemi, B. Abali, L. Herger, and D. K.
Panda. Design Alternatives for VIA and an Imple-
mentation on IBM Netfinity NT Cluster. Special Issue
of the Journal of Parallel and Distributed Computing
(JPDC), Vol. 61, No. 11, pp. 1512-1545, November
2001.

[10] M. Banikazemi, V. Moorthy, L. Hereger, D. K. Panda,
and B. Abali. Efficient Virtual Interface Architecture
Support for IBM SP switch-connected NT clusters. In
Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS), 2000.

[11] Nina Bhatti and Rich Friedrich. Web Server Support
for Tiered Service. In the Proceedings of the IEEE
Network, September/October, 1999.

[12] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[13] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Inter-
face Architecture. In Proceedings of Supercomputing,
1998.

[14] Surendar Chandra, Carla Schlatter Ellis, and Amin
Vahdat. Application-level differentiated multimedia
web services using quality aware transcoding. IEEE

Special Issue on QOS in the Internet, 18(12):2544–
2565, December 2000.

[15] G. Chen, C.L. Wang, and F.C.M. Lau. A scalable
cluster-based web server with cooperative caching
support.

[16] Compaq, Intel Corporation, and Microsoft Corpora-
tion. Virtual Interface Architecture (VIA) Specifica-
tions.

[17] GigaNet Corporations. cLAN for Linux: Software
Users’ Guide.

[18] Myricom Corporations. The GM Message Passing
System.

[19] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cot-
trell, O. Martin, F. Coccetti, C. Jin, D. Wei, and
S. Low. Optimizing 10-Gigabit Ethernet for Networks
of Workstations, Clusters and Grids: A Case Study. In
Proceedings of the IEEE International Conference on
Supercomputing, Phoenix, Arizona, November 2003.

[20] H. Frazier and H. Johnson. Gigabit Ethernet: From
100 to 1000Mbps.

[21] A. Gulati, D. K. Panda, P. Sadayappan, and P. Wyck-
off. NIC-based Rate Control for Proportional Band-
width Allocation in Myrinet Clusters. In International
Conference on Parallel Processing, September.

[22] http://www.top500.org. Top 500 supercomputer sites.

[23] J. Hurwitz and W. Feng. End-to-End Performance of
10-Gigabit Ethernet on Commodity Systems. IEEE
Micro, January 2004.

[24] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. Build-
ing a High-Performance Communication Layer over
Virtual Interface Architecture on Linux Clusters. In
the Proceedings of the IEEE International Conference
on Supercomputing (ICS), pages 335–347, Naples,
Italy, June 16-21 2001.

[25] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. SO-
VIA: A User-level Sockets Layer Over Virtual Inter-
face Architecture. In the Proceedings of the IEEE In-
ternational Conference on Cluster Computing, pages
399–408, California, USA, October 8-11 2001.

[26] HP Labs. HP virtualization solutions: IT sup-
ply meets business demand: White Paper. In
http://h30046.www3.hp.com/uploads/infoworks/,
July.

[27] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda.
High Performance RDMA-Based MPI Implementa-
tion over InfiniBand. In SC, June 2003.

19

[28] Sundeep Narravula, Pavan Balaji, Karthikeyan
Vaidyanathan, Savitha Krishnamoorthy, Jiesheng Wu,
and Dhabaleswar K. Panda. Supporting Strong Co-
herency for Active Caches in Multi-Tier Data-Centers
over InfiniBand. In the Proceedings of the IEEE
International Workshop on System Area Networks
(SAN), 2004.

[29] Daniel OHare, Pankaj Tandon, Hemanth Kalluri, and
Phil Mills. SNIA SSF Virtualization Demonstration.
In IBM Systems Group - TotalStorage Software: White
Paper, October.

[30] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, , and E. Nahum. Locality-
Aware Request Distribution in Cluster-based Network
Servers. In the proceedings of the ACM eighth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, Oc-
tober.

[31] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM). In Proceedings of Supercomputing, 1995.

[32] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network (QsNet):
High-Performance Clustering Technology. In the Pro-
ceedings of the IEEE International Conference on Hot
Interconnects, August 2001.

[33] L. Prylli and B. Tourancheau. BIP: A New Proto-
col designed for High Performance Networking on
Myrinet. In Proceedings of the International Parallel
Processing Symposium Workshop on Personal Com-
puter Based Network of Workstations, 1998.

[34] L. Prylli, R. Westerlin, and B. Tourancheau. Model-
ing of a High Speed Network to Maximize Through-
put Performance: the Experience of BIP over Myrinet.
In Proceedings of Parallel and Distributed Processing
Techniques and Applications (PDPTA ’98), 1998.

[35] Quadrics Supercomputers World Ltd. Elan Program-
ming Manual. 1999.

[36] Quadrics Supercomputers World Ltd. Elan Reference
Manual. 1999.

[37] Quadrics Supercomputers World Ltd. Elite Reference
Manual. 1999.

[38] S. Senapathi, B. Chandrasekharan, D. Stredney, H.-
W. Shen, and D.K. Panda. QoS-aware Middleware
for Cluster-based Servers to Support Interactive and
Resource-Adaptive Applications. In The Twelfth IEEE
International Symposium on High Performance Dis-
tributed Computing, June.

[39] S. Senapathi, D. K. Panda, D. Stredney, and H.-W.
Shen. A QoS Framework for Clusters to support Ap-
plications with Resource Adaptivity and Predictable
Performance. In the Proceedings of the IEEE Interna-
tional Workshop on Quality of Service (IWQoS), May.

[40] Hemal V. Shah, Dave B. Minturn, Annie Foong,
Gary L. McAlpine, Rajesh S. Madukkarumukumana,
and Greg J. Regnier. CSP: A Novel System Archi-
tecture for Scalable Internet and Communication Ser-
vices. In the Proceedings of the 3rd USENIX Sym-
posium on Internet Technologies and Systems, pages
pages 61–72, San Francisco, CA, March 2001.

[41] Hemal V. Shah, Calton Pu, and Rajesh S. Madukkaru-
mukumana. High Performance Sockets and RPC over
Virtual Interface (VI) Architecture. In the Proceedings
of the CANPC workshop (held in conjunction with
HPCA Conference), pages 91–107, 1999.

[42] Piyush Shivam, Pete Wyckoff, and Dhabaleswar K.
Panda. EMP: Zero-copy OS-bypass NIC-driven Giga-
bit Ethernet Message Passing. In the Proceedings of
the IEEE International Conference on Supercomput-
ing, pages 57–64, Denver, Colorado, November 10-16
2001.

[43] Piyush Shivam, Pete Wyckoff, and Dhabaleswar K.
Panda. Can User-Level Protocols Take Advantage of
Multi-CPU NICs? In the Proceedings of the IEEE In-
ternational Parallel and Distributed Processing Sym-
posium, Fort Lauderdale, Florida, April 15-19 2002.

[44] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
Net: A user-level network interface for Parallel and
Distributed Computing. In Proceedings of the 15th
ACM Symposium on Operating System Principles, De-
cember 1995.

[45] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. In ICPP,
2003.

20

