
The remote memory access (RMA) is an increasingly
important communication model due to its excellent
potential for overlapping communication and
computations and achieving high performance on modern
networks with RDMA hardware such as Infiniband. RMA
plays a vital role in supporting the emerging global
address space programming models. This paper
describes how RMA can be implemented efficiently over
InfiniBand. The capabilities not offered directly by the
Infiniband verb layer can be implemented efficiently
using the novel host-assisted approach while achieving
zero-copy communication and supporting an excellent
overlap of computation with communication. For
contiguous data we are able to achieve a small message
latency of 6µs and a peak bandwidth of 830 MB/s for 'put'
and a small message latency of 12µs and a peak
bandwidth of 765 Megabytes for 'get'. These numbers are
almost as good as the performance of the native VAPI
layer. For the noncontiguous data, the host assisted
approach can deliver bandwidth close to that for the
contiguous data. We also demonstrate the superior
tolerance of host-assisted data-transfer operations to
CPU intensive tasks due to minimum host involvement in
our approach as compared to the traditional host-based
approach. Our implementation also supports a very high
degree of overlap of computation and communication.
99% overlap for contiguous and up to 95% for non
contiguous in case of large message sizes were achieved.
The NAS MG and matrix multiplication benchmarks were
used to validate effectiveness of our approach, and
demonstrated excellent overall performance.

1. Introduction
The demand for computer cycles in scientific simulation
is growing faster than the processor speed described by
Moore’s law. To mitigate the impact of this trend, parallel
systems employ increasingly large numbers of
processors. At the same time, the gap between processor,
memory, and network speed is not improving but getting
worse. Even to sustain the scalability and performance
levels of current leading scientific applications, progress
needs to be made in implementation of the user-level
communication protocols. First, zero-copy
communication protocols are of increased importance
because they remove memory performance factor from
the communication performance model and help avoid
wasting the valuable and limited memory bandwidth of

the compute nodes. The limited memory bandwidth is
often pointed out as a major issue affecting application
efficiency in current systems based on commodity
processors [1]. Second, the ability to overlap
communication with computation as a simple and well
understood latency-hiding mechanism is essential for
addressing the growing gap between the network and
processor speed. Memory copies used internally to
implement the user-level communication protocols
require host involvement and thus reduce the potential for
effective overlapping nonblocking communication with
computation. Because zero-copy protocols do not require
memory copies, they are a more attractive approach for
supporting latency hiding through nonblocking
communication.
In this paper, we are focusing on the remote memory
access (RMA) communication model. RMA offers
several desirable properties such as the lack of explicit
coordination between sender and receiver and simplified
flow control (does not involve tag matching or handling
or early message arrivals). RMA is well suited for zero-
copy nonblocking implementation. Current
communication networks offer increasing levels of
support for RMA communication. The RMA model has
been available in the user-level communication libraries
such as SHMEM, MPI-2 1-sided, ARMCI, and Global
Arrays. It is also the preferred communication model for
implementing the emerging global address space
languages such as UPC [2] or CAF [3]. We are working
on advancing ARMCI, a portable RMA library used as a
part of the run-time system developed by the Center for
Programming Models for Scalable Parallel Computing
project (www.pmodels.org) sponsored by the U.S.
Department of Energy. In particular, the current goal is to
provide efficient communication capabilities that could
be used for latency hiding and reducing communication
overhead in language- and library- based programming
models and for devising implementation techniques that
enhance the overall application performance.
The cost-effectiveness and performance of InfiniBand
makes this technology a very attractive network for
commodity clusters. This paper evaluates the
performance and capabilities of InfiniBand in the area of
RMA communication. It describes how to harness the
InfiniBand verbs layer to implement RMA efficiently
while addressing the requirements of the user-level

Host-Assisted Zero-Copy Remote Memory Access Communication on InfiniBand

V. Tipparaju† G. Santhanaraman‡ J. Nieplocha† D.K. Panda‡

† Pacific Northwest National Laboratory
‡ Ohio State University

 2

protocols by implementing ARMCI one-sided RMA on
top of InfiniBand. In addition, we describe a novel
implementation approach called host- assisted zero-copy
RMA. It can be used to implement the missing RMA
capabilities in the network communication protocols
while achieving zero-copy communication and
maximizing the potential for overlapping communication
with computation. In the context of InfiniBand, this
approach has been used for noncontiguous RMA
communication, which has limited support in the
InfiniBand verbs standard. This has been accomplished
using nonblocking scatter-gather point-to-point
messaging interfaces of the Mellanox VAPI layer and a
special helper thread. For other networks with even more
limited support for RMA (e.g., VIA), this technique can
be used to efficiently implement RMA Get protocol on
top of RMA Put while minimizing host involvement and
preserving zero-copy processing.
The effectiveness of these techniques has been evaluated
across two different platforms with InfiniBand
interconnect. For the contiguous case, we are able to
achieve a small message latency of 6.0µs and a peak
bandwidth of 830 MegaBytes for 'Put' and a small
message latency of 12µs and a peak bandwidth of 765
MegaBytes for 'Get'. For the non contiguous case with the
host based approach we achieved close to the peak
bandwidth and very close to the contiguous case. The
proposed host-assisted approach delivered superior
tolerance to CPU intensive tasks because of the minimal
host involvement. Our implementation of RMA protocols
supports up to 99% and 95% overlap for contiguous and
noncontiguous operations respectively for large message
sizes. The benefits of this approach were demonstrated at
the application level in the context of the NAS MG
benchmark and in the dense matrix multiplication.
The paper is organized as follows. Section 2 provides an
overview of RMA communication. Section 3 describes
InfiniBand architecture and its capabilities. In Section 4,
we present the implementation of basic RMA capabilities
over InfiniBand and evaluate their performance. Section 5
describes our novel host-assisted protocol and
demonstrates its performance benefits in the context of
noncontiguous data communication. An application-level
performance evaluation is presented in Section 6. Our
conclusions are offered in Section 7.

2. RMA Communication
Remote memory operations offer an intermediate
programming model between message passing and shared
memory. This model combines some advantages of
shared memory, such as direct access to shared/global
data, and the message-passing model, namely the control
over locality and data distribution. Certain types of shared
memory applications can be implemented using this
approach. In some other cases, remote memory
operations can be used as a high-performance alternative

to message passing. Many such applications are
characterized by irregular data structures and dynamic or
unpredictable data access patterns. MPI-2 offers one
version of remote memory operations with two specific
variations—active and passive target one-sided
communication. Other versions are found in vendor
specific interfaces such as LAPI on the IBM SP, RDMA
on the Hitachi SR-8000, MPlib on the Fujitsu VPP-5000,
and in other portable interfaces such as ARMCI [4] or
SHMEM [5]. Differences between these models can be
significant in terms of progress rules and semantics, and
they can affect performance. MPI-2 offers a model
closely aligned with traditional message passing and
includes high-level concepts such as windows, epochs,
and distinct progress rules for passive and active target
communication. A recent paper [6] describes how MPI-2
model is not optimal for implementing global address
space languages due to excessive synchronization and its
progress rules.
In ARMCI, we are focusing on a low-level interface and
simpler progress rules motivated by the existing hardware
support for remote memory operations on the current
systems. The library is intended to be used as a run-time
system for other programming models such as Global
Arrays [7], Co-Array Fortran [8] or UPC compilers, or
even as a portable SHMEM library [9]. Compared to the
well known Cray SHMEM one-sided interface [5],
ARMCI places more focus on noncontiguous data
transfers that correspond to data structures in scientific
applications (e.g., sections of multidimensional dense or
sparse arrays). Such transfers can be optimized, thanks to
the noncontiguous data interfaces available in the
ARMCI data transfer operations—multi-strided and
generalized UNIX I/O vector interfaces.
Some networks and native communication interfaces on
these networks do not have direct support for all the
RMA operations offered by the portable interfaces
discussed above. Other networks have a rich functionality
set but introduce substantial performance compromises.
For example, IBM LAPI [10], an active message library
for the IBM SPs, does support contiguous and
noncontiguous RMA but is not copy-free and requires use
of the host CPU on both sides of data transfer. As the
memory copies degrade performance and host CPU
resources are taken away from the application, this
approach usually has an adverse affect on the overall
application performance and scalability. To maximize
application performance, it is important to avoid data
movement and protocol processing on the remote side as
much as possible. RMA models that require explicit
synchronization might incur overhead on the part of the
application running on the remote side. For example, the
MPI-2 one-sided operations involve synchronization
between the source and the destination for every one-
sided operation via a fence, a lock, or dedicated Post-

 3

Wait coordination in the active target mode [11, 12], at
least in principle.
Despite the progress in networking technologies, the gap
between processor speed and network (especially latency)
has been increasing. As a result of this trend, the ability to
overlap communication with computation through the use
of nonblocking communication is becoming critical.
Given the simplicity of its communication model (source
and destination for the data transfer explicitly known, no
send/receive tag and buffer matching, no early message
arrival processing), RMA offers increased opportunities
for designing implementations that provide a high degree
of overlap between communication and computations. In
addition to reducing or eliminating the data movement on
the remote side, good implementation of the nonblocking
RMA should return the control to the user program as
soon as possible, giving the application a chance to make
progress on computations while the communication is
being completed by the underlying network hardware.

3. Overview of InfiniBand
InfiniBand is a recently developed interconnect
technology that has been rapidly becoming popular in the
commodity clusters. The InfiniBand architecture is an
industry standard introduced by the InfiniBand Trade
Association and has been proposed as the next-generation
interconnect for I/O and inter-process communication.
The InfiniBand architecture defines a system area
network (SAN) for connecting multiple independent
processor platforms, I/O platforms, and I/O devices. It
uses scalable switched serial links to design clusters and
servers that can offer high bandwidth and low latency. A
4x HCA link allows for a bandwidth of up to 10 Gb/s. In
an InfiniBand network, nodes are connected to the IBA
fabric using channel adapters. The inter-processor
communication is handled by the host channel adapters
(HCA) installed on the processing nodes. The I/O nodes
are connected to the fabric through target channel
adapters (TCA). The IBA hardware offloads much of the
I/O communications operation from the OS and CPU,
thus eliminating traditional communication overhead.
Further, each channel adapter may have one or more ports
for use as multiple paths to provide reliability. HCA,

TCA, switch, routers, and a subnet manager form the five
primary components of an InfiniBand fabric.
Unlike VIA, InfiniBand architecture does not specify an
API even though it does incorporate many of the concepts
of VIA. IBA defines a semantic interface called Verbs
that configures, manages, and operates a HCA. The
communication verbs are based on queue pairs.
InfiniBand supports both channel (send/receive) and
memory (RDMA) communication semantics. These
operations are initiated by posting work queue requests
on the send or receive queues. The completion of a work
request is reported through completion queues (CQs).
The host communication buffers have to be registered
because the HCA uses DMA operation to send from or
receive into these buffers.
VAPI is the Verbs implementation provided by Mellanox
Technologies for HCAs. In addition to basic send/receive
and RDMA read/write, they provide scatter/gather
operations as well as atomic operations, thus supporting
several essential interfaces of the RMA communication.
With communication capabilities provided by the new
InfiniBand VAPI as an example, one also can implement
some of the RMA capabilities that are not directly
provided by underlying communication layer.

4. Implementing the Basic RMA Capabilities
over InfiniBand
A mismatch between user-level RMA interfaces and
InfiniBand requirements is related to the virtual memory.
The native RDMA write and read operation on
InfiniBand can address only so-called registered memory
for both sides of the data transfer. Memory registration
involves locking pages in physical memory, which can be
quite costly. In addition, the amount of memory that can
be registered/locked is limited. This constraint has a
profound impact on the implementation strategies of user-
level RMA on this network. Three techniques or
strategies address the requirement for registered memory
in InfiniBand: 1) on-demand dynamic memory

0

500

1000

1500

1 100 10000 1000000

bytes

m
ic

ro
se

co
n

d
s

 .

Registration
Registration+Deregistration
Memory Copy

c

Figure 2: Cost of the VAPI memory registration and
deregistration as compared to the memory copy on
Itanium-2 1GHz processor.

NIC

Step1:client sends
 request

���������

	
����

 C

 NIC

 Step 7:client
 copy

Step 3
(opt A): copy

Step 4
opt A):
DMA

Step6: DMA

Node 0 Node 1

Step 2: Get request

Step 5: Get response

S ���������	
����

 C C C

S

Step 3
(opt B):DMA

���

	
����

���

	
����

���������	
����

Figure 1: Host-based pipelined Get protocol

 4

registration and deregistration (or lazy deregistration) as a
part of the data transfer; 2) copying data via preallocated
registered memory buffers (we refer to this as the host-
based/buffered technique); and 3) providing the user with
a memory allocation interface that allocates registered
memory underneath.
The first technique is potentially more attractive, as it
provides zero-copy data transfers and eliminates the need
for data copy present in the second strategy. However, it
does not always lead to superior performance, as the
memory registration operations can be relatively
expensive. Figure 2 shows on log-linear scales the
performance of memory registration operations
(registration and deregistration calls combined) in
InfiniBand compared to the bandwidth of the memory
copy operation.
We implemented all three strategies described above.
Because of the cost of memory registration on
InfiniBand, Strategy 1 is not very competitive. An
enhancement to the second technique is to divide data
into chunks and pipeline the memory copy and
nonblocking communication so that they overlap. Based
on the message size, the message transmission/reception
can be broken into smaller requests; a copy of one part of
the request can be overlapped with the transmission of
another piece, as described in [14]. Figure 1 shows the
steps involved in a host-based/buffered protocol.
For these three strategies to coexist, special care is
needed. First, the user can optionally call the provided
memory allocator interface, which attempts to allocate
registered memory. Because the memory is
registered/pinned on a page basis, the memory is
allocated from the operating systems in potentially larger
chunks and managed by a portable K&R malloc code. In
addition, there is a table of the registered chunks with the
address range and VAPI memory key information. If the
requested amount of memory can be allocated but not
registered, the appropriate entry in the table is not added.
When placing an RMA data transfer call, the user does
not have to be concerned about whether memory on

either/both sides of the data transfer has been registered.
We simply compare the specified address range to the
entries in the table; by increasing the granularity of the
memory segments, we can limit the number of entries in
the tables and the associated verification cost, if the
specified address range fits in an entry in the table, we
can use the InfiniBand zero-copy RDMA Read/Write
protocol directly. Otherwise, depending on the size of the
message, either Strategy 1 or 2 (described above) is used.
4.1 Performance of basic put/get operations
We used two different platforms for evaluating the
efficiency of our implementation and analyzing the
performance of different protocols. The first (henceforth
referred to as cluster-1) is a dual processor -GHz
Itanium2 cluster with Mellanox A1 “Cougar” cards. The
second one (referred to as cluster-2) is a 32-node dual
processor Pentium IV cluster with Mellanox A1 cards.
The cluster-2 was used only in the comparison of NAS
MG benchmark because a bigger configuration was
necessary for understanding the impact of these protocols
on application benchmarks.
Figures 3 and 4 show the performance of zero-copy
contiguous ARMCI Get and Put operations. Figure 3
compares the bandwidths of ARMCI Put operation with
MPI send/receive, Mellanox VAPI RDMA Put, and
Mellanox VAPI send/receive. For computing Mellanox
VAPI bandwidth, a performance test “perf_main”
provided by Mellanox was used. This Mellanox test
chains multiple RDMA’s in computing bandwidth and
hence doesn’t end up computing the actual average point
to point bandwidth. ARMCI_Put bandwidth however
seems slightly lower but is very representative of what an
application using ARMCI put can expect as it computes
an average of the actual point to point bandwidth. For the
MPI bandwidth, a nonblocking send/receive-based test
was used [13]. Figure 4 shows the ARMCI Get
bandwidth as compared to the Mellanox VAPI RDMA
get operation. It can be seen from the figures that ARMCI
operations have been implemented with very little

Figure 4: ARMCI Get Bandwidth in comparison
to RAW VAPI Read bandwidth

Figure 3: ARMCI Put Bandwidth in comparison
to Raw VAPI bandwidth and MPI

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000
Bytes

M
B

p
s

ARMCI Zero-Copy Put
VAPI RDMA Put
VAPI send/recv BW
MPI Send/Recv

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000
Bytes

M
B

p
s

ARMCI Zero-Copy Get

RAW VAPI RDMA Get

 5

overhead. On cluster-1 we obtained a peak bandwidth of
730 MBps for a Put operation and 689 MBps for a get
operation. On cluster-2 we obtained a peak bandwidth of
830 MBps for a Put operation and 765 MBps for a get
operation. It should be noted here that unlike MPI
send/receive, ARMCI Put / Get are based on a less
restrictive one-sided communication model.
Figure 5 compares performance of zero-copy and the two
copy-based implementations: host-based/buffered
(baseline) and pipelined. The pipelined version uses the
scheme we had developed earlier [14]. It relies on
dividing the data into multiple, variable-sized chunks and
exploits the nonblocking RDMA Read/Write
communication to overlap memory copies on the client
and server side with data transmission. To improve
performance for smaller requests, the chunk size is
adaptively chosen to maximize the concurrency between
memory copies and data transmission operations on both
sides involved in the data transfer.
 Although the pipelined version delivers good
performance, it relies on the remote host participation in
the data transfer. Therefore, the numbers presented in
Figure 5 do not reflect the operational regimes in actual
applications where remote CPU is involved in
computations. We designed a test to measure the impact
of a remote host CPU engaged in calculations and found

that it does, in fact, bring performance down in the copy-
based (host-based/buffered and host-based/pipelined)
implementations (Figure 6). As expected, the
performance of the zero-copy version is virtually immune
to the remote host activities, whereas the performance of
copy-based protocols is seriously degraded.
4.2 Overhead and overlap
One of the key design requirements is reducing the
implementation overhead over the VAPI layer. Another
one is to maximize the potential for overlap between user
computations and nonblocking communications. At the
initiation of a call, the most appropriate protocol for
efficient transmission of that message is selected based
on the message size. The receiver thread on the remote
side can select either the polling or blocking mode of
operation, depending on the processing resources
available on the system. Latency of our implementation is
very comparable to the lowest attainable latencies of the
VAPI layer. This is due to 1) direct use of RDMA
capabilities whenever possible and 2) fast access to the
registered memory information to determine if the current
operation can directly use RDMA. The latencies of
ARMCI Put/Get and MPI are contrasted with the VAPI
level latencies obtained from the Mellanox VAPI layer in
Table-1.

Figure 6: Bandwidth comparison for different
protocols supporting the contiguous get data
transfers with remote side busy.

Figure 5: Bandwidth comparison for different
protocols supporting the contiguous get data
transfers with remote side idle.

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000
Bytes

M
B

ps
Baseline Get
Pipeline Get
Zero-Copy Get
RAW RDMA Get

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000
Bytes

M
B

ps

Baseline Get
Pipeline Get
Zero-Copy Get
RAW RDMA Get

Figure-7(a): Percentage overlap of Zero Copy and
Host-Based Buffered Get 1D get

Figure-7(B): Percentage overlap of Zero Copy and
Host-Based Buffered 2D Get

0

20

40

60

80

100

1 10 100 1000 10000 100000 1000000
Bytes

Pe
rc

en
t O

ve
rl

ap

P ercent Overlap ID Zero Co py Get

P ercent Overlap ID B uffered Get

0

20

40

60

80

100

1 10 100 1000 10000 100000 1000000
Bytes

Pe
rc

en
t O

ve
rl

ap

P ercent Overlap 2D Ho st-A ssisted Zero -Co py
get
P ercent Overlap 2D Ho st-B ased/B uffered Get

 6

PlatformARMCI
Put

MPI VAPI
RDMA Put

VAPI
RDMA Get

ARMCI
Get

IA32 6.2 6.3 5.46 12.2 12.3
IA64 7.44 8.03 5.84 15 16
Table-1: ARMCI, MPI and VAPI latencies

The overlap attainable by contiguous ARMCI operations
is very close to that obtained with the Mellanox VAPI
layer (see Figure 7). It is close to 99% for large messages,
meaning 99% of the total data transfer time can be used
by the application to do the computation. In comparison
to the zero-copy get, the host-based buffered protocol
offers relatively less overlap because, as a part of a wait
operation in the critical path, data needs to be copied. For
the Itanium-2 systems, the percentage of total time that
was not overlapped was almost same as the percentage of
total time it took for posting a descriptor and polling for a
completed descriptor (it is measured as 8 microseconds
on average in cluster-1 used for our tests). Thus the
overlap attainable at the ARMCI level for all the message
sizes in the zero-copy case is almost equal to the
maximum amount of overlap attainable directly at the
VAPI level.
4.3 Atomic operations
The atomic Read-Modify-Write (RMW) operation is a
very useful primitive for implementing mutual exclusion,
shared task counters (e.g., in dynamic load balancing),
and more complex synchronization operations. Unlike
MPI-2 that offers no support for RMW, ARMCI offers
atomic swap’ and atomic fetch and add for both
intermediate and long data types as part of the RMW
interface. We used two techniques for implementing these
operations. The first technique is server-based; the second
technique bypasses the server thread by using VAPI
RDMA atomic calls.
For the server-based implementation, the client sends the
request message to the data-server thread on the remote
side [14]. The data server thread executes the operation
on behalf of the requesting process and sends the result
back to the client. To achieve atomicity, the server needs
to lock the local memory, perform the operation, and
unlock the memory before sending the result. In the
second implementation, we exploit the atomic operations
provided by the VAPI interface to enable a faster RMW
operation. The atomic operations provided by VAPI are
atomic fetch and add and atomic compare and swap with
an operand size of 64 bits, which restricts their
usefulness. The VAPI atomic operations are one-sided
and do not involve host overhead on the remote node.
The operation can be completed either through polling or
through event-based notification, which involves
registering a function handler to notify completion. In our
implementation, we use the polling-based approach for
performance considerations. The requesting process posts
an atomic fetch and add and then polls the send

completion queue for the completion of the atomic
operation.
We compared the two implementations of ARMCI RMW
for the atomic fetch and add operation. The results show
that the VAPI atomic-based implementation cuts down
the latency of the RMW operation by about 23%,
reducing it from 22.1 µs for the server-based
implementation to 17.1 µs in the RDMA implementation,
in addition to eliminating host involvement on the remote
node.

5. Host-Assisted Zero-Copy RMA
The IBA verbs layer has some inadequacies in providing
support for all the RMA capabilities required by
applications. We attempted to address its lack of support
in providing one-sided noncontiguous strided and vector
data transfers. A simple way of addressing the lack of
support for one-sided data transfer between a
strided/vector source and a strided/vector destination is to
maintain a contiguous buffer on both the local and the
remote side and move data using this contiguous buffer.
This approach requires heavy involvement on both the
local and remote sides in moving the data between the
buffer and the noncontiguous source or destination.
Another approach that can be used here is to do multiple
contiguous transfers for each contiguous chunk. This
approach is zero-copy but may require the initiator of the
request to spend some time in processing the multiple
contiguous requests it has to initiate for every
noncontiguous request. In addition, handling flow control
issues like the number of outstanding requests allowed
might adversely affect performance. We introduced a
host-assisted zero-copy method to address the problems
inherent in both the approaches described above.
To leverage the advantages of the host-assisted zero-copy
approach in Mellanox VAPI, memory on both sides must
be registered. The user is not expected to either explicitly
register memory or keep track of this information.
Instead, as described in Section 4, we maintain and parse
our high-granularity global memory information table to
determine if the memory on both sides is registered. The
host-assisted approach requires partial involvement of a
remote host to complete operations. We refer to the
representative on the remote side that assists in the
completion of the operation as a “helper” thread. The
helper thread initiates an operation and hence requires
minimal remote-side CPU involvement. This is very
similar to the ARMCI data server thread [4, 14] and the
dispatcher thread in the IBM LAPI. The significant
difference is that the helper thread does not copy any data
and does not wait on an operation it issued to complete.
With this helper thread as an assistant to complete the
operation on the remote side, we describe the
implementation details of contiguous and noncontiguous
one-sided Get and Put operations. We demonstrate the
benefits of this approach by contrasting its performance

 7

with the traditional host-based/buffered approach and by
showing the performance of these protocols on a few
application benchmarks in Section 6.
5.1 Get operation for Contiguous Data
Because the Mellanox VAPI implements the RDMA
Read operation, contiguous get can be done using the
RDMA Read operation when both source and destination
memories are registered. On networks that do not support
RDMA Read or have limited or unoptimized RDMA
Read, implementation of this scheme is inherently simple.
The client doing the get operation sends a request to the
helper thread on the remote node. The helper thread, upon
receiving a get request, initiates a RDMA put and then
would resume polling/blocking. As a result, request
processing overhead on the remote host is very little. We
verified the effectiveness of this approach on the Myrinet
GM 1.6 [18]. The ARMCI Get latency dropped from
27µs to 24µs by using the host-assisted approach. Get
bandwidth improved from 198MB for copy based
protocol to 237MBps for host-assisted zero-copy
contiguous get, there by showing that this approach is not
just high performance but also adaptive to the platforms
that don’t have support for RDMA read.

5.2 Get Operation for Noncontiguous Data
Because a noncontiguous data transfer would involve
transfer of multiple segments of data, our strategy is to
use the scatter/gather message passing feature provided
by IBA to achieve the zero-copy transfer. Using that
feature, we can send /receive multiple data segments as a
single message by posting a single scatter/gather
descriptor. Two types of scatter/gather message-passing
operations defined in IBA VAPI are 1) Gather-Send
(which requires the noncontiguous data being sent to be
represented as a Gather-Send descriptor) and 2) Scatter-
Receive (which requires the noncontiguous destination
for the receive to be specified in a Scatter-Receive
descriptor format).
In a host-assisted zero-copy Put, the source sends a
request to the remote side the helper thread processes the
request, converts the vector/stride information in the
request into a VAPI Receive-Scatter descriptor, posts the
descriptor, and sends an acknowledgment to the

requesting process, indicating that it is ready. On
receiving this acknowledgment, the source process posts
a Gather-Send from the VAPI Gather-Send descriptor it
created while waiting for an acknowledgment from the
helper thread. This directly delivers the data to the
destination memory without the overhead of any
intermediate copies. Although the explicit
acknowledgment might seem like an overhead, for large
messages, when the copying cost starts to dominate, this
approach performs better. It could be enabled only for
multidimensional Put operations when the first stride or
the size of each contiguous segment is large.
For a host-assisted zero-copy Get (Figure 8), the source
node posts a Scatter-Receive descriptor to receive the
vector/strided data and then sends a request to the remote
host with the remote stride/vector information. The helper
thread on the remote host receives the request and then
posts a corresponding VAPI Gather-Send by converting
the stride/vector information in the request message into a
VAPI Gather-Send descriptor. The implementation of this
protocol prompted us to address a number of design
issues.
Limit on Scatter/Gather Entries per Descriptor: The
strided put/get operations can be used to transfer sections
of multidimensional arrays. Each dimension of the array
can support any number of data segments. However, the
IBA implementation puts an upper limit of 60 on the
number of scatter/gather entries that can be allowed per
Scatter-Receive or Gather-Send descriptor. Hence, for
large messages, the maximum scatter/gather entry limit
requires us to extend the above approach. Because we can
have only 60 scatter/gather entries in a descriptor, our
solution is to break our message into chunks of up to 60
data segments and post a gather send/scatter receive for
each one of them. Posting a send/receive is a nonblocking
operation in IBA and takes only a very short time (a
microsecond on Itanium 1GHz), so the overhead in
posting multiple gather descriptors is not significant. In
the case of Strided Get, the client posts multiple scatter
receives and then sends the request. At the remote side,
the helper thread processes the request and posts multiple
gather sends. A similar approach has been followed for
implementing the noncontiguous puts.
Resource Allocation: At the client level, memory needs to
be allocated and maintained to create a scatter/gather
descriptor from a strided/vector request. Unlike VIA,
VAPI copies the posted descriptor on to the NIC and
hence does not require us to keep the descriptor until the
request has been completed. At the NIC level, the number
of scatter/gather entries must be decided at the
initialization phase. The larger the scatter gather list, the
larger the amount of memory allocated per descriptor on
the NIC. To investigate the effect of this on the
performance of the operation, we conducted experiments
to measure the change in latency with increasing number

NI

NIC

C

NI

NIC

Step 7: Scatter

Node 0 Node
1

Step 3: Get request

Step 6: Get response

S

 Sends
 request

C C C

S

C C

S

Step 5: Gather

� ���

	
����

��� � �
�

	
����

Step1:client posts scatter

Step 4: server posts
 gather

Node 1

Step2:client

Figure 8: Host assisted get protocol
forontiguous data

 8

of scatter/gather entries. Overhead for having 60 scatter
gather entries in a descriptor instead of 1 is not significant
(< 1 micro sec) and hence we could afford to set the
scatter/gather limit to the maximum allowed value of 60.
5.3 Performance of Host-Assisted Approach
 Figure 9 compares the performance of host-
based/buffered get and host-assisted zero-copy get
operations with MPI for two-dimensional data. Zero-
Copy 2D get in Figures 9 and 10 represents the approach
discussed earlier in this section where a noncontiguous
Get operation is implemented on top of multiple
contiguous RDMA Get operations, one for each
contiguous segment. For this test, ARMCI 2D data is
represented using the strided data format [4] and in MPI
using the strided data type. Clearly the host-assisted zero-
copy implementation performs much better and more
significantly so when the first dimension is large.
An advantage of using host-assisted zero copy can be
determined by measuring the effect on protocol
performance when the remote side is doing a CPU-
intensive operation. Unlike the zero-copy approach, host-
assisted zero-copy requires some host involvement in
initiating data transfer. This is more representative of the
impact these protocols may have on an application than
mere measurement of communication bandwidth/latency.
Figure 10 shows the performance difference between the
buffered and host-assisted zero-copy protocols when the
remote side is doing a CPU-intensive operation. In
comparison to Figure 9, it is very clear that the
performance of the host-assisted zero-copy protocol has
not been affected at all by the CPU-intensive operation on
the other side while the performance of the buffered Get
protocol dropped very significantly. This clearly shows
the very low overhead this protocol imposes on the
remote-side CPU.
 5.4 Overhead and Overlap
Another significant advantage of this protocol is the
amount of overlap it can provide in nonblocking
operations. Because the implementation does not involve
any data movement in call initiation or call completion,
the amount of overlap possible is much higher than that

for the other protocols. This can be seen in Figure 7(b),
which compares the amount of overlap attainable with
host-based and host-assisted protocols for noncontiguous
data transfer of various square chunks of data.

6. Experimental Evaluation: NAS MG and
Matrix Multiplication
Reported performance numbers for RMA operations
often misrepresent the actual impact of the protocol used
to implement the one-sided operation on an application.
A significant issue that comes to light in actual
application performance in the case of one-sided
operations is the ability of the operation to make progress
with minimal to no remote host involvement. Unlike
message passing, efficiently implemented one-sided
RMA operations have the potential to complete without
significant or explicit remote host involvement. In our
previous work [19], we have attempted to show the
advantages of the RMA programming model in
comparison to a more synchronous two-sided
communication model, MPI. Here the emphasis is on the
way one-sided communication is implemented on
InfiniBand, like the ability to offload the processing on
the remote CPU by as much as possible so that the CPU
can be more efficiently utilized by the application for
computation. We used two different benchmarks,
representing a sample of algorithms used in scientific
computing: 1) Multigrid (MG) kernel benchmarks from
the NAS suite and 2) dense matrix multiplication.
6.1 NAS MG benchmark
The NAS parallel benchmarks are a set of programs
designed at the NASA Numerical Aerodynamic
Simulation (NAS) program, originally to evaluate
supercomputers. They mimic the computation and data
movement characteristics of large scale computations.
NAS parallel benchmark suite consists of five kernels
(EP, MG, FT, CG, IS) and three pseudo applications (LU,
SP, BT) programs. Our starting point was NPB 2.4 [15]
implementation written in MPI and distributed by NASA.
We modified NAS MultiGrid (MG) to replace point-to-
point blocking and nonblocking message-passing

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

2D Host-Based/Buffered Get
2D Zero-Copy Get
2D Host-Assisted Zero-Copy Get
MPI 2D w ith vector type

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000 1000000 10000000

Bytes

M
B

p
s

2D Host-Based/Buf fered Get

2D Zero-Copy Get

2D Host-Assisted Zero-Copy Get

Figure 9: Bandwidth comparison for different
protocols supporting the contiguous get data
transfers with remote side idle.

Figure 10: Bandwidth comparison for different
protocols supporting the contiguous get data
transfers with remote side busy.

 9

communication calls with ARMCI one-sided RMA
communication. The NAS-MG MultiGrid benchmark
solves Poisson's equation in 3D using a multigrid V-
cycle. The multigrid benchmark carries out computation
at a series of levels and each level of the V-cycle defines
a grid at a successively coarser resolution. This
implementation of MG from NAS is said to approximate
the performance a typical user can expect for a portable
parallel program on a distributed memory computer.
NAS benchmarks are categorized into different classes
based on problem size and number of iterations. For
Class A, ARMCI host-based/buffered code outperforms
the original message-passing implementation by 8% to
22%. The performance advantage here is because of the
less restrictive programming model ARMCI uses, which
allows progress without explicit remote host involvement.
For the Host-based/buffered approach, the remote-side
CPU is still involved in copying the data between the
buffer and destination; this shows up in the overall
application time. By using the zero-copy approach in
ARMCI, an improvement of 14% to 25% is obtained over
message-passing implementation on the benchmarks. For
Class B, with the same problem size as Class A but more
iterations, the ARMCI host-based/buffered approach
outperforms the original message-passing implementation
by 5% to 19% (see Figure 11). By using a zero copy
ARMCI implementation, a 14% to 27% improvement is
seen over the original message-passing implementation.
6.2 Matrix Multiplication
SUMMA is a highly efficient, scalable implementation of
common matrix multiplication algorithm proposed by van
de Geijn and Watts [16]. The MPI version is the
SUMMA code developed by its authors, which is
modified to use more efficient matrix multiplication
dgemm routines from Intel math libraries on Itanium
rather than equivalent C code distributed with SUMMA.
For comparing with the RMA version, we used the
algorithm implemented using ARMCI RMA in Global
Arrays. The matrix in the Global Arrays implementation
of ARMCI is decomposed into blocks and distributed
among processors with a two-dimensional block
distribution. Each submatrix is divided into chunks.

Overlapping is achieved by issuing a call to get a chunk
of data while computing the previously received chunk.
The minimum chunk size was 128 for all runs, which was
determined empirically. The chunk size was determined
dynamically, depending on memory availability and the
number of processors.
Experiments with matrix multiplication were run by
varying the matrix size and the number of processors.
The first three lines labeled in both the graphs in
Figure12 represent three different approaches to
implement multi-dimensional RMA in ARMCI. The host-
assisted zero-copy approach was introduced in Section 5.
The computations were done on four nodes with two
processes each. The left side in Figure 12 is for square
matrices with sizes varying from 128 to 2000. The right
side in Figure 12 is for a rectangular matrix where the
second dimension is set to 512 and the first dimension
varies from 128 to 2000. For the square matrix (Figure
12, left), in comparison to MPI, the ARMCI host-
based/buffered approach outperforms the message-
passing implementation by up to 44% whereas the host-
assisted zero-copy approach, because of its negligible
overhead on the remote processor, outperforms the
message-passing implementation by 18% to 80%.

7. Conclusions and Future Work
This paper described how the RMA communication
model can be implemented efficiently over InfiniBand.
The capabilities not offered directly by the InfiniBand
verb layer such as noncontiguous RMA were
implemented efficiently through the novel host-assisted
approach to support the zero-copy communication. In
addition, a high degree of overlapping computations and
communication was demonstrated. The benchmarks used
in the study showed effectiveness of the RMA
implementation on InfiniBand and the importance of
zero-copy nonblocking protocols for hiding latency in the
interprocessor communication. When reimplemented to
use RMA, the NAS MG and parallel matrix
multiplication benchmarks when reimplemented to use
RMA, achieved superior performance over their MPI
counterparts. Our current approach uses the InfiniBand

Figure-11: Performance of NAS MG using contiguous data transfers. Left: Class A and Right: Class B

0

1

2

3

4

5

6

2 4 8 1 6N o d e s

S
ec

o
n

ds

A R M C I - Z e r o Co p y

A R M C I B a s e lin e

M PI

0

5

1 0

1 5

2 0

2 5

3 0

2 4 8 1 6N o d e s

S
ec

o
n

d
s

A R M CI - Z e r o C o p y

A R M CI B a s e lin e

M PI

 10

Reliable Connection mode, which ensures ordered
delivery of messages. However, other modes such as
Reliable Delivery could be investigated to evaluate the
tradeoffs between the lack of message ordering in this
mode and potentially increased performance.

Acknowledgements
This work was supported by the Center for Programming
Models for Scalable Parallel Computing sponsored by the
MICS/ASCR program in the DOE Office of Science.

References
[1] Christopher Lazou, “NEC SX-6 - two times more
cost efficient than IBM P4”, HPCWire, 09.26.03.
[2] Parry Husbands, Costin Iancu and Katherine Yelick,
“A performance analysis of the Berkeley UPC compiler”
Proc. 17th international conf. Supercomputing, 2003.
[3] C. Coarfa, Y. Dotsenko, J. Eckhardt, J. Mellor-
Crummey, “Co-Array Fortran Performance and Potential:
An NPB Experimental Study”, 16th International
Workshop on Languages and Compilers for Parallel
Computing.2003.
[4] J. Nieplocha and B. Carpenter, “ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems”, Proc. RTSPP
IPPS/SDP, 1999.
[5] R. Bariuso, Allan Knies, SHMEM's User's Guide,;
Cray Research,, SN-2516, 1994.
[6] Dan Bonachea and Jason Duell, “Problems with
using MPI 1.1 and 2.0 as compilation targets for parallel
language implementations”, 2nd Workshop on
Hardware/Software Support for High Performance
Scientific and Engineering Computing, SHPSEC-
PACT03.
[7] J. Nieplocha, RJ Harrison, and RJ Littlefield, “Global
Arrays: A portable `shared-memory' programming model
for distributed memory computers”, Proc. SC '94, 1994.
[8] R. Numrich, J.K. Reid, “Co-Array Fortran for
parallel programming”, ACM Fortran Forum, 17(2):1-31,
1998.
[9] K. Parzyszek, J. Nieplocha, and R.A. Kendall, “A

generalized portable SHMEM library for high
performance computing”, Proc. Parallel and Distributed
Computing and Systems PDCS, 2000.
[10] G.H. Shah, J. Nieplocha, J. Mirza, C. Kim, R. K.
Govindaraju, K. J. Gildea, R. Harrison, C. A. Bender,
“LAPI: A Low Level Communication Interface on the
IBM RS/6000 SP: Experience and Performance
Evaluation”, Proc. IPPS’98. 1998.J. Nieplocha, V.
Tipparaju, J. Ju, and E. Apra, “One-sided communication
on Myrinet”, Cluster Computing, 6, 115-124, 2003.
[11] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E.
Lusk, B. Nitzberg, W. Saphir, and M. Snir. “MPI –The
Complete Reference, volume 2, The MPI Extensions”,
MIT Press, 1998.
[12] Jesper Larsson Traff, Hubert Ritzdorf, and Rolf
Hempel. “The implementation of MPI2 one-sided
communication for the NEC SX-5”, In Proceedings of
Supercomputing 2000.
[13] http://nowlab.cis.ohio-state.edu/projects/mpi-
iba/mpi_bandwidth.c
[14] J. Nieplocha, V. Tipparaju, A. Saify, and D. Panda,
“Protocols and Strategies for Optimizing Remote
Memory Operations on Clusters”, Proc. Communication
Architecture for Clusters Workshop of IPDPS, 2002.
[15] D. Bailey, E. Barszcz, J. Barton, D. Browning, R.
Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga, The NAS parallel
benchmarks, Tech. Rep. RNR-94-007, NASA Ames.
[16] R. Van de Geijn and J. Watts, SUMMA: Scalable
Universal Matrix Multiplication Algorithm. Concurrency:
Practice and Experience, 9: 255-74, 1997.
[17] Center for Programming Models for Scalable Parallel
Computing, www.pmodels.org.
[18] Myricom, The GM Message Passing System.
[19] V.Tipparaju, M. Krishnan, J. Nieplocha, G.
Santhanaraman D. K. Panda, “Exploiting Nonblocking
Remote Memory Access Communication in Scientific
Benchmarks on Clusters”, in Proc. HiPC’03.

Figure12: Performance of matrix multiplication for square(left) and rectangular (right) matrices

0

5 0 0

10 0 0

15 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

128x128

256x256

380x380

512x512

800x800

1024x1
024

1100x1
100

1200x1
200

1300 x1
300

1400x1
400

1500x1
500

1600x1
600

1700x1
700

1800x1
800

1900x1
900

2000x2
000

M a tr ix S iz e (S q u a r e M at r ice s o f Do u b le s)

M
eg

a
F

lo
p

s
P

er
 P

ro
ce

ss
o

r

Hos t-A s s is ted
Hos t-B as ed
Z ero Copy
S umma-MPI

0

5 0 0

10 0 0

15 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

128x512

256x512

380x512

512x512

800x512

1024x5
12

1100x5
12

1200x5
12

1300x5
12

1400x5
12

1500x5
12

1600x5
12

1700x5
12

1800 x5
12

1900x5
12

2000x5
12

M atr ix S iz e (Re ctan g u lar M atr ice s o f Do u b le s)

M
eg

a
Fl

o
p

s
p

er
 P

ro
ce

ss
o

r

Hos t-A s s is ted
Hos t-B as e d
Z ero Copy

