
The remote memory access (RMA) is an increasingly 
important communication model due to its excellent 
potential for overlapping communication and 
computations and achieving high performance on modern 
networks with RDMA hardware such as Infiniband. RMA 
plays a vital role in supporting the emerging global 
address space programming models. This paper 
describes how RMA can be implemented efficiently over 
InfiniBand. The capabilities not offered directly by the 
Infiniband verb layer can be implemented efficiently 
using the novel host-assisted approach while achieving 
zero-copy communication and supporting an excellent 
overlap of computation with communication. For 
contiguous data we are able to achieve a small message 
latency of 6µs and a peak bandwidth of 830 MB/s for 'put' 
and a small message latency of 12µs and a peak 
bandwidth of  765 Megabytes for 'get'. These numbers are 
almost as good as the performance of the native VAPI 
layer. For the noncontiguous data, the host assisted 
approach can deliver bandwidth close to that for the 
contiguous data. We also demonstrate the superior 
tolerance of host-assisted data-transfer operations to 
CPU intensive tasks due to minimum host involvement in 
our approach as compared to the traditional host-based 
approach. Our implementation also supports a very high 
degree of overlap of computation and communication.  
99% overlap for contiguous and up to 95% for non 
contiguous in case of large message sizes were achieved. 
The NAS MG and matrix multiplication benchmarks were 
used to validate effectiveness of our approach, and 
demonstrated excellent overall performance. 

1. Introduction  
The demand for computer cycles in scientific simulation 
is growing faster than the processor speed described by 
Moore’s law. To mitigate the impact of this trend, parallel 
systems employ increasingly large numbers of 
processors. At the same time, the gap between processor, 
memory, and network speed is not improving but getting 
worse. Even to sustain the scalability and performance 
levels of current leading scientific applications, progress 
needs to be made in implementation of the user-level 
communication protocols. First, zero-copy 
communication protocols are of increased importance 
because they remove memory performance factor from 
the communication performance model and help avoid 
wasting the valuable and limited memory bandwidth of 

the compute nodes. The limited memory bandwidth is 
often pointed out as a major issue affecting application 
efficiency in current systems based on commodity 
processors [1]. Second, the ability to overlap 
communication with computation as a simple and well 
understood latency-hiding mechanism is essential for 
addressing the growing gap between the network and 
processor speed. Memory copies used internally to 
implement the user-level communication protocols 
require host involvement and thus reduce the potential for 
effective overlapping nonblocking communication with 
computation. Because zero-copy protocols do not require 
memory copies, they are a more attractive approach for 
supporting latency hiding through nonblocking 
communication. 
In this paper, we are focusing on the remote memory 
access (RMA) communication model. RMA offers 
several desirable properties such as the lack of explicit 
coordination between sender and receiver and simplified 
flow control (does not involve tag matching or handling 
or early message arrivals). RMA is well suited for zero-
copy nonblocking implementation. Current 
communication networks offer increasing levels of 
support for RMA communication. The RMA model has 
been available in the user-level communication libraries 
such as SHMEM, MPI-2 1-sided, ARMCI, and Global 
Arrays. It is also the preferred communication model for 
implementing the emerging global address space 
languages such as UPC [2] or CAF [3]. We are working 
on advancing ARMCI, a portable RMA library used as a 
part of the run-time system developed by the Center for 
Programming Models for Scalable Parallel Computing 
project (www.pmodels.org) sponsored by the U.S. 
Department of Energy. In particular, the current goal is to 
provide efficient communication capabilities that could 
be used for latency hiding and reducing communication 
overhead in language- and library- based programming 
models and for devising implementation techniques that 
enhance the overall application performance. 
The cost-effectiveness and performance of InfiniBand 
makes this technology a very attractive network for 
commodity clusters.  This paper evaluates the 
performance and capabilities of InfiniBand in the area of 
RMA communication. It describes how to harness the 
InfiniBand verbs layer to implement RMA efficiently 
while addressing the requirements of the user-level 
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protocols by implementing ARMCI one-sided RMA on 
top of InfiniBand. In addition, we describe a novel 
implementation approach called host- assisted zero-copy 
RMA. It can be used to implement the missing RMA 
capabilities in the network communication protocols 
while achieving zero-copy communication and 
maximizing the potential for overlapping communication 
with computation. In the context of InfiniBand, this 
approach has been used for noncontiguous RMA 
communication, which has limited support in the 
InfiniBand verbs standard. This has been accomplished 
using nonblocking scatter-gather point-to-point 
messaging interfaces of the Mellanox VAPI layer and a 
special helper thread. For other networks with even more 
limited support for RMA (e.g., VIA), this technique can 
be used to efficiently implement RMA Get protocol on 
top of RMA Put while minimizing host involvement and 
preserving zero-copy processing. 
The effectiveness of these techniques has been evaluated 
across two different platforms with InfiniBand 
interconnect. For the contiguous case, we are able to 
achieve a small message latency of 6.0µs and a peak 
bandwidth of 830 MegaBytes for 'Put' and a small 
message latency of 12µs and a peak bandwidth of 765 
MegaBytes for 'Get'. For the non contiguous case with the 
host based approach we achieved close to the peak 
bandwidth and very close to the contiguous case. The 
proposed host-assisted approach delivered superior 
tolerance to CPU intensive tasks because of the minimal 
host involvement. Our implementation of RMA protocols 
supports up to 99% and 95% overlap for contiguous and 
noncontiguous operations respectively for large message 
sizes. The benefits of this approach were demonstrated at 
the application level in the context of the NAS MG 
benchmark and in the dense matrix multiplication. 
The paper is organized as follows. Section 2 provides an 
overview of RMA communication. Section 3 describes 
InfiniBand architecture and its capabilities. In Section 4, 
we present the implementation of basic RMA capabilities 
over InfiniBand and evaluate their performance. Section 5 
describes our novel host-assisted protocol and 
demonstrates its performance benefits in the context of 
noncontiguous data communication. An application-level 
performance evaluation is presented in Section 6.  Our 
conclusions are offered in Section 7.  

2. RMA Communication 
Remote memory operations offer an intermediate 
programming model between message passing and shared 
memory. This model combines some advantages of 
shared memory, such as direct access to shared/global 
data, and the message-passing model, namely the control 
over locality and data distribution. Certain types of shared 
memory applications can be implemented using this 
approach. In some other cases, remote memory 
operations can be used as a high-performance alternative 

to message passing. Many such applications are 
characterized by irregular data structures and dynamic or 
unpredictable data access patterns. MPI-2 offers one 
version of remote memory operations with two specific 
variations—active and passive target one-sided 
communication. Other versions are found in vendor 
specific interfaces such as LAPI on the IBM SP, RDMA 
on the Hitachi SR-8000, MPlib on the Fujitsu VPP-5000, 
and in other portable interfaces such as ARMCI [4] or 
SHMEM [5]. Differences between these models can be 
significant in terms of progress rules and semantics, and 
they can affect performance. MPI-2 offers a model 
closely aligned with traditional message passing and 
includes high-level concepts such as windows, epochs, 
and distinct progress rules for passive and active target 
communication. A recent paper [6] describes how MPI-2 
model is not optimal for implementing global address 
space languages due to excessive synchronization and its 
progress rules.  
In ARMCI, we are focusing on a low-level interface and 
simpler progress rules motivated by the existing hardware 
support for remote memory operations on the current 
systems. The library is intended to be used as a run-time 
system for other programming models such as Global 
Arrays [7], Co-Array Fortran [8] or UPC compilers, or 
even as a portable SHMEM library [9]. Compared to the 
well known Cray SHMEM one-sided interface [5], 
ARMCI places more focus on noncontiguous data 
transfers that correspond to data structures in scientific 
applications (e.g., sections of multidimensional dense or 
sparse arrays). Such transfers can be optimized, thanks to 
the noncontiguous data interfaces available in the 
ARMCI data transfer operations—multi-strided and 
generalized UNIX I/O vector interfaces.  
Some networks and native communication interfaces on 
these networks do not have direct support for all the 
RMA operations offered by the portable interfaces 
discussed above. Other networks have a rich functionality 
set but introduce substantial performance compromises. 
For example, IBM LAPI [10], an active message library 
for the IBM SPs, does support contiguous and 
noncontiguous RMA but is not copy-free and requires use 
of the host CPU on both sides of data transfer. As the 
memory copies degrade performance and host CPU 
resources are taken away from the application, this 
approach usually has an adverse affect on the overall 
application performance and scalability. To maximize 
application performance, it is important to avoid data 
movement and protocol processing on the remote side as 
much as possible. RMA models that require explicit 
synchronization might incur overhead on the part of the 
application running on the remote side. For example, the 
MPI-2 one-sided operations involve synchronization 
between the source and the destination for every one-
sided operation via a fence, a lock, or dedicated Post-



 3 

Wait coordination in the active target mode [11, 12], at 
least in principle. 
Despite the progress in networking technologies, the gap 
between processor speed and network (especially latency) 
has been increasing. As a result of this trend, the ability to 
overlap communication with computation through the use 
of nonblocking communication is becoming critical. 
Given the simplicity of its communication model (source 
and destination for the data transfer explicitly known, no 
send/receive tag and buffer matching, no early message 
arrival processing), RMA offers increased opportunities 
for designing implementations that provide a high degree 
of overlap between communication and computations. In 
addition to reducing or eliminating the data movement on 
the remote side, good implementation of the nonblocking 
RMA should return the control to the user program as 
soon as possible, giving the application a chance to make 
progress on computations while the communication is 
being completed by the underlying network hardware.  

3. Overview of InfiniBand 
InfiniBand is a recently developed interconnect 
technology that has been rapidly becoming popular in the 
commodity clusters. The InfiniBand architecture is an 
industry standard introduced by the InfiniBand Trade 
Association and has been proposed as the next-generation 
interconnect for I/O and inter-process communication. 
The InfiniBand architecture defines a system area 
network (SAN) for connecting multiple independent 
processor platforms, I/O platforms, and I/O devices. It 
uses scalable switched serial links to design clusters and 
servers that can offer high bandwidth and low latency. A 
4x HCA link allows for a bandwidth of up to 10 Gb/s. In 
an InfiniBand network, nodes are connected to the IBA 
fabric using channel adapters. The inter-processor 
communication is handled by the host channel adapters 
(HCA) installed on the processing nodes. The I/O nodes 
are connected to the fabric through target channel 
adapters (TCA).  The IBA hardware offloads much of the 
I/O communications operation from the OS and CPU, 
thus eliminating traditional communication overhead. 
Further, each channel adapter may have one or more ports 
for use as multiple paths to provide reliability. HCA, 

TCA, switch, routers, and a subnet manager form the five 
primary components of an InfiniBand fabric.  
Unlike VIA, InfiniBand architecture does not specify an 
API even though it does incorporate many of the concepts 
of VIA. IBA defines a semantic interface called Verbs 
that configures, manages, and operates a HCA. The 
communication verbs are based on queue pairs. 
InfiniBand supports both channel (send/receive) and 
memory (RDMA) communication semantics. These 
operations are initiated by posting work queue requests 
on the send or receive queues. The completion of a work 
request is reported through completion queues (CQs). 
The host communication buffers have to be registered 
because the HCA uses DMA operation to send from or 
receive into these buffers. 
VAPI is the Verbs implementation provided by Mellanox 
Technologies for HCAs. In addition to basic send/receive 
and RDMA read/write, they provide scatter/gather 
operations as well as atomic operations, thus supporting 
several essential interfaces of the RMA communication. 
With communication capabilities provided by the new 
InfiniBand VAPI as an example, one also can implement 
some of the RMA capabilities that are not directly 
provided by underlying communication layer. 

4. Implementing the Basic RMA Capabilities 
over InfiniBand 
A mismatch between user-level RMA interfaces and 
InfiniBand requirements is related to the virtual memory. 
The native RDMA write and read operation on 
InfiniBand can address only so-called registered memory 
for both sides of the data transfer. Memory registration 
involves locking pages in physical memory, which can be 
quite costly. In addition, the amount of memory that can 
be registered/locked is limited. This constraint has a 
profound impact on the implementation strategies of user-
level RMA on this network. Three techniques or 
strategies address the requirement for registered memory 
in InfiniBand: 1) on-demand dynamic memory 
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Figure 2: Cost of the VAPI memory registration and 
deregistration as compared to the memory copy on 
Itanium-2 1GHz processor. 
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registration and deregistration (or lazy deregistration) as a 
part of the data transfer; 2) copying data via preallocated 
registered memory buffers (we refer to this as the host-
based/buffered technique); and 3) providing the user with 
a memory allocation interface that allocates registered 
memory underneath.  
The first technique is potentially more attractive, as it 
provides zero-copy data transfers and eliminates the need 
for data copy present in the second strategy. However, it 
does not always lead to superior performance, as the 
memory registration operations can be relatively 
expensive. Figure 2 shows on log-linear scales the 
performance of memory registration operations 
(registration and deregistration calls combined) in 
InfiniBand compared to the bandwidth of the memory 
copy operation.  
We implemented all three strategies described above. 
Because of the cost of memory registration on 
InfiniBand, Strategy 1 is not very competitive. An 
enhancement to the second technique is to divide data 
into chunks and pipeline the memory copy and 
nonblocking communication so that they overlap. Based 
on the message size, the message transmission/reception 
can be broken into smaller requests; a copy of one part of 
the request can be overlapped with the transmission of 
another piece, as described in [14]. Figure 1 shows the 
steps involved in a host-based/buffered protocol. 
For these three strategies to coexist, special care is 
needed. First, the user can optionally call the provided 
memory allocator interface, which attempts to allocate 
registered memory. Because the memory is 
registered/pinned on a page basis, the memory is 
allocated from the operating systems in potentially larger 
chunks and managed by a portable K&R malloc code. In 
addition, there is a table of the registered chunks with the 
address range and VAPI memory key information. If the 
requested amount of memory can be allocated but not 
registered, the appropriate entry in the table is not added. 
When placing an RMA data transfer call, the user does 
not have to be concerned about whether memory on 

either/both sides of the data transfer has been registered. 
We simply compare the specified address range to the 
entries in the table; by increasing the granularity of the 
memory segments, we can limit the number of entries in 
the tables and the associated verification cost, if the 
specified address range fits in an entry in the table, we 
can use the InfiniBand zero-copy RDMA Read/Write 
protocol directly. Otherwise, depending on the size of the 
message, either Strategy 1 or 2 (described above) is used. 
4.1 Performance of basic put/get operations 
We used two different platforms for evaluating the 
efficiency of our implementation and analyzing the 
performance of different protocols. The first (henceforth 
referred to as cluster-1) is a dual processor -GHz 
Itanium2 cluster with Mellanox A1 “Cougar” cards. The 
second one (referred to as cluster-2) is a 32-node dual 
processor Pentium IV cluster with Mellanox A1 cards. 
The cluster-2 was used only in the comparison of NAS 
MG benchmark because a bigger configuration was 
necessary for understanding the impact of these protocols 
on application benchmarks.  
Figures 3 and 4 show the performance of zero-copy 
contiguous ARMCI Get and Put operations. Figure 3 
compares the bandwidths of ARMCI Put operation with 
MPI send/receive, Mellanox VAPI RDMA Put, and 
Mellanox VAPI send/receive. For computing Mellanox 
VAPI bandwidth, a performance test “perf_main” 
provided by Mellanox was used. This Mellanox test 
chains multiple RDMA’s in computing bandwidth and 
hence doesn’t end up computing the actual average point 
to point bandwidth. ARMCI_Put bandwidth however 
seems slightly lower but is very representative of what an 
application using ARMCI put can expect as it computes 
an average of the actual point to point bandwidth. For the 
MPI bandwidth, a nonblocking send/receive-based test 
was used [13]. Figure 4 shows the ARMCI Get 
bandwidth as compared to the Mellanox VAPI RDMA 
get operation. It can be seen from the figures that ARMCI 
operations have been implemented with very little 

Figure 4: ARMCI Get Bandwidth in comparison 
to RAW VAPI Read bandwidth 
  

Figure 3: ARMCI Put Bandwidth in comparison 
to Raw VAPI bandwidth and MPI 
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overhead. On cluster-1 we obtained a peak bandwidth of 
730 MBps for a Put operation and 689 MBps for a get 
operation. On cluster-2 we obtained a peak bandwidth of 
830 MBps for a Put operation and 765 MBps for a get 
operation. It should be noted here that unlike MPI 
send/receive, ARMCI Put / Get are based on a less 
restrictive one-sided communication model. 
Figure 5 compares performance of zero-copy and the two 
copy-based implementations: host-based/buffered 
(baseline) and pipelined. The pipelined version uses the 
scheme we had developed earlier [14]. It relies on 
dividing the data into multiple, variable-sized chunks and 
exploits the nonblocking RDMA Read/Write 
communication to overlap memory copies on the client 
and server side with data transmission.  To improve 
performance for smaller requests, the chunk size is 
adaptively chosen to maximize the concurrency between 
memory copies and data transmission operations on both 
sides involved in the data transfer.  
 Although the pipelined version delivers good 
performance, it relies on the remote host participation in 
the data transfer. Therefore, the numbers presented in 
Figure 5 do not reflect the operational regimes in actual 
applications where remote CPU is involved in 
computations. We designed a test to measure the impact 
of a remote host CPU engaged in calculations and found 

that it does, in fact, bring performance down in the copy-
based (host-based/buffered and host-based/pipelined) 
implementations (Figure 6). As expected, the 
performance of the zero-copy version is virtually immune 
to the remote host activities, whereas the performance of 
copy-based protocols is seriously degraded.  
4.2 Overhead and overlap 
One of the key design requirements is reducing the 
implementation overhead over the VAPI layer. Another 
one is to maximize the potential for overlap between user 
computations and nonblocking communications. At the 
initiation of a call, the most appropriate protocol for 
efficient transmission of that message is selected based 
on the message size. The receiver thread on the remote 
side can select either the polling or blocking mode of 
operation, depending on the processing resources 
available on the system. Latency of our implementation is 
very comparable to the lowest attainable latencies of the 
VAPI layer. This is due to 1) direct use of RDMA 
capabilities whenever possible and 2) fast access to the 
registered memory information to determine if the current 
operation can directly use RDMA. The latencies of 
ARMCI Put/Get and MPI are contrasted with the VAPI 
level latencies obtained from the Mellanox VAPI layer in 
Table-1.  

Figure 6: Bandwidth comparison for different 
protocols supporting the contiguous get data 
transfers with remote side busy.  
  

Figure 5: Bandwidth comparison for different 
protocols supporting the contiguous get data 
transfers with remote side idle. 
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PlatformARMCI 
Put 

MPI VAPI 
RDMA Put 

VAPI 
RDMA Get 

ARMCI 
Get 

IA32 6.2 6.3 5.46 12.2 12.3 
IA64 7.44 8.03 5.84 15 16 
Table-1: ARMCI, MPI and VAPI latencies 
 
The overlap attainable by contiguous ARMCI operations 
is very close to that obtained with the Mellanox VAPI 
layer (see Figure 7). It is close to 99% for large messages, 
meaning 99% of the total data transfer time can be used 
by the application to do the computation. In comparison 
to the zero-copy get, the host-based buffered protocol 
offers relatively less overlap because, as a part of a wait 
operation in the critical path, data needs to be copied. For 
the Itanium-2 systems, the percentage of total time that 
was not overlapped was almost same as the percentage of 
total time it took for posting a descriptor and polling for a 
completed descriptor (it is measured as 8 microseconds 
on average in cluster-1 used for our tests). Thus the 
overlap attainable at the ARMCI level for all the message 
sizes in the zero-copy case is almost equal to the 
maximum amount of overlap attainable directly at the 
VAPI level.  
4.3 Atomic operations 
The atomic Read-Modify-Write (RMW) operation is a 
very useful primitive for implementing mutual exclusion, 
shared task counters (e.g., in dynamic load balancing), 
and more complex synchronization operations. Unlike 
MPI-2 that offers no support for RMW, ARMCI offers 
atomic swap’ and atomic fetch and add for both 
intermediate and long data types as part of the RMW 
interface. We used two techniques for implementing these 
operations. The first technique is server-based; the second 
technique bypasses the server thread by using VAPI 
RDMA atomic calls. 
For the server-based implementation, the client sends the 
request message to the data-server thread on the remote 
side [14]. The data server thread executes the operation 
on behalf of the requesting process and sends the result 
back to the client. To achieve atomicity, the server needs 
to lock the local memory, perform the operation, and 
unlock the memory before sending the result. In the 
second implementation, we exploit the atomic operations 
provided by the VAPI interface to enable a faster RMW 
operation. The atomic operations provided by VAPI are 
atomic fetch and add and atomic compare and swap with 
an operand size of 64 bits, which restricts their 
usefulness. The VAPI atomic operations are one-sided 
and do not involve host overhead on the remote node. 
The operation can be completed either through polling or 
through event-based notification, which involves 
registering a function handler to notify completion. In our 
implementation, we use the polling-based approach for 
performance considerations. The requesting process posts 
an atomic fetch and add and then polls the send 

completion queue for the completion of the atomic 
operation.  
We compared the two implementations of ARMCI RMW 
for the atomic fetch and add operation. The results show 
that the VAPI atomic-based implementation cuts down 
the latency of the RMW operation by about 23%, 
reducing it from 22.1 µs for the server-based 
implementation to 17.1 µs in the RDMA implementation, 
in addition to eliminating host involvement on the remote 
node. 

5. Host-Assisted Zero-Copy RMA 
The IBA verbs layer has some inadequacies in providing 
support for all the RMA capabilities required by 
applications. We attempted to address its lack of support 
in providing one-sided noncontiguous strided and vector 
data transfers. A simple way of addressing the lack of 
support for one-sided data transfer between a 
strided/vector source and a strided/vector destination is to 
maintain a contiguous buffer on both the local and the 
remote side and move data using this contiguous buffer. 
This approach requires heavy involvement on both the 
local and remote sides in moving the data between the 
buffer and the noncontiguous source or destination. 
Another approach that can be used here is to do multiple 
contiguous transfers for each contiguous chunk. This 
approach is zero-copy but may require the initiator of the 
request to spend some time in processing the multiple 
contiguous requests it has to initiate for every 
noncontiguous request. In addition, handling flow control 
issues like the number of outstanding requests allowed 
might adversely affect performance. We introduced a 
host-assisted zero-copy method to address the problems 
inherent in both the approaches described above.  
To leverage the advantages of the host-assisted zero-copy 
approach in Mellanox VAPI, memory on both sides must 
be registered. The user is not expected to either explicitly 
register memory or keep track of this information. 
Instead, as described in Section 4, we maintain and parse 
our high-granularity global memory information table to 
determine if the memory on both sides is registered. The 
host-assisted approach requires partial involvement of a 
remote host to complete operations. We refer to the 
representative on the remote side that assists in the 
completion of the operation as a “helper” thread. The 
helper thread initiates an operation and hence requires 
minimal remote-side CPU involvement. This is very 
similar to the ARMCI data server thread [4, 14] and the 
dispatcher thread in the IBM LAPI. The significant 
difference is that the helper thread does not copy any data 
and does not wait on an operation it issued to complete. 
With this helper thread as an assistant to complete the 
operation on the remote side, we describe the 
implementation details of contiguous and noncontiguous 
one-sided Get and Put operations. We demonstrate the 
benefits of this approach by contrasting its performance 



 7 

with the traditional host-based/buffered approach and by 
showing the performance of these protocols on a few 
application benchmarks in Section 6. 
5.1 Get operation for Contiguous Data 
Because the Mellanox VAPI implements the RDMA 
Read operation, contiguous get can be done using the 
RDMA Read operation when both source and destination 
memories are registered. On networks that do not support 
RDMA Read or have limited or unoptimized RDMA 
Read, implementation of this scheme is inherently simple. 
The client doing the get operation sends a request to the 
helper thread on the remote node. The helper thread, upon 
receiving a get request, initiates a RDMA put and then 
would resume polling/blocking. As a result, request 
processing overhead on the remote host is very little. We 
verified the effectiveness of this approach on the Myrinet 
GM 1.6 [18]. The ARMCI Get latency dropped from 
27µs to 24µs by using the host-assisted approach. Get 
bandwidth improved from 198MB for copy based 
protocol to 237MBps for host-assisted zero-copy 
contiguous get, there by showing that this approach is not 
just high performance but also adaptive to the platforms 
that don’t have support for RDMA read. 
 
5.2 Get Operation for Noncontiguous Data 
Because a noncontiguous data transfer would involve 
transfer of multiple segments of data, our strategy is to 
use the scatter/gather message passing feature provided 
by IBA to achieve the zero-copy transfer. Using that 
feature, we can send /receive multiple data segments as a 
single message by posting a single scatter/gather 
descriptor. Two types of scatter/gather message-passing 
operations defined in IBA VAPI are 1) Gather-Send 
(which requires the noncontiguous data being sent to be 
represented as a Gather-Send descriptor) and 2) Scatter-
Receive (which requires the noncontiguous destination 
for the receive to be specified in a Scatter-Receive 
descriptor format). 
In a host-assisted zero-copy Put, the source sends a 
request to the remote side the helper thread processes the 
request, converts the vector/stride information in the 
request into a VAPI Receive-Scatter descriptor, posts the 
descriptor, and sends an acknowledgment to the 

requesting process, indicating that it is ready. On 
receiving this acknowledgment, the source process posts 
a Gather-Send from the VAPI Gather-Send descriptor it 
created while waiting for an acknowledgment from the 
helper thread. This directly delivers the data to the 
destination memory without the overhead of any 
intermediate copies. Although the explicit 
acknowledgment might seem like an overhead, for large 
messages, when the copying cost starts to dominate, this 
approach performs better. It could be enabled only for 
multidimensional Put operations when the first stride or 
the size of each contiguous segment is large.  
For a host-assisted zero-copy Get (Figure 8), the source 
node posts a Scatter-Receive descriptor to receive the 
vector/strided data and then sends a request to the remote 
host with the remote stride/vector information. The helper 
thread on the remote host receives the request and then 
posts a corresponding VAPI Gather-Send by converting 
the stride/vector information in the request message into a 
VAPI Gather-Send descriptor. The implementation of this 
protocol prompted us to address a number of design 
issues. 
Limit on Scatter/Gather Entries per Descriptor: The 
strided put/get operations can be used to transfer sections 
of multidimensional arrays. Each dimension of the array 
can support any number of data segments. However, the 
IBA implementation puts an upper limit of 60 on the 
number of scatter/gather entries that can be allowed per 
Scatter-Receive or Gather-Send descriptor. Hence, for 
large messages, the maximum scatter/gather entry limit 
requires us to extend the above approach. Because we can 
have only 60 scatter/gather entries in a descriptor, our 
solution is to break our message into chunks of up to 60 
data segments and post a gather send/scatter receive for 
each one of them. Posting a send/receive is a nonblocking 
operation in IBA and takes only a very short time (a 
microsecond on Itanium 1GHz), so the overhead in 
posting multiple gather descriptors is not significant. In 
the case of Strided Get, the client posts multiple scatter 
receives and then sends the request. At the remote side, 
the helper thread processes the request and posts multiple 
gather sends. A similar approach has been followed for 
implementing the noncontiguous puts. 
Resource Allocation: At the client level, memory needs to 
be allocated and maintained to create a scatter/gather 
descriptor from a strided/vector request. Unlike VIA, 
VAPI copies the posted descriptor on to the NIC and 
hence does not require us to keep the descriptor until the 
request has been completed. At the NIC level, the number 
of scatter/gather entries must be decided at the 
initialization phase. The larger the scatter gather list, the 
larger the amount of memory allocated per descriptor on 
the NIC. To investigate the effect of this on the 
performance of the operation, we conducted experiments 
to measure the change in latency with increasing number 
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of scatter/gather entries. Overhead for having 60 scatter 
gather entries in a descriptor instead of 1 is not significant 
(< 1 micro sec) and hence we could afford to set the 
scatter/gather limit to the maximum allowed value of 60. 
5.3 Performance of Host-Assisted Approach 
 Figure 9 compares the performance of host-
based/buffered get and host-assisted zero-copy get 
operations with MPI for two-dimensional data. Zero-
Copy 2D get in Figures 9 and 10 represents the approach 
discussed earlier in this section where a noncontiguous 
Get operation is implemented on top of multiple 
contiguous RDMA Get operations, one for each 
contiguous segment. For this test, ARMCI 2D data is 
represented using the strided data format [4] and in MPI 
using the strided data type. Clearly the host-assisted zero-
copy implementation performs much better and more 
significantly so when the first dimension is large.  
An advantage of using host-assisted zero copy can be 
determined by measuring the effect on protocol 
performance when the remote side is doing a CPU-
intensive operation. Unlike the zero-copy approach, host-
assisted zero-copy requires some host involvement in 
initiating data transfer. This is more representative of the 
impact these protocols may have on an application than 
mere measurement of communication bandwidth/latency. 
Figure 10 shows the performance difference between the 
buffered and host-assisted zero-copy protocols when the 
remote side is doing a CPU-intensive operation. In 
comparison to Figure 9, it is very clear that the 
performance of the host-assisted zero-copy protocol has 
not been affected at all by the CPU-intensive operation on 
the other side while the performance of the buffered Get 
protocol dropped very significantly. This clearly shows 
the very low overhead this protocol imposes on the 
remote-side CPU.  
 5.4 Overhead and Overlap 
Another significant advantage of this protocol is the 
amount of overlap it can provide in nonblocking 
operations. Because the implementation does not involve 
any data movement in call initiation or call completion, 
the amount of overlap possible is much higher than that 

for the other protocols. This can be seen in Figure 7(b), 
which compares the amount of overlap attainable with 
host-based and host-assisted protocols for  noncontiguous 
data transfer of various square chunks of data.  
 

6. Experimental Evaluation: NAS MG and 
Matrix Multiplication 
Reported performance numbers for RMA operations 
often misrepresent the actual impact of the protocol used 
to implement the one-sided operation on an application. 
A significant issue that comes to light in actual 
application performance in the case of one-sided 
operations is the ability of the operation to make progress 
with minimal to no remote host involvement. Unlike 
message passing, efficiently implemented one-sided 
RMA operations have the potential to complete without 
significant or explicit remote host involvement. In our 
previous work [19], we have attempted to show the 
advantages of the RMA programming model in 
comparison to a more synchronous two-sided 
communication model, MPI. Here the emphasis is on the 
way one-sided communication is implemented on 
InfiniBand, like the ability to offload the processing on 
the remote CPU by as much as possible so that the CPU 
can be more efficiently utilized by the application for 
computation. We used two different benchmarks, 
representing a sample of algorithms used in scientific 
computing: 1) Multigrid (MG) kernel benchmarks from 
the NAS suite and 2) dense matrix multiplication. 
6.1 NAS MG benchmark 
The NAS parallel benchmarks are a set of programs 
designed at the NASA Numerical Aerodynamic 
Simulation (NAS) program, originally to evaluate 
supercomputers. They mimic the computation and data 
movement characteristics of large scale computations. 
NAS parallel benchmark suite consists of five kernels 
(EP, MG, FT, CG, IS) and three pseudo applications (LU, 
SP, BT) programs. Our starting point was NPB 2.4 [15] 
implementation written in MPI and distributed by NASA. 
We modified NAS MultiGrid (MG) to replace point-to-
point blocking and nonblocking message-passing 
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communication calls with ARMCI one-sided RMA 
communication. The NAS-MG MultiGrid benchmark 
solves Poisson's equation in 3D using a multigrid V-
cycle. The multigrid benchmark carries out computation 
at a series of levels and each level of the V-cycle defines 
a grid at a successively coarser resolution. This 
implementation of MG from NAS is said to approximate 
the performance a typical user can expect for a portable 
parallel program on a distributed memory computer.  
NAS benchmarks are categorized into different classes 
based on problem size and number of iterations. For 
Class A, ARMCI host-based/buffered code outperforms 
the original message-passing implementation by 8% to 
22%. The performance advantage here is because of the 
less restrictive programming model ARMCI uses, which 
allows progress without explicit remote host involvement. 
For the Host-based/buffered approach, the remote-side 
CPU is still involved in copying the data between the 
buffer and destination; this shows up in the overall 
application time. By using the zero-copy approach in 
ARMCI, an improvement of 14% to 25% is obtained over 
message-passing implementation on the benchmarks. For 
Class B, with the same problem size as Class A but more 
iterations, the ARMCI host-based/buffered approach 
outperforms the original message-passing implementation 
by 5% to 19% (see Figure 11). By using a zero copy 
ARMCI implementation, a 14% to 27% improvement is 
seen over the original message-passing implementation. 
6.2 Matrix Multiplication 
SUMMA is a highly efficient, scalable implementation of 
common matrix multiplication algorithm proposed by van 
de Geijn and Watts [16].  The MPI version is the 
SUMMA code developed by its authors, which is 
modified to use more efficient matrix multiplication 
dgemm routines from Intel math libraries on Itanium 
rather than equivalent C code distributed with SUMMA. 
For comparing with the RMA version, we used the 
algorithm implemented using ARMCI RMA in Global 
Arrays. The matrix in the Global Arrays implementation 
of ARMCI is decomposed into blocks and distributed 
among processors with a two-dimensional block 
distribution. Each submatrix is divided into chunks. 

Overlapping is achieved by issuing a call to get a chunk 
of data while computing the previously received chunk. 
The minimum chunk size was 128 for all runs, which was 
determined empirically.  The chunk size was determined 
dynamically, depending on memory availability and the 
number of processors. 
Experiments with matrix multiplication were run by 
varying the matrix size and the number of processors. 
The first three lines labeled in both the graphs in 
Figure12 represent three different approaches to 
implement multi-dimensional RMA in ARMCI. The host-
assisted zero-copy approach was introduced in Section 5. 
The computations were done on four nodes with two 
processes each. The left side in Figure 12 is for square 
matrices with sizes varying from 128 to 2000. The right 
side in Figure 12 is for a rectangular matrix where the 
second dimension is set to 512 and the first dimension 
varies from 128 to 2000. For the square matrix (Figure 
12, left), in comparison to MPI, the ARMCI host-
based/buffered approach outperforms the message-
passing implementation by up to 44% whereas the host-
assisted zero-copy approach, because of its negligible 
overhead on the remote processor, outperforms the 
message-passing implementation by 18% to 80%.   
 

7. Conclusions and Future Work 
This paper described how the RMA communication 
model can be implemented efficiently over InfiniBand. 
The capabilities not offered directly by the InfiniBand 
verb layer such as noncontiguous RMA were 
implemented efficiently through the novel host-assisted 
approach to support the zero-copy communication. In 
addition, a high degree of overlapping computations and 
communication was demonstrated. The benchmarks used 
in the study showed effectiveness of the RMA 
implementation on InfiniBand and the importance of 
zero-copy nonblocking protocols for hiding latency in the 
interprocessor communication. When reimplemented to 
use RMA, the NAS MG and parallel matrix 
multiplication benchmarks when reimplemented to use 
RMA, achieved superior performance over their MPI 
counterparts. Our current approach uses the InfiniBand 

Figure-11: Performance of NAS MG using contiguous data transfers. Left: Class A and Right: Class B 
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Reliable Connection mode, which ensures ordered 
delivery of messages. However, other modes such as 
Reliable Delivery could be investigated to evaluate the 
tradeoffs between the lack of message ordering in this 
mode and potentially increased performance.  
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Figure12: Performance of matrix multiplication for square(left) and rectangular (right) matrices 
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