
NIC-Based Reduction in Myrinet Clusters:
Is It Beneficial?

�

Darius Buntinas Dhabaleswar K. Panda
Network-Based Computing Laboratory

Department of Computer and Information Science
The Ohio State University�

buntinas, panda � @cis.ohio-state.edu

Abstract— Reduction-to-one and reduction-to-all
operations are common operations in parallel and
distributed systems. These operations are collective
operations which can involve many processes. It is
therefore important to make these operations fast and
efficient. Some modern network interface controllers
(NICs) for system area networks (SANs) have pro-
grammable processors which can be used to offload
protocol processing from the host processor. In this
paper we investigate the use of the NIC processor
to improve the performance of reduction operations.
We implemented a NIC-based reduction-to-one oper-
ation which can perform integer and floating point
operations, and evaluated our implementation. Our
evaluation shows that the NIC-based operation per-
forms better than the traditional host-based approach
with up to a 1.19 factor of improvement. We also see
that using NIC-based reduction can reduce host CPU
utilization by a factor of improvement of 2.7, and
can reduce the effects of process skew by a factor of
improvement of up to 4.5.

I. INTRODUCTION

Reduction-to-one and reduction-to-all oper-
ations are common operations in parallel and
distributed systems. These operations are col-
lective operations which can involve many
processes. It is therefore important to make
these operations fast and efficient. Research has
been done to make these operations efficient
by taking advantage of the particular char-
acteristics of the underlying architecture [1],

1This research is supported in part by a DOE grant #DE-
FC02-01ER25506 and NSF Grants #EIA-9986052 and #CCR-
0204429.

[2]. Some modern network interface controllers
(NICs) for system area networks (SANs) have
programmable processors which can be used to
offload protocol processing from the host pro-
cessor. Such implementations not only allow
efficient communication operations, but also
significant potential for overlap of computa-
tion with communication. Programmable NICs
have been used to improve the performance of
certain operations, as well as reduce the host
involvement in the operations allowing the host
to perform other useful computation [3], [4],
[5], [6], [7]. However, none of these imple-
mentations have explored the benefits of NIC-
based implementation for reduction for integer
and floating point data. In this paper we explore
the benefits of NIC-based support for reduction
operations. It is worthwhile to note that a large
fraction of reduction operations are performed
using small data sizes of just a few elements.
This means that a specialized reduction opera-
tion which can efficiently perform the operation
on a small number of elements would be useful.

Using NIC-based collective communication
operations, such as reduction, can significantly
reduce host CPU utilization. This is because
the NIC processor is performing the operation
rather than the host processor. Another bene-
fit of NIC-based operations is that they can
make a parallel program using these operations
less sensitive to process skew. Processes of a
parallel program can become unsynchronized,
or skewed, during the course of running the



application. This can happen as a result of un-
balanced or asymmetric code, through random,
unpredictable causes such as a process being
context switched, or because the processes may
not have been started at the same time. Such
skew can have a significant impact on the
performance of a parallel program when host-
based collective communications operations,
such as reduction are used. In a reduction op-
eration, at a particular node, data from certain
nodes must be received before the arithmetic
operation can be performed and the result can
be forwarded to other nodes. If this reduction
operation is implemented at the application-
level then upon calling the reduction function,
the process must wait to receive all of the
messages, performs the operation, and sends
the result on. This means that if a process
is delayed and hasn’t performed the reduction
operation, then another process may also be
delayed waiting for that message, and so cannot
continue with useful computation. However,
because the NIC-based reduction operation is
performed by the NIC, and not the host, once
the process passes its data to the NIC, it can
continue with its computation, and will not be
stalled due to a delayed process.

We have implemented a NIC-based reduc-
tion-to-one operation to perform integer and
floating-point operations on single 64 bit el-
ements. In this paper we describe the design
and implementation of this operation as well
as the evaluation of the implementation. Our
implementation achieves a 1.19 factor of im-
provement over the traditional host-based im-
plementation when performing integer opera-
tions on a 16 node system. We show that NIC-
based reduction would also be beneficial for
larger system sizes. Our evaluation also shows
that using NIC-based reduction can reduce host
CPU utilization by a factor of improvement of
2.7, and can reduce the effects of process skew
by a factor of improvement of up to 4.5. Our
initial implementation and evaluation indicates
that reduction operations can benefit by NIC-
based implementations, and that further work

should be done to implement a more complete
NIC-based reduction-to-one and reduction-to-
all operations.

The rest of this paper is organized as follows.
In the next section, we describe the general
concept of a NIC-based reduction operation.
In Section III we describe our design and
implementation, followed by the evaluation of
our implementation in Section IV. Finally we
present our conclusions and future work in
Section V.

II. NIC-BASED REDUCTION

Before we describe the general concept of
NIC-based reduction, we will briefly describe
traditional host-based reduction. In traditional
host-based reduction in a message-passing sys-
tem, messages are passed between processes
running at the host, and the arithmetic oper-
ations are performed by the host processors.
When the operation is complete, the result
of the operation will be located at one of
the processes. Processes participating in the
reduction operation are organized in a logical
tree. Each process receives reduction messages
from its children, which contain a partial result
from the subtree of that child. Next, each
process performs the arithmetic operation on
its data and the partial results received from its
children. The process then sends this result to
its parent. Figure 1(a) shows a block diagram
of a host-based reduction operation across four
nodes. Node 0 sends its data to Node 1. When
Node 1 receives this message it performs the
arithmetic operation on the data from Node 0
and its data. Node 1 then sends this result to
Node 3. Node 3 receives data from Node 2 and
Node 1, and performs the arithmetic operation
on its own data and the data sent by Nodes 1
and 2.

In a NIC-based reduction, each process sends
its data to the NIC. The NIC will then wait
for the messages from its children, perform the
arithmetic operation, and either send a message
to its parent, or if this node is the root of
the tree and has no parent, it will forward the



0 1 2 3

op op

(a) Host-based

0 2 31

op op

(b) NIC-based

Fig. 1. Block diagrams of Host-based and NIC-based reductions across four nodes. The circles represent the host processor
of a node and squares represent the NIC of a node.

result to the host. Figure 1(b) shows a block
diagram of a NIC-based reduction operation
across four nodes. Here we see each process
sending its data to the NIC. The NICs at
Nodes 0 and 2 immediately forward their data
to their parents, since they are leaf nodes. The
NIC at Node 1 receives the message from
Node 0 and performs the arithmetic operation
on this data and the data sent from the host. It
then sends this result to the NIC at Node 3. The
NIC at Node 3 receives the messages from the
NICs at Nodes 1 and 2, performs the arithmetic
operation on this data and on the data sent from
the host, then forwards this result to the host.

Notice that in the host-based reduction, mes-
sages received at intermediate nodes, such as
Node 2, are received by the NIC, forwarded
to the host, which performs the arithmetic op-
eration and sends another message that is sent
down to the NIC to be transmitted. In the NIC-
based case, because the arithmetic operation is
performed at the NIC, such messages do not
have to be passed between the NIC and the
host. Only the initial data needs to be passed
from the host to the NIC. This can improve the
performance of the reduction operation.

Another potential benefit of NIC-based re-
duction is reduced host involvement in the
operation. For non-root nodes, once the host
has sent its data to the NIC, it no longer has to
be involved in the reduction operation. In the

host-based case, the host process must either
wait to receive the messages from its children,
or it must be interrupted when the messages
arrive so that it can perform the arithmetic
operation on them. Since interrupts are time
consuming operations, using these can lead to
poor reduction latency, and is not commonly
used for reduction operations.

However, the alternative of waiting for the
messages has its own drawbacks. If processes
are skewed, meaning that some processes are
performing the reduction operation while oth-
ers are lagging behind and have not yet started
the operation, then intermediate processes may
be waiting for other processes in their subtree
to catch up. This can lead to poor overall
application performance. By using NIC-based
reduction the host needs only to supply the data
to the NIC. It can then proceed on with other
useful computation. This allows greater overlap
of computation and communication operations.
Furthermore, because the host is not involved in
actually performing the operation, NIC-based
reduction is a non-blocking operation. The root
process need not wait idle for the result after
it sends its data to the NIC. It can proceed
with other computation and only get the result
from the NIC when it needs it. This can further
reduce host involvement.



III. DESIGN AND IMPLEMENTATION

We implemented our NIC-based reduction
operation as a modification to the GM message
passing system [8] which uses the Myrinet
network [9], a popular system area network
for clusters. Before we describe the design and
implementation of our NIC-based reduction,
we will give some background on GM and
Myrinet.

Myrinet is a high-performance full-duplex
2Gbps network which uses NICs with pro-
grammable processors. GM is a user-level
message passing system which uses the pro-
grammable NICs for much of the protocol
processing. GM consists of three components:
a kernel module, a user-level library, and a
control program which runs on the NIC pro-
cessor. When a user application wishes to send
a message it calls the appropriate function from
the library. This function constructs a send
descriptor which describes what data is to be
sent and to which process to sent it to. This
descriptor is then written to the NIC using
PIO. The NIC detects that a new descriptor
has been written and processes it, DMAing
the data from the host buffers and transmitting
the message. In order to receive a message,
the process must provide memory buffers in
host memory into which the NIC will DMA
the message data. This is done by sending the
NIC a receive descriptor which describes such
a buffer. When the NIC receives a message
it DMAs the data into one of the buffers,
then DMAs a notification to the host process
that a message has been received. The host
process can either poll for these notifications,
or can block while waiting. In the latter case
the NIC will signal an interrupt after it DMAs
the notification.

We implemented a NIC-based reduction op-
eration by modifying GM version 1.6.3. Our
implementation can perform binary AND and
OR operations, as well as integer and floating
point SUM, MIN and MAX operations on a
single 64 bit data element. The host process
passes a descriptor to the NIC describing the

reduction operation. As the NIC receives re-
duction messages from the network, it performs
the arithmetic operation on the data and stores
the result. Once messages from all of the
children have been received and processed, if
the process initiating the reduction operation is
the root, the NIC DMAs a notification to the
host, including the result, indicating that the
reduction has completed, otherwise, the NIC
transmits the result to the parent NIC.

There are several design issues in this im-
plementation, namely, dealing with unexpected
messages, dealing with multiple instances of
the reduction operation, generating and speci-
fying the tree structure, and performing floating
point operations at the NIC. In the rest of this
section we will discuss these issues.

A. Unexpected messages

Because processes are not always synchro-
nized, it is possible that some processes may
execute the reduction operation before others.
This means that a NIC may receive reduction
messages from other NICs before the host pro-
cess has initiated the reduction operation and
send its data. Since the host has not informed
the NIC which processes to expect data from,
and what arithmetic operation to perform, the
NIC cannot process the messages. Such a mes-
sage can be handled in one of two ways. One
option is to reject the message and request that
the sender retransmit it later. Another option
is for the NIC to store the data until the host
has initiated the corresponding reduction oper-
ation. The first option can lead to high latency
because the messages need to be retransmitted
after a delay. While the second option gives
better performance, it requires NIC memory to
be allocated for storing this data. Since NIC
memory is limited, this may limit the number
of messages that can be stored.

We used a hybrid approach where we pro-
vided a limited number of buffers to store un-
expected data, and reject messages once these
are full. When the NIC receives a descriptor
from the host for a reduction operation, it



checks the list of unexpected messages. If it
finds any unexpected messages that match, it
performs the operation on that data, and frees
that unexpected message buffer.

B. Multiple instances of the reduction opera-
tion

When a non-root process initiates a reduction
operation, after it sends the data to the NIC, it
can proceed with its computation. This means
that a process can initiate a second reduction
operation before the NIC has completed the
first. The NIC needs to be able to process
multiple instances of the operations in the cor-
rect order. We did this by keeping a queue of
instances of reduction operations for each host
process. When a reduction message is received
from the network for a particular process, the
NIC searches the list of instances for that
process looking for a matching instance. If
a matching instance is found, the arithmetic
operation is performed for that instance, other-
wise the message is considered an unexpected
message and is handled as described above.

C. Generating and specifying the tree structure

The tree structure can be generated by either
the NIC or the host process. However, because
NIC processors are typically much slower than
host processors, it would be more efficient to
have the host construct the tree and pass a list
of children and the parent to the NIC. We used
this option. The send descriptor was only 64
bytes so we are limited as to the number of
children that can be specified. Four bytes are
needed for each child: two bytes are needed
to specify a GM node, one byte is needed to
specify the GM port, and one byte is used in
the algorithm to indicate whether a reduction
message has been received from this process.
Since we also include the eight-byte data in the
descriptor, and 12 more bytes are used in the
descriptor for other fields, there is only room
to specify nine children, and one parent.

The shape of the reduction tree is also an
important design issue. The latency of the

operation increases with each level of the tree,
so a very deep tree may not be desirable. On
the other hand, a very shallow tree increases
network contention as many child nodes trans-
mit their data to one parent node. The exact
shape of the tree depends on the performance
characteristics of the reduction operation. We
have not fully investigated the optimal tree
shape for NIC-based reduction. For our eval-
uation we used a binomial tree because this
is the most common tree used for reduction
operations, e.g., MPICH [10] uses a binomial
tree.

D. Performing floating point operations at the
NIC

The Myrinet NIC processors do not have
floating point units. So in order to be able to
perform floating point operations, we had to
use floating point operations implemented in
software. We used the SoftFloat [11] library for
these operations. SoftFloat is a free software
implementation of the IEC/IEEE Standard for
Binary Floating-point Arithmetic, and supports
all functions dictated by the standard for 32,
64, and 128 bit floating point formats. We used
only the 64 bit format in our implementation.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our implemen-
tation on a cluster of 16 quad-SMP 700MHz
Pentium-III nodes with 66MHz/64bit PCI. The
nodes are connected to a Myrinet2000 network.
The NICs are PCI64B cards with 2MB of
memory and 133MHz LANai 9.1 processors.
These are connected to 16 ports of a 32 port
switch. We compare our NIC-based reduction
implementation, which is based GM version
1.6.3, to a host-based reduction implementation
using the same version of GM. We evaluate
the basic reduction operation, the host CPU
utilization of the reduction operation, and its
tolerance of process skew.

A. Basic reduction

To evaluate the performance of our reduction
implementation, we compare the time from



10

15

20

25

30

35

40

45

2 4 8 16

La
te

nc
y 

(µ
se

c)

Number of Nodes

HB-int
NB-int

HB-float
NB-float

(a) Latency

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

2 4 8 16

F
ac

to
r 

of
 Im

pr
ov

em
en

t

Number of Nodes

Int
Float

(b) Factor of Improvement

Fig. 2. Comparison of NIC-based reduction (NB) and host-based reduction (HB) for integer (int) and floating-point (float)
operations

when the leaf node furthest away from the
root initiates the operation until the root node
receives the result. We performed the test in the
following manner. All of the nodes perform the
reduction operation. As soon as the root node
completes the operation and receives the result,
it sends a message to the last leaf node of the
tree. Once this node receives the message it
takes the time between when it initiated the
reduction operation and when it received the
message, then subtracts off the one way latency
time. We take the average time over 10,000
iterations.

We performed the evaluation for 2, 4, 8 and
16 nodes using integer operations and floating-
point operations. Figure 2 shows the results of
this evaluation. The figures show the results for
the integer and floating point SUM operation.
Notice also that the results for the host based
floating point and integer operations were very
similar, so the two lines on the graph are on
top of one another. The graphs show that for
integer operations, NIC-based reduction per-
forms better than host-based for all but the
two node case. We see that the floating-point
operations add some overhead, but that NIC-
based reduction is still better than the host

based reduction for all but the two and four
node cases. We see up to a 1.19 factor of
improvement for the integer operation, and up
to a 1.06 factor of improvement for floating
point operations.

B. Larger system sizes

The factor of improvement for NIC-based
reduction increases with the number of nodes.
This indicates that for larger system sizes, the
NIC-based reduction operation may be even
more beneficial. In order to investigate how the
relative performance of NIC-based reduction
would change with an increase in system sizes
we compared the performance of the operations
using a 1-degree tree, in other words a chain,
and varied the depth of the tree. Figure 3
show the results of this comparison. Notice
again in this graph that the lines for host-based
floating-point and integer operations overlap.
This graphs shows us that as the depth of
the tree increases the latency of the host-based
operation increases faster than the NIC-based
operation. In fact the time for host-based in-
teger reduction increases at a rate of 3.70µs
per level of depth faster than that for NIC-
based integer reduction. Similarly, the latency
of host-based floating-point reduction increases



0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15

La
te

nc
y 

(µ
se

c)

Depth of Tree

HB-int
NB-int

HB-float
NB-float

Fig. 3. Latency of NIC-based reduction (NB) and host-
based reduction (HB) for integer (int) and floating-point (float)
operations using a 1-degree tree (a chain) of varying depth

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

La
te

nc
y 

(µ
se

c)

Degree of Tree

HB-int
NB-int

HB-float
NB-float

Fig. 4. Latency of NIC-based reduction (NB) and host-
based reduction (HB) for integer (int) and floating-point (float)
operations using trees of depth 1 with varying degree

at a rate of 2.64µs per level of depth faster than
that of NIC-based floating-point reduction. We
see that for a tree of depth 1 host-based reduc-
tions perform better than NIC-based reductions.
Similarly, host-based floating-point reduction
performs better than NIC-based floating-point
reduction for the tree of depth 2. We believe
that this is because of the overhead of the
more complicated operation at the slower NIC
processor. As the depth increases, the number
of times messages have to be sent between
the NIC and the host at intermediate nodes
increases in host-based reduction. Since NIC-
based reduction avoids this overhead, it per-
forms better for deeper trees.

As system sizes increase, and trees get larger,
the maximum degree of the tree also increases.
To study the effect of increasing the degree of
a tree, we compared the latency of NIC-based
and host-based reduction operations for trees of
depth 1 with varying degree. Figure 4 shows
the results of this test. Again the host-based
floating-point and integer lines overlap. We see
here that host-based reductions perform better
than NIC-based for any of the trees. How-
ever host-based integer reduction performs only
about 2.19µs better, and host-based floating-
point reduction performs only 3.63µs better.
Furthermore, while there is a slight increase

in overhead for NIC-based reductions as the
degree of the tree increases, it is quite small,
0.22µs per degree for the integer reduction,
and 0.24µs per degree for the floating-point
reduction. For trees such as binomial trees the
depth of the tree increases at the same rate as
the depth of the tree. This indicates that the
NIC-based reduction will continue to perform
better than the host-based reduction for large
system sizes.

C. Host CPU utilization

One of the major benefits of NIC-based
reduction is that it reduces the load on the host
processor. Once the host process sends its data
to the NIC, it is free to perform useful compu-
tation. To compare the host CPU utilization for
NIC-based and host-based reduction, we timed
how long the host process spends performing
the reduction at each node. Our test consists of
each process performing a barrier synchroniza-
tion followed by a reduction operation. Figure 5
shows the average of 10,000 iterations of this
test.

In Figure 5(a) we see the average host CPU
utilization for NIC-based and host-based reduc-
tion for various numbers of nodes. Notice that
for all but two node reductions, NIC-based re-
ductions use the host CPU less than host-based
reductions. Also note that the average CPU



5
6
7
8
9

10
11
12
13
14
15

2 4 8 16A
ve

ra
ge

 h
os

t C
P

U
 u

til
iz

at
io

n 
(µ

se
c)

Number of nodes

HB-float
HB-int

NB-float
NB-int

(a) Average host CPU utilization

0.5

1

1.5

2

2.5

3

2 4 8 16

F
ac

to
r 

of
 im

pr
ov

em
en

t

Number of nodes

int
float

(b) Factor of Improvement

Fig. 5. Average time spent by the host processor performing the reduction for host-based (HB) and NIC-based (NB) reductions
performing integer (int) and floating-point (float) operations

utilization for host-based reduction increases
as the number of nodes increases. This is
because, in the reduction tree, as the number of
nodes increases, there are more interior nodes,
which are waiting for reduction messages from
their children. In NIC-based reduction, we see
that the average host CPU utilization actually
decreases as the system size increases. This is
because for non-root nodes, the host process
simply has to construct the send descriptor and
send it to the NIC. So regardless of how many
nodes are performing the reduction, the host
CPU utilization at non-root nodes is only a
few hundred nanoseconds. In this test, the root
node waits for the result of the reduction after it
sends its data to the NIC, so the CPU utilization
for the root node will increase with the latency
to perform the reduction, as it does for host-
based reduction. However, as the number of
nodes increases, the CPU utilization at the root
increases slower than the number of nodes
performing the reduction, so the average host
CPU utilization decreases with the number of
nodes.

Note, that NIC-based reduction allows for a
non-blocking implementation, where the root
process does not wait for the result from the

NIC after it sends its data. Instead, the process
can go on to perform other useful computation,
that does not depend on the result, and it would
only read the result from the NIC once it needs
that data. This would allow a further reduction
in CPU utilization.

Figure 5(b) shows the factor of improvement
in CPU utilization for NIC-based reduction
over host-based reduction. We see a factor of
improvement of 2.7 for integer operations and
2.3 for floating point operations. Notice that the
factor of improvement increases as the system
size increases.

D. Tolerating process skew

Another major benefit of NIC-based reduc-
tion over host-based reduction is its tolerance
to process skew. In order to see what effect
process skew has on host CPU utilization, we
timed how long each host process spends per-
forming the reduction operation, while varying
the skew between processes.

In this test, the processes perform a barrier
synchronization, followed by a delay, the length
of which is chosen at random between 0 and
a maximum delay value. The processes then
perform a reduction operation. This is repeated
10,000 times. By varying the maximum delay



0

20

40

60

80

100

120

140

0 200 400 600 800 1000A
ve

ra
ge

 h
os

t C
P

U
 u

til
iz

at
io

n 
(µ

se
c)

Maximum delay (µsec)

HB-float
HB-int

NB-float
NB-int

(a) Average host CPU utilization

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000

F
ac

to
r 

of
 im

pr
ov

em
en

t

Maximum delay (µsec)

float
int

(b) Factor of Improvement

Fig. 6. Average time spent by the host process performing the reduction, with different levels of process skew for host-based
(HB) and NIC-based (NB) reductions performing integer (int) and floating-point (float) operations

value, the level of skew between processes
varies. As the maximum delay value increases,
the skew between processes increases.

The results of this test are shown in Figure 6.
Figure 6(a) shows the average time spent by all
of the host processes of 16 nodes performing
the reduction, as the maximum delay value is
varied. Recall, that in a tree-based reduction,
a node must receive all messages from its
children, as well as provide its own data, before
it can pass the result on to its parent. When a
child node or, more generally, any descendant
node is delayed, the reduction operation at that
node cannot proceed. We would expect, then,
that as process skew increases, the number of
descendants of a process which are delayed
increases, as well as the amount by which they
are delayed. For host-based reduction, where
the host processes must wait for messages
from child processes, process skew results in
processes that are stalled and cannot perform
useful computation.

We see, in Figure 6(a), that for host-based
reduction, as the maximum delay increases, the
CPU utilization increases dramatically. How-
ever, for NIC-based reductions, only the root
node is delayed by skewed processes. Because

the reduction operation is performed at the
NIC, non-root processes simply have to pass
their data to the NIC. This makes non-root
processes unaffected by process skew. In Fig-
ure 6(a), we see process skew has relatively
little effect on the average time host processes
spend on reduction.

Figure 6(b) shows the factor of improvement
in CPU utilization for NIC-based reduction
over host-based reduction. We see up to a 4.5
factor of improvement for both integer opera-
tions and floating point operations. Furthermore
we see significant improvements even when
process skew is small. For instance we see a 3.7
factor of improvement for integer operations
even when the maximum delay value is only
200µs .

We also evaluated the effect of system size
on host CPU utilization by fixing the skew
and varying the number of nodes performing
the reduction. In Figure 7(a) we see that as
the number of nodes increases, the average
host CPU utilization for host-based reduction
increases. However, for NIC-based reductions,
we see that the average host CPU utilization de-
creases. This is because in the NIC-based case,
only the root process is affected by process



20

40

60

80

100

120

140

2 4 8 16A
ve

ra
ge

 h
os

t C
P

U
 u

til
iz

at
io

n 
(µ

se
c)

Number of nodes

HB-float
HB-int

NB-float
NB-int

(a) Average host time

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8 16

F
ac

to
r 

of
 im

pr
ov

em
en

t

Number of nodes

int
float

(b) Factor of Improvement

Fig. 7. Average time spent by the host process performing the reduction, with a maximum delay value of 1000µs , for different
system sizes for host-based (HB) and NIC-based (NB) reductions performing integer (int) and floating-point (float) operations

skew. As the number of processes increases the
time spent by the root process contributes a
smaller fraction to the average. For the host-
based case, each process can be affected by
skew, and as the number of processes increases,
there are more processes which can be delayed,
relative to their parents and ancestors, so the
average host CPU utilization increases as the
system size increases. Figure 7(b) shows the
factor of improvement for NIC-based reduction
over host-based reduction. We see up to a
4.5 factor of improvement for both integer
operations and floating point operations.

These results indicate that NIC-based re-
duction operations are much more tolerant to
process skew than host-based reduction. Fur-
thermore we see that process skew has a greater
impact on host-based reduction as system size
increases. This means that using NIC-based
reduction can significantly increase the scala-
bility of a system in the presence of process
skew.

V. CONCLUSIONS AND FUTURE

WORK

We have presented an initial implementa-
tion of a NIC-based reduction operation, and

evaluated it. We found up to a 1.19 fac-
tor of improvement for integer reduction and
1.06 factor of improvement for floating-point
reduction. We also give evidence that NIC-
based reduction will perform better than host-
based reduction in larger systems. Though this
improvement is not very large, the fact that
the operation does not involve the host allows
useful computation at the host to be overlapped
with the reduction operation at the NIC. In fact,
we have shown a 2.7 factor of improvement in
CPU utilization when using NIC-based reduc-
tion for integer operations and a 2.3 factor of
improvement when using floating point opera-
tions. We further note that NIC-based reduction
can be used in a non-blocking fashion which
would further improve the CPU utilization.

We have also shown that NIC-based reduc-
tion is much more tolerant to process skew than
the host-based implementation. In the presence
of process skew NIC-based reduction gives a
4.5 factor of improvement in CPU utilization
over host-based reduction. We also noticed that
when the system size increases, the effect of the
skew impacts host-based reduction much more
than the NIC-based reduction. This indicates



that NIC-based reduction would improve the
scalability of certain applications.

Overall these results indicate that NIC-based
reduction can perform better than host-based
reduction, can improve CPU utilization, and
can tolerate process skew better than host-based
reduction. This leads us to conclude that further
work should be done in this direction. We
intend to improve NIC-based reduction oper-
ation to allow for multiple elements, up to 64
elements of 64 bits. We also intend to increase
the maximum number of children from the cur-
rent limit of nine children. Another issue that
needs to be addressed is the order in which the
arithmetic operations are performed. Currently
the arithmetic operations are performed on the
data in the order in which the messages arrive
at the NIC. This may change from one run to
the next. Because of the potential of rounding
errors, overflow and underflow in floating-point
operations, this could lead to the reduction
operation giving different results for the same
input. By fixing the order in which the opera-
tions are applied to the data, the result will be
deterministic. We also plan to modify MPICH-
GM to use NIC-based reduction, and evaluate
a non-blocking version on MPI Reduce().
Finally, we intend to implement a NIC-based
reduction-to-all operation.

ADDITIONAL INFORMATION

Additional papers related to this research can
be obtained from the following Web pages:
Network-Based Computing Laboratory (http://
nowlab.cis.ohio-state.edu) and Parallel Archi-
tecture and Communication Group (http://www
.cis.ohio-state.edu/ � panda/pac.html).

REFERENCES

[1] R. A. V. de Geijn, “On Global Combine Operations,”
Journal of Parallel and Distributed Computing, vol. 22,
pp. 324–328, 1994.

[2] D. K. Panda, “Global Reduction in Wormhole k-ary n-
cube Networks with Multidestination Exchange Worms,”
in International Parallel Processing Symposium, Apr
1995, pp. 652–659.

[3] K. Verstoep, K. Langendoen, and H. Bal, “Efficient
Reliable Multicast on Myrinet,” in Proceedings of the
International Conference on Parallel Processing, Aug
1996, pp. III:156–165.

[4] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal, “Efficient
Multicast on Myrinet Using Link-Level Flow Control,”
in Proceedings of the 27th International Conference on
Parallel Processing (ICPP ’98), August 1998, pp. 381–
390.

[5] D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan,
“Broadcast/Multicast over Myrinet using NIC-Assisted
Multidestination Messages,” in Proceedings of the In-
ternational Workshop on Communication and Architec-
tural Support for Network-Based Parallel Computing
(CANPC), 2000, pp. 115–129.

[6] D. Buntinas, D. K. Panda, and P. Sadayappan, “Fast
NIC-based barrier over Myrinet/GM,” in Proceedings
of the International Parallel and Distributed Processing
Symposium 2001, (IPDPS), April 2001.

[7] D. Buntinas, D. Panda, and W. Gropp, “NIC-based
atomic remote memory operations in Myrinet/GM,” in
Workshop on Nove Uses of System Area Networks (SAN-
1), February 2002.

[8] Myricom, “Myricom GM myrinet software and
documentation,” http://www.myri.com/scs/GM/doc/
gm toc.html, 2000.

[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. Seizovic, and W. Su, “Myrinet - a gigabit
per second local area network,” in IEEE Micro, February
1995.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
high-performance, portable implementation of the MPI
message passing interface standard,” Parallel Computing,
vol. 22, no. 6, pp. 789–828, Sept. 1996.

[11] J. Hauser, “SoftFloat,” http://www.cs.berkeley.edu/
� jhauser/arithmetic/SoftFloat.html.


