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Abstract. Simultaneous use of powerful system components is important for applica-
tions to achieve maximum performance on modern clusters. MPI-2 had introduced one-
sided communication model that enables for better communication and computation over-
lap. However, studies have shown limitations of this model both in the context of appli-
cations and higher-level libraries. As part of MPI-3 effort, the Remote Memory Access
group has proposed several extensions to the existing one-sided communication interface
to address these limitations. In this paper, we present design, implementation and evalu-
ation of some of the key one-sided semantics proposed for MPI-3 over InfiniBand, using
the MVAPICH2 library.

1 Overview
High-end computing systems have seen a tremendous growth in recent years, driven by ad-
vances in processor, network and accelerator technologies. As the capabilities of different
components in a system increase, it is important for scientific applications to utilize all these
components concurrently to achieve maximum performance. Programming models hold the
key in enabling such usage. MPI had introduced non-blocking message passing and one-sided
communication semantics that enable overlap between computation and communication. Ear-
lier work [5] has shown how one-sided communication semantics can achieve superior overlap
in applications than the message passing semantics. However, their adaptation has been lim-
ited because of the overheads imposed by synchronization operations in MPI-2 and a mismatch
with real-world use cases for one-sided communication. Other one-sided models like Global
Address-Space Languages, and Global Arrays have failed to utilize the portable nature on MPI
because of these limitations. As part of the MPI-3 effort, the Remote Memory Access (RMA)
group [2] has proposed several extensions to the existing model that promise to address many
of these limitations [1].

Modern networks have played an indispensable role in scaling modern computing clus-
ters. InfiniBand is a commodity interconnection network which has gained acceptance by the
HEC community. It is the primary interconnect in around 40% of the Top500 supercomputing
clusters in the world. The Remote Direct Memory Access (RDMA) operations offered by In-
finiBand free the processor from managing data transfers. This allows communication libraries
to achieve higher performance and better overlap.

The proposed MPI-3 one-sided interface promises to address the limitations of the MPI-
2 one-sided interface. The newer additions include dynamic window creation, light weight
synchronization (local and remote) and variety of other communication operations. However,
in order for wide spread acceptance of this proposed interface, its performance advantages
need to be clearly highlighted. We believe that this is a strong motivation for designing and
implementing some of the key MPI-3 interfaces on a widely used commodity platform. In this
work, we present an analysis of a key subset of the proposed MPI-3 extensions and through
experimental evaluation we establish that they efficiently solve several issues faced by the MPI-
2 standard. Our design of the proposed semantics is integrated in the MVAPICH2 library [3],
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to demonstrate a working prototype in an open-source production MPI library. To the best of
our knowledge, this is the first design and implementation of the proposed MPI-3 one-sided
interface. The semantics implemented in this work are highlighted in Figure 1.

MPI 3 One Sided Communication 

Accumulate Ordering Undefined Conflicting Accesses Separate and Unified Windows 

Window Creation 

• Win_allocate 
• Win_create_dynamic, Win_attach, 
Win_detach 

Synchronization 

• Lock_all, Unlock_all 
• Win_flush, Win_flush_local,  
Win_flush_all, Win_flush_local_all 

• Win_sync  

Communication 

• Get_accumulate 
• Rput, Rget, 
Raccumulate,Rget_accumulate 

• Fetch_and_op, Compare_and_swap 

Fig. 1. Proposed MPI-3 One-Sided Communication Standard Extensions

2 Design and Evaluation

In this section, we provide a brief overview of each of the semantics addressed in this work and
their implementation highlights. A detailed description about the implementation and evalua-
tion can be found in our technical report [6].
Dynamic Windows: A window defines the memory to be used for communication in the one-
sided model. In MPI-2, the location and size of memory attached to a window is specified
during window creation and cannot be changed at a later point of time. This is a misfit in the
case of applications and programming models with dynamic memory requirements. MPI-3 al-
lows “dynamic” windows where each process can asynchronously attach or detach memory
from a window. Implementation of one-sided communication operations over RDMA requires
exchange of buffer registration information. For MPI-2, this is usually done during the win-
dow creation phase. In the case of dynamic windows, such an exchange is required each time
an access happens to a newly attached buffer. However, as multiple accesses happen to each
buffer, this cost can be amortized efficiently. Through micro benchmark evaluation, we show
that performance of dynamic windows is as good as that of static windows. The performance
comparison of Put latency is shown in Figure 3(a). A complete set of results can be found in
the technical report.

MPI Win lock
for i in 1, N

MPI Get (ith Block)
end for
MPI Win unlock

Compute (N Blocks)

MPI Win lock
for i in 1, N

MPI Put (ith Block)
end for
MPI Win unlock

(a) No Overlap

MPI Win lock
for i in 1, N

MPI Get (ith Block)
end for
MPI Win unlock

MPI Win lock
for i in 1, N

Compute (ith Block)
MPI Put (ith Block)

end for
MPI Win unlock

(b) Overlap using Lock-Unlock

MPI Win lock
for i in 1, N

MPI Rget (ith Block)
end for

MPI Wait any (get requests)
while a get request j completes

Compute (jth Block)
MPI Rput (jth Block)
MPI Wait any (get requests)

end while
MPI Wait all (put requests)
MPI Win unlock

(c) Overlap using Request Operations

Fig. 2. Get-Compute-Put on N Blocks of Data
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Flush Operations: All communication operations in MPI one-sided interface are non-blocking.
In MPI-2, their completions (both local and remote) are bound to synchronization operations.
This is heavy-weight. MPI-3 addresses this issue through flush operations, separating local
completion from remote completion. Ensuring local and remote completions of different op-
erations (writes, reads and atomics) in InfiniBand have different requirements and costs [4].
The flush semantics provide flexibility to match the completion of different one-sided com-
munication operations to the completion requirements in InfiniBand and hence provide better
efficiency. A comparison of Put completion times using Lock/Unlock and Flush semantics is
shown in Figure 3(b).
Request-based Operations: Request-based operations provide an easy mechanism to wait for
completion of specific operations. This allows for much finer grained overlap compared to flush
or other synchronization calls, which wait for completion of all operations to a target or on a
window. Figure 2 presents pseudo-code for three versions of a Get-Compute-Put benchmark
which fetches N blocks of data from remote memory, computes on them and writes them back.
Figure 2(a) shows a code without any overlap. The three phases: get, compute and put can be
pipelined to overlap computation and communication. Figure 2(b) and (c) show overlapped
versions using MPI-2 Semantics and using Request-based operations respectively. The perfor-
mance results are shown in Figure 3(c). We see that request-based operations provide close to
optimal overlap.
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Fig. 3. Performance using MPI-3 One-sided Semantics

3 Conclusion
In this paper, we presented design, implementation and evaluation of a key subset of newly
proposed one-sided interface. Through micro-benchmark evaluation, we have shown that the
newly proposed interfaces can provide improved performance over the MPI-2. In the near
future, we would like to show these benefits using a real-world application, re-designing it to
new the new functions and semantics.
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