High Performance User Level Protocol on Gigabit Ethernet

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University
By

Piyush Shivam, MSc.(Tech.) Information Systems

* %k ok ok ok

The Ohio State University

2002
Master’s Examination Committee: Approved by
Dr. Dhabaleswar Panda, Adviser
Dr. Pete Wyckoff
Adviser
Dr. P. Sadayappan Department of Computer

and Information Science

© Copyright by
Piyush Shivam

2002

ABSTRACT

Modern interconnects like Myrinet and Gigabit Ethernet offer Gigabits per second
(Gb/s) speeds which has put the onus of reducing the communication latency on mes-
saging software. With the advent of programmable NICs, many aspects of protocol
processing can be offloaded from kernel and user space to the NIC leaving the host
processor to dedicate more cycles to the application. Many host-offload messaging
systems exist for Myrinet; however, nothing similar exists for Gigabit Ethernet. In
this thesis, we present a new Ethernet Message Passing (EMP) protocol, which not
only implements OS-bypass but also supports zero-copy. This protocol has been im-
plemented using the multi-CPU Alteon NICs for Gigabit Ethernet. Using the single
CPU of the Alteon NIC, with the base protocol, we obtain latency of 24 us, and a
throughput of 880 Mb/s. However, the two CPUs of the Alteon NIC raise an open
challenge whether performance of user-level protocols can be improved by taking ad-
vantage of a multi-CPU NIC. We highlight the intrinsic issues associated with such
a challenge and explore different parallelization and pipelining schemes to enhance
the performance of the basic EMP protocol. We consider four different alternatives:
splitting the send path only (SO), splitting the receive path only (RO), splitting both
the send and receive paths (SR), and assigning dedicated CPUs for send and receive

(DSR).

ii

The performance results indicate that parallelizing the receive path of the protocol
can deliver 964 Mbps of bandwidth, close to the maximum achievable on Gigabit
Ethernet. To the best of our knowledge, this is the first research in the literature to
exploit the capabilities of multi-CPU NICs to improve the performance of user-level
protocols. Results of this research demonstrate significant potential to design scalable

and high performance clusters with Gigabit Ethernet.

iii

High Performance User Level Protocol on Gigabit Ethernet

By
Piyush Shivam, M.S.

The Ohio State University, 2002
Dr. Dhabaleswar Panda, Adviser

Modern interconnects like Myrinet and Gigabit Ethernet offer Gigabits per second
(Gb/s) speeds which has put the onus of reducing the communication latency on mes-
saging software. With the advent of programmable NICs, many aspects of protocol
processing can be offloaded from kernel and user space to the NIC leaving the host
processor to dedicate more cycles to the application. Many host-offload messaging
systems exist for Myrinet; however, nothing similar exists for Gigabit Ethernet. In
this thesis, we present a new Ethernet Message Passing (EMP) protocol, which not
only implements OS-bypass but also supports zero-copy. This protocol has been im-
plemented using the multi-CPU Alteon NICs for Gigabit Ethernet. Using the single
CPU of the Alteon NIC, with the base protocol, we obtain latency of 24 us, and a
throughput of 880 Mb/s. However, the two CPUs of the Alteon NIC raise an open
challenge whether performance of user-level protocols can be improved by taking ad-
vantage of a multi-CPU NIC. We highlight the intrinsic issues associated with such
a challenge and explore different parallelization and pipelining schemes to enhance

1

the performance of the basic EMP protocol. We consider four different alternatives:
splitting the send path only (SO), splitting the receive path only (RO), splitting both
the send and receive paths (SR), and assigning dedicated CPUs for send and receive
(DSR).

The performance results indicate that parallelizing the receive path of the protocol
can deliver 964 Mbps of bandwidth, close to the maximum achievable on Gigabit
Ethernet. To the best of our knowledge, this is the first research in the literature to
exploit the capabilities of multi-CPU NICs to improve the performance of user-level
protocols. Results of this research demonstrate significant potential to design scalable

and high performance clusters with Gigabit Ethernet.

This is dedicated to God and my parents

v

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for his guidance and support
through the course of my graduate studies. I appreciate the time and effort he invested
in steering my research work.

I am grateful to Dr. Pete Wyckoff for his continuous encouragement and involve-
ment in this work. This research would not have been possible without his expertise.

I am thankful to Prof. P. Sadayappan for agreeing to serve on my Master’s
examination committee.

I would like to express a special thanks to my wife, Chris, who provided me with
the much needed moral and emotional support.

I also acknowledge the student members of the Network-Based Computing Labo-
ratory, particularly Darius Buntinas for his willingness to help with everything at all
times.

This thesis was made possible by the financial support I received from various
sources. I am indebted to the Department of Computer and Information Science for
awarding me teaching assistantship in the first year of my M.S., and to Prof. Panda
for supporting me as a research associate in the following year.

Finally, I would like to thank all my friends who made my stay at OSU enjoyable.

VITA

August 29, 1977 ... Born - Moradabad, India

1999 L. MSc.(Tech.) Information Systems,
Birla Insititute of Technology and Sci-
ence (BITS), Pilani, India.

Fall 2000 - Winter 2000 Graduate Teaching Associate,
The Ohio State University.
Winter 2000 - Spring 2002 Graduate Research Associate,

The Ohio State University.

PUBLICATIONS

Research Publications

P. Shivam, P. Wyckoff and D. Panda “ EMP:Zero-copy OS-bypass NIC-driven Gigabit
Ethernet Message Passing”. Proceedings of SC2001, Denver, Colorado, November
01.

P. Shivam, P. Wyckoff and D. Panda “ Can User Level Protocols Take Advantage of
Multi-CPU NIC?”. IPDPS 2002, Fort Lauderdale, Florida, April 02.

FIELDS OF STUDY

Major Field: Computer and Information Science

vi

TABLE OF CONTENTS

Abstract

Dedication L

Acknowledgmentso

Vita . . o e

List of Tables e

List of Figures
Chapters:

1. Introduction L L

1.1 Background and Related Work on Gigabit Ethernet

1.2 Problem Statement and our Approach

1.3 Thesis Organization

2. EMP (Ethernet Message Passing)

2.1 Architectural overview of the Multi-CPU Alteon NIC

2.2 Design Challenges

2.2.1 Protocol processing L

2.2.2 Virtual memory management

2.2.3 Descriptor management L.

2.3 Implementation oL

2.3.1 Protocol processing oL

2.3.2 Virtual memory and descriptors

2.3.3 Hostlibrary oo

Page
ii

v

vi

ix

2.3.4 Imitializationo 28

2.4 Performance Evaluation 29

2.4.1 Experimental setup. 29

2.4.2 Results and discussion L 30

3. Parallelizationof EMP L 34
3.1 EMP Protocol 34

3.1.1 Basic steps at the sending and receiving side 35

3.1.2 Timing analysis of the messaging layer components 40

3.2 Challenges in Taking Advantage of a Multi-CPU NIC 40

3.2.1 NICconstraints 41

3.2.2 Achieving concurrencyo 42

3.2.3 Exploiting pipelining and parallelization 43

3.3 Schemes for Parallelization and Pipelining 44

3.3.1 SO . . . 45

332 RO e 45

333 DSR 47

334 SR ... 47

3.4 Exploiting the NIC Hardware Capability 47

3.5 Performance Evaluation 48

3.5.1 Experimental setup. 48

3.5.2 Results and discussion oL L 49

4. Conclusions and Future Work L. 62
4.1 Conclusions e 62

4.2 Current work 64

4.3 Futurework 64
Bibliographyo 66

viii

LIST OF TABLES

Table Page
1.1 Classification of existing message passing systems. 4
3.1 Timing analysis for the major functional operations. 41
3.2 Function distribution (unidirectional).. 46
3.3 Function distribution (bidirectional). 56

ix

LIST OF FIGURES

Figure
2.1 Alteon Architecture.
2.2 Our approach in the redistribution of the various components of the
messaging system. L e
2.3 Two main headers used in EMP.
2.4 Processing flow for sending and receiving.
2.5 Some short-format descriptors in the NIC memory, showing ownership
by either the HOST or the NIC.
2.6 Comparison of bandwidth with flow control vs. no flow control. The
x-axis is message size in Kb and y-axis is bw in Mb/s. These results
are on 933 MHz hosts with no switch in between (left) and 700 MHz
hosts with the switch (right).
2.7 Latency and bandwidth comparisons. The quantity measured on the
abscissa is message size in kilobytes, for all three plots. These results
are on 933 MHz hosts with no switch in between.
2.8 Latency and bandwidth comparisons. The quantity measured on the
abscissa is message size in kilobytes, for all three plots. These results
are on 700 MHz hosts with the switch in between.
3.1 Bandwidth comparisons for unidirectional traffic. The x-axis is indi-

cates message size in kilobytes. The y-axis shows bandwidth in Mb/sec.
These results are on 933 MHz hosts with no switch in between.

20

3.2

3.3

3.4

3.5

3.6

3.7

Bandwidth comparisons for unidirectional traffic with the switch. The
x-axis is indicates message size in kilobytes. The y-axis shows band-
width in Mb/sec. These results are on 700 MHz hosts with the switch
inbetween.

Latency comparisons for small and large message sizes with unidirec-
tional traffic. The z-axis is indicates message size in kilobytes. The
y-axis shows latency in microseconds. These results are on 933 MHz
hosts with no switch in between.o 0oL

Latency comparisons for small and large message sizes with unidirec-
tional traffic with the switch. The z-axis is indicates message size in
kilobytes. The y-axis shows latency in microseconds. These results are
on 700 MHz hosts with the switch in between.

Bandwidth comparisons for bidirectional traffic. The x-axis indicates
message size in KBytes. The y-axis shows bandwidth in Mb/sec. These
results are on 933 MHz hosts with no switch in between.

Bandwidth comparisons for bidirectional traffic with switch. The x-
axis indicates message size in KBytes. The y-axis shows bandwidth in

Mb/sec. These results are on 700 MHz hosts with the switch in between. 59

Bandwidth comparisons for bidirectional traffic with switch. The x-
axis indicates message size in KBytes. The y-axis shows bandwidth in

Mb/sec. These results are on 700 MHz hosts with no switch in between. 59

xi

CHAPTER 1

INTRODUCTION

Traditionally high performance applications have required the use of supercom-
puters. However, with the availability of high-speed commodity network technologies
and GHz processors, one can think of connecting these high performance components
over a network to run these high performance applications. Thus, one can obtain a
cluster of workstations connected by System, Local or Wide Area Networks. Their
cost effectiveness and incremental scalability make them a viable alternative to the
more expensive supercomputers.

High-Performance computing on a cluster of workstations requires that the com-
munication latency be as small as possible. The communication latency is primarily
composed of two components: time spent in processing the message and the network
latency (time on wire). Modern high speed interconnects such as Myrinet [4] and
Gigabit Ethernet [24] have shifted the bottleneck in communication from the inter-
connect to the messaging software at the sending and receiving ends. In older systems,
the processing of the messages by the kernel caused multiple copies and many context

switches which increased the overall end-to-end latency.

This led to the development of user-level network protocols where the kernel was
removed from the critical path of the message. This meant that the parts of the pro-
tocol or the entire protocol moved to the user space from the kernel space. Examples
of some of the user-level protocols are: FM [17] for Myrinet, U-Net [26] for ATM
and Fast Ethernet, GM [4] for Myrinet, etc. During the last few years, the designs
and developments related to user-level protocols have been brought into an industry
standard in terms of the Virtual Interface Architecture (VIA) [25]. Many hardware,
software, and firmware implementations of VIA are currently available. Examples
include M-VIA [15], GigaNet VIA [22], and FirmVIA [2]. An extension to the VIA
interface is already included in the latest InfiniBand Architecture (IBA) [10] as the
Verbs layer.

Another development which has taken place is the improvement of the Network
Interface Card (NIC) technology. In the traditional architecture, the NIC would sim-
ply take the data from the host and put it on the interconnect. However, modern
NICs have programmable processors and memory which makes them capable of shar-
ing some of the message processing work with the host. Thus, the host can give
more of its cycles to the application, enhancing application speedup. Under these
developments, modern messaging systems are implemented outside the kernel and
try to make use of available NIC processing power. In fact, the success of user-
level protocols, VIA, and Verbs layer of the IBA relies heavily on the performance,
programmability, and “intelligence” associated with modern network interface cards

(NICs).

Moreover, as the processor technology is moving towards GHz speeds and network
technology is moving towards 10-30 Gbits/sec [10] it is becoming increasingly impor-
tant to exploit the capabilities of the NIC. In current generation systems, the PCI bus
serves as a fundamental limitation to achieving better communication performance.
This aspect is being alleviated in the IBA standard where Host Channel Adapters
(HCAs) (equivalent to NICs) will be directly connected to the memory through the
system bus. Thus, the design of the NICs and their interfaces are getting increased
attention. As NIC processors are becoming more powerful and NICs are built with
more memory, it is becoming easier to off-load significant portions of communication
protocol processing to the NIC processor and thus, achieve improved communication

performance.

1.1 Background and Related Work on Gigabit Ethernet

Since its inception in the 1970s, Ethernet has been an important networking pro-
tocol, with the highest installation base. Gigabit Ethernet builds on top of Ethernet
but increases speed multiple times (Gb/s). Since this technology is fully compatible
with Ethernet, one can use the existing Ethernet infrastructure to build gigabit per
second networks. A Gigabit Ethernet infrastructure has the potential to be relatively
inexpensive, assuming the industry continues Ethernet price trends and completes
the transition from fiber to copper cabling.

Given so many benefits of Gigabit Ethernet it is imperative that there exist a low
latency messaging system for Gigabit Ethernet just like GM [4], FM [17], AM2 [7],
and others for Myrinet. However, no NIC-level, OS-bypass, Zero-copy messaging

software exists on Gigabit Ethernet. All the efforts until now like the GAMMA [6],

MESH [5], MVIA [15], GigaE PM [23], and Bobnet [8] do not use the capabilities of
the programmable NIC to offload protocol processing onto the NIC. Table 1.1 shows

the classification of existing message passing systems.

Programmable NIC Non Programmable NIC
Myrinet GM [4], FM [17], AM2 [7] (n/a)
Gigabit Ethernet EMP MVIA [15], GigaE-PM [23], Bobnet [§]
(This Work) MESH [5], GAMMA [6]

Table 1.1: Classification of existing message passing systems.

These Ethernet messaging systems use non-programmable NICs. Thus, no more
processing can be offloaded onto the NIC than which has been already been burned
into the card at design time. There was work done in the area of message fragmen-
tation where the NIC firmware was modified to advertise a bigger MTU to IP which
was then fragmented at the NIC [9]. The Arsenic project [19] extends a packet send
and receive interface from the NIC to the user application. And a port of the ST
protocol has been written which extends the NIC program to bypass the operating
system [18]. However, these are not complete reliable NIC-based messaging systems.
As indicated in [14] it is desirable to have most of the messaging overhead in the NIC,

so that the processing power at the host can be used for applications.

1.2 Problem Statement and our Approach

As outlined earlier, there is a need for a high performance messaging layer for
Gigabit Ethernet. To make this layer deliver low latency, high bandwidth and high

host CPU utilization numbers, one needs to exploit the programmable NIC to the

maximum. One of the popular NICs for Gigabit Ethernet was developed by Alteon
(now owned by Nortel Networks) which offered a unique architecture in terms of
having a two-CPU core.

The aforementioned goal and the availability of such a novel NIC architecture led

us to ask ourselves the following questions.

1. How best can we develop a very high performance user-level protocol on Gigabit

Ethernet?

2. Can such a user-level protocol be better implemented by taking advantage of a

multi-CPU NIC?

3. What are alternative strategies for parallelizing and pipelining of such user-level

protocols with a two-CPU NIC, and what are the intrinsic issues?

4. How much performance benefit can be achieved with such parallelization and

pipelining?

In this thesis we take on a challenge of designing, developing and implementing a
zero-copy, OS-bypass, NIC-level messaging system for Gigabit Ethernet with Alteon
NICs. We call this messaging layer EMP (Ethernet Message Passing). OS bypass
means that the OS is removed from the critical path of the message. Data can be
sent/received directly from/into the application without intermediate buffering mak-
ing it a true zero-copy architecture. The protocol has support for retransmission
and flow control and hence is reliable. All parts of the messaging system are imple-
mented on the NIC, including message-based descriptor management, packetization,
flow control and reliability. In fact, the host machine does not interfere with a trans-
fer after ordering the NIC to start it. Using this messaging layer we obtain latency

5

of 24.31 us, bandwidth of around 840 Mbps and excellent CPU utilization results.
These results have been obtained with back to back connected hosts. We have done
the experiments with the switch also and with that the latency increases by around
5-6 s for small message sizes. The bandwidth remains unchanged though.

The basic EMP protocol was developed using only one of the two CPUs of the
Alteon NIC. To answer our remaining questions we analyze, design, implement, and
evaluate a parallel version of EMP with two-CPU Alteon NICs for Gigabit Ethernet.

We analyze the send and receive paths of the EMP messaging layer to determine
the costs associated with the basic steps. Next, we analyze the challenges involved in
parallelizing and /or pipelining user-level protocols for the two-CPU Alteon NIC. This
leads to four alternative enhancements: splitting up the send path only (SO), splitting
up the receive path only (RO), splitting both the send and receive paths (SR), and
assigning dedicated CPUs for send and receive (DSR). We implement these strategies
on our cluster testbed and evaluate their performance benefits.

The best results were obtained with the RO scheme for unidirectional traffic,
giving a small message (10 bytes) latency of 22.62 us and bandwidth of 964 Mbps.
This is compared to the base case (EMP-single cpu) latency of 24.31 us (a gain of
7.0%) and bandwidth of 840 Mbps. For large messages the latency improvement was
around 8.3%. For bidirectional traffic the best results were achieved with the SO
scheme where the total bandwidth peaked at 1100 Mbps as compared to 940 Mbps
in the base case, a gain of 17%. These numbers were obtained with 933 MHz hosts
connected back to back and we get similar percentage of improvement with slower

700 MHz hosts connected via packet engine switch.

Though this parallelization is done specifically for EMP, the results and design
strategies we suggest are applicable to any other user-level protocol. To the best
of our knowledge, this thesis documents the first attempt to not only develop such
a messaging layer for Gigabit Ethernet but also to parallelize such a protocol with

multi-CPU NICs.
1.3 Thesis Organization

The rest of the thesis is organized in the following manner. Chapter 2 describes the
basic EMP and its development, along with the performance analysis of this messaging
layer on the single CPU of the Alteon NIC. Chapter 3 outlines the parallelization of
the basic EMP on the two CPUs of the Alteon NIC along with performance analysis.

Finally, conclusions and future work are presented in Chapter 4.

CHAPTER 2

EMP (ETHERNET MESSAGE PASSING)

In this chapter we describe the design, implementation and the performance eval-
uation of our zero-copy, OS-bypass and NIC-driven messaging system, EMP. First
we look at the Alteon NIC architecture, on which we develop our high performance

messaging layer. This is followed by the detailed description of EMP.

2.1 Architectural overview of the Multi-CPU Alteon NIC

Alteon Web Systems, now owned by Nortel Networks, produced a Gigabit Ether-
net network interface chipset based around a general purpose embedded microproces-
sor design which they called the Tigon2. It is novel because most Ethernet chipsets
are fixed designs, using a standard descriptor-based host communication protocol. A
fully programmable microprocessor design allows for much flexibility in the design
of a communication system. This chipset was sold on boards by Alteon, and also
was used in board designs by other companies, including Netgear and 3Com. When
we speak of the “Alteon NIC” later in the thesis, it is understood that all of the
implementations which use this chip are equivalent. Broadcom has a chip (5700)
which implements the follow-on technology, Tigon3, which should be similar enough
to allow use of our messaging environment on future gigabit Ethernet hardware.

8

The core of the Alteon (Figure 2.1)is the Tigon chip which is a 388-pin ASIC
consisting of two MIPS-like microprocessors running at 8 MHz, an internal memory
bus with interface to external SRAM, a 64-bit, 66 MHz PCI interface, and an interface
to an external MAC. The chip also includes an instruction and data cache, and a small
amount of fast per-CPU “scratchpad” memory. The instruction set used by the Tigon
processors is essentially MIPS level 2 (as in the R4000), without some instructions

which would go unused in a NIC application.

DMA DMA

> | AL TT s

[
n
t
€ Scratch A Scratch B
.
f
$

a $ <ﬁ j>
C
e

Cpu A CpuB

Y

GigE Interface (MAC)

Figure 2.1: Alteon Architecture.

Hardware registers can be used by the processor cores to control the operation

of other systems on the Tigon, including the PCI interface, a timer, two host DMA

9

engines, transmit and receive MAC FIFOs, and a DMA assist engine. Our particular
cards have 512 kB of external SRAM, although implementations with more memory
are available. The NIC exports a 4 kB PCI address space, revealing to the host: 1 kB
of Tigon hardware registers, a fixed mapping of the lowest 1 kB of SRAM (including
event-generating mailboxes), and a 2 kB memory “window” which can be positioned
by the host to map into any section of the full 512 kB external SRAM.

The hardware provides a single semaphore which can be used to synchronize the
two CPUs. Each CPU has its own register which it writes with any value to request
ownership of the semaphore, then must loop until a read from the semaphore register is
non-zero, indicating successful ownership. This is the only general locking mechanism;
in particular, the memory system on the NIC does not support locked bus cycles.

The Tigon2 has many features useful for implementing event-driven execution (as
opposed to interrupt-driven or threaded, for example). Two new instructions were
added to facilitate fast event dispatch: pri selects the highest bit in a word subject to
a mask, and joff jumps through a function table using that high bit. Each processor
has a register which includes bits for each event that a processor might want to handle.
These bits report hardware readiness, such as an arriving frame from the network,
or a buffer low watermark condition. The event register also has bits which software

can use to define its own events for handling from within the main dispatch loop.

2.2 Design Challenges

Our goal was to develop a design for a new firmware for the Tigon, and associated
code running in the host, to facilitate OS-bypass high-throughput and low-latency

message passing communications, with no buffer copies and no intervention by the

10

operating system. We reuse none of the original firmware written by Alteon, and
know of no other original firmware designs, although quite a number of projects have
made small modifications to the original Alteon firmware.

The following sections highlight some of the major challenges we faced in designing
both the network protocol. Figure 2.2 shows the core components addressed in the
following. The existing solution in the figure refers to the current messaging layer

implementations on the Gigabit Ethernet.

R Protocol Processing MPI ‘ ‘ NIC Initialization
Framing
MPI :
4|: Reliabilit Descriptor Virtual Memory
tabifity Management Management
USER SPACE USER SPACE
—_—
Virtual Memory Descriptor Protocol Processing
Management Management Framing
Reliability
‘ NIC Initiaization ‘
KERNEL SPACE KERNEL SPACE

‘ Flow Control ‘ Protocol Processing
NIC Framing
MPI
Reliability
EXISTING SOLUTION Descriptor
Management NIC

PROPOSED SOLUTION

Figure 2.2: Our approach in the redistribution of the various components of the
messaging system.

11

2.2.1 Protocol processing

One of the most important design challenges was to decide how to distribute the
various functions related to protocol processing such as reliability, fragmentation,
etc.: on the host, NIC, or shared in both? In EMP we have offloaded all the protocol
processing to the NIC because of its unique processing capabilities (two 88 MHz MIPS

processors). That is the reason for calling EMP NIC-driven.
Framing

Once the NIC has been informed that there is data to send, it retrieves the data
from the host in preparation for moving the data to the network. Here, we had to
decide whether we should buffer the data at the NIC while sending and receiving the
message. We decided against it because buffering would add greatly to the system
overhead. Instead, whenever the NIC has data to send, it pulls the data from the
host one frame at a time and puts it on the wire. Similarly on the receiving side, if
there is no pre-posted receive for the incoming frame, the frame is simply dropped
to avoid buffering. MPI programs frequently arrange to pre-post all receives to avoid
buffering by the messaging system, because users know that it hurts performance and
that the buffering limit varies among implementations, thus our design caters to this

type of usage. VIA [25] also imposes this condition in its design.
Reliability

EMP presents a reliable transport interface to the host. While designing the
reliability of EMP, one of the design issues [3] we faced was the unit of acknowledgment
(the number of frames to acknowledge at one time). We decided to acknowledge a

collection of frames instead of a single frame (each message is made up of multiple

12

frames). There were two main reasons for that. The Ethernet frame size is small so
acknowledging every frame would introduce a lot of overhead. Moreover, since we
were developing our messaging layer for LAN clusters where the rate of frame loss
is not as excessive as WAN, we could decide not to acknowledge every frame. EMP
has the flexibility of configuring the unit of acknowledgment on the fly depending
upon application and network configuration. This feature also allows us to research

reliability issues in the future for different kinds of applications.

Flow control

In this Section we outline the flow control design for EMP. First we look at the
drawbacks of the existing schemes. Then we look at some of the issues related with
the flow control at NIC given our goals of low latency, high bandwidth and high host

CPU utilization. We look at our solution and its advantages in the Section 2.3.

Limitations of the current schemes: The most common schemes in the litera-
ture [11] are the Credit based schemes and the Rate control based schemes [12]. In
Credit based scheme an explicit VC (virtual circuit) is set up for each flow. Before
forwarding any data cell over the link, the sender needs to receive credits for the VC
from the receiver. Periodically, the receiver sends credits to the sender indicating
the availability of the buffer space. The sender then is allowed to forward some data
corresponding to the number of credits it has. Each send results in the current credit
reducing by one. Each VC is associated with a fixed amount of buffer. This scheme is
very difficult to implement with good performance given the limited resources of the
NIC. When we allocate buffer for the VC it is difficult to come out with a near optimal

allocation. There will be too much overhead in dealing with the buffer management

13

for each VC. Moreover, the limited memory of the NIC restricts the number of flows
which can be achieved. The static allocation of buffers is also ruled out because of
this limitation. Doing things dynamically further adds a lot of overhead at the NIC.

In Rate based scheme the exact rate of traffic for each VC is determined. Thus, it
assumes that the rates for the VC sharing a link can be made to converge on sensible
values. However, on very fast networks, the network load may change faster than the
control system can react. Moreover, its very complex to determine all the parameters
for rate control. Again the kind of processing available at the NIC precludes the

implementation of this scheme.

Issues related with NIC-based flow control

1. Minimum overhead

The main motivation for using high speed interconnects, programmable NICs
and user level protocols is to achieve low latency, high bandwidth and high host
CPU utilization. Incorporating the flow control in the basic state machine of

the protocol causes an increase in overhead. This is due to the following factors.

e The EMP protocol is implemented at the NIC and the NIC has limited

resources (NIC CPU speed - 88MHz, limited buffers).

e The extra work introduced due to flow control disturbs the critical path of

send and receive actions.

Any NIC-driven flow control scheme should cause minimum burden on the lim-
ited NIC resources and try to disturb the critical path of the protocol as little

as possible. Once again, we stress that the reason for implementing the flow

14

control at the NIC is that we want to devote the host cycles for real application

work as much as possible.

. Effective criteria for flow control

There are many factors on which we can base our flow control scheme. Before
going in detail on this we briefly describe some of the basic steps involving these

resources.

e Host posts the send descriptor, a software resource limited by the amount
of memory at the NIC. There are currently 200 send descriptors and 440

receive descriptors.

e The NIC reads the posted descriptor and based on the size of the message
it schedules DMA for the message using the DMA descriptors (a hardware

resource). There are a total of 64 DMA descriptors.

e The message gets DMAed in the NIC memory which is a total of 512kB.
This includes all the data structures, descriptors and a variety of other

things needed for implementing EMP at the NIC.

e When the DMA gets completed the MAC engine of the network interface
schedules MAC descriptors for the final transmission of the frames. There

are a total of 256 MAC descriptors.

Thus the following hardware resources can be overrun and hence result in the

activation of flow control at any node.

e The NIC memory space

e The DMA descriptors

15

e The MAC descriptors

Coming out with the correct parameters is not trivial since the network behavior
varies depending on the number of nodes, the burstiness of the traffic and the

size of the messages in the network.

3. Current event mechanism of the Alteon NIC

The way the current Alteon NIC is designed, it always does a send before a
receive. This is something fixed in the hardware and cannot be changed as
such. There are two kinds of events among many other events. One is the
MAILBOX event which is set when a send is scheduled by the host. The
second is the MAC_RX_COMP event which gets set when a frame arrives at
the node. In the hardware, the MAILBOX event always gets processed earlier
to the MAC_RX_COMP event. Thus, any control information to the sender
does not get noticed till the sends are complete. This way many sends might

proceed even when there is no buffer space at the receiver NIC.

The Alteon NIC provides a provision for defining software events, which can be
put anywhere in the event priority table. Thus one way of making sure that
receives get noticed before all the sends are complete is to define the MAILBOX
event as a software event and give it a lower priority than the MAC_RX_COMP
event. This way all the receives will get processed before any sends. While this
does not affect bandwidth measurements, this has the potential of increasing

the latency numbers.

4. Flow control vs. retransmissions

16

The idea behind flow control is to avoid the receiver from getting flooded by
the sender. This means that sender should not send the data if the receiver is

full and wait for the receiver to free up some space.

This implies that on the sender side a regular check is required for all kinds of
messages to make sure that sender does not send the data when the receiver
does not have space. This will hinder the latency and bandwidth for cases when
there is no need for flow control especially for small to medium sized messages.
This fact motivated the design of EMP whereby sender is allowed to send to the
receiver even when the receiver might not have enough buffer size to keep the
incoming data. This poses the problem of receiver dropping data. However since

EMP allows for retransmission of packets, we are able to solve this problem.

There is another problem however. Consider the case where the sender does a
lot of retransmits before completely sending the data (that is if the retransmits
also get dropped and again have to be retransmitted). In that case it might be
helpful to moderate the rate of these retransmissions. This requires that there
be additional checks for receiver and sender buffer sizes at regular intervals
which will cause an overhead. Also, there will be the extra overhead of the
delay introduced to slow down the rate of retransmissions. This total overhead
is to be weighed against the overhead of possible multiple retransmissions for

the same packet. We investigate this tradeoff in Section 2.4.2.
2.2.2 Virtual memory management

There are two mechanisms available by which data can be moved to the NIC to

allow it to be sent to the network, or the reverse, as defined by the PCI specification.

17

The first is programmed input/output (PIO), where the host CPU explicitly issues
a write instruction for each word in the message to be transferred. The second is
direct memory access (DMA), where the NIC can move the data directly from the
host memory without requiring the involvement of the host CPU. We quickly decided
that PIO would require extremely high host overhead, and thus use DMA for the
movement of all message data.

However, this decision led us to solve another problem. All widely used operating
systems employ virtual memory as a mechanism of allowing applications to exceed
physical memory constraints, and to implement shared libraries, and to provide a wide
array of other handy features. Although an application on the host machine does not
need to know about the actual physical layout of its data, the NIC is required to
perform all its DMA transfers to and from the host using physical addresses. Some
entity must translate from user virtual to PCI physical addresses for every page in
the transfer.

One option would be to have the NIC maintain a copy of the page tables which the
kernel and processor use to establish the mapping. If we devoted all of the memory
on the NIC to page tables, we could map no more than 256 MB of process address
space on the x86 architecture. This may be sufficient for some applications, but was
discarded as being too constraining. We considered caching just the “active” parts
of the page tables, meaning only those pages which are being used in send/receive
messages are available on the NIC, again with some sort of kernel interaction. For in-
stance, if the kernel decides that it must swap out an application page due to memory
pressure, it must inform the NIC that its cached copy is invalid, and conversely if an

incoming frame is destined for a user page which is not in core, the NIC must request

18

it from the kernel. Kernel virtual memory operation overhead, complexity, and again
limited NIC memory all suggest that even a caching version would not perform well.

This led us to mandate that the user application specifically informs the NIC of
the physical address of each page involved in the transfer. However, user space does
not have access to this information which resides in the kernel. In the implementation
section below we point out that it does not cost too much to use a system call to ask
the kernel for the translations.

Applications which use the NIC with our firmware must ensure that the physical
pages comprising a message, either for transmit or receive, stay resident at all times
during their potential use by the NIC. Unix provides a system call, mlock, which
selectively guarantees this for individual pages, or the variant, mlockall, which can
be used to inform the operating system that all parts of the address space should
remain in physical memory. We choose the latter method which requires only one
system call during initialization and is appropriate for most memory-resident codes,
but that technique precludes the use of swap space. The alternative of individual
page mapping is potentially more expensive depending on the exact distribution of
memory used for communication with the network, although the per-page mapping

cost is less than a microsecond on our hardware.
2.2.3 Descriptor management

We use the term “descriptor” to refer to the pieces of information that describe
message transfers, and which must pass between the host system and the NIC to
initiate, check, and finalize sends and receives. Descriptors are usually small in com-

parison to the message payloads they represent.

19

To initiate a send, or to post a receive, the host must give to the NIC the following
information: location and length of the message in the host address space, destination
or source node, and the MPI-specified message tag.

This information is passed to the NIC by “posting” a descriptor. The NIC needs
access to descriptor fields, which are generated in the host. It can get this information
either by individually DM Aing fields on demand from the host or it can keep a local
copy of the descriptor in NIC memory. The tradeoff is between expensive DMA
operations (1-3 us per transfer) and the number of descriptors which can reside in
the limited NIC memory. Too many accesses to descriptor fields via DMA will degrade
performance immensely.

We found that the NIC indeed needs to access the fields of a descriptor at many
stages during the lifetime of a send or receive message, thus it requires a copy of this
descriptor locally and can not use DMA on demand to retrieve it with any reasonable
performance. The host, on the other hand, fills descriptors and does not need to
be concerned with them until message completion time, i.e., at the conclusion of a
possibly asynchronous operation.

Since we require a local copy on the NIC, and since the host will not frequently use
the descriptor, we chose to allocate permanent storage for an array of descriptors in
the NIC memory. The host accesses these using PIO, which is slow in bulk compared
to DMA, but provides lower latency for small transfers. Details of our extended de-
scriptor formats for transfers greater than a page are provided in the implementation
sections below.

The one piece of information that the host needs from the NIC after an asyn-

chronous send or receive has been initiated is, “Is it done yet?” Traditional Ethernet

20

devices communicate this by an interrupt to the operating system kernel, which is
clearly inappropriate given our low latency goals. Other systems (e.g., VIA, Infini-
band [10]) use a completion queue, which is a list describing the transfers that have
completed. Our project goals state that no buffering will ever be performed, which
implies that no unexpected messages will ever be received at any node, which reduces
the concept of a completion queue to simply reporting statuses of transfers that the
host explicitly initiated. Since the host has this knowledge, it can instead remem-
ber which descriptors it has posted, and explicitly poll them when it is interested in

determining if the transfer has completed.

2.3 Implementation

Our firmware consists of 12,000 lines of C code, and another 100 lines of MIPS
assembly. Roughly half of the code deals with the basic hardware functionality of the
various Tigon subsystems, including DMA engines, MAC interface, link negotiation
and control. The core of the code is an event loop written in three assembly instruc-
tions which tests for the next pending event and dispatches control to the appropriate
handling routine. Details of our implementation of fundamental modules are provided

in the following sections.
2.3.1 Protocol processing

A message is composed of multiple frames. A message is a user defined entity
whereas the frame is defined by the hardware. The length of each frame is 1500 bytes,
but could be larger if the particular Ethernet switch infrastructure provides support
for 9000 byte “jumbo” frames. The first frame of the message contains a message

header which embeds frame header. All frames contain a frame header, and the

21

first frame of a message also contains extra per-message information as shown in

Figure 2.3.

Frame Ethernet | Sender | Frame | Frame | Message | Frame
header header ID type | length ID number

Message | Frame Tota Number | MPI
header header length | of frames | tag

Figure 2.3: Two main headers used in EMP.

For each host we keep a small amount of information including expected next
message ID, but we have no concept of a connection, and thus expect not to be
limited in scalability by that. Other protocols generally arbitrate a unique connection
between each pair of communicating hosts which preserves the relatively large state
for that pairwise connection. The per-host state we keep is on each NIC in the cluster
is: remote MAC address, send and receive sequence numbers (message ID).

For each message we keep a data structure describing the state of the transfer for
just that message, which includes a pointer to the descriptor filled by the host. The
limits to scalability of the system thus mirror the scalability limits inherent in each
application, as represented by the number of outstanding messages it demands. Each
of these message states is much larger than the per-host state mentioned above.

Once the NIC is informed that a message is there to send, it DMAs the data
from the application space and prepends the message/frame header before sending it
on the wire. As mentioned before we have something called a collection of frames.
In the current implementation this number is 3. Thus, once 3 consecutive frames

have been sent the timer for that collection starts. Any time the receiver receives

22

all the frames in that collection, the acknowledgment for that collection is sent. The
acknowledgment consists of the frame header of one of the frames for that collection.
Essentially it is the header of the last received frame of that collection. If the sender
receives an acknowledgment it verifies whether all the frame collections have been
acknowledged. If yes, then the host is informed that the message has been sent and
it is removed from consideration by the NIC. If any collection times out then all the
frames of that collection are resent. We have provided support for out of order frames
too in EMP.

The sequence of operations involved in sending/receiving are shown in Figure 2.4.
The USER (application space) posts a transmit or a receive. The data structures
corresponding to that operation are updated (BOOKKEEPING). In case of transmit
a DMA is done and the message is sent to the wire (PHY) as explained above. A
timer corresponding to that transmit starts and a RETRANSMIT is performed if that
timeout value is reached before the remote ACK arrives. Similarly, on the receive side
when the frame arrives, a check is made if it is the last frame (BOOKKEEPING),
in which case the receive is marked DONE and an acknowledgment is sent (SEND

ACK).

ack from receiver

post transmit

framing, DMA WAIT/ACK

post receive

If timeout,

If last frame of message
DONE

If last frame of collection

SEND ACK

SENDING PROCESS

Figure 2.4: Processing flow for sending and receiving.

23

Flow control scheme for EMP: To determine the effective criteria for flow control
we gathered the statistics of the three main parameters; the remaining buffer size,
DMA descriptors and MAC descriptors for varied message sizes. We gathered these
statistics after sending and receiving every packet on the sending and receiving side
respectively. One limitation though was that, we did this with just two nodes which
were connected back to back. We aim to improve on this in future. While gathering
the statistics we realized that it is always the NIC buffer on the receiver side which
gets overrun while sending huge messages at a very fast pace. The other parameters
were always available in sufficient numbers. This led us to base our flow control
scheme on the receiver buffer size.

The basic flow control scheme consists of the receiver sending the state of the
receive buffers to the sender in a piggyback fashion along with the acknowledgment.
This information is sent with every acknowledgment. The sender rate is determined
based on this information received along with the acknowledgment sent by the re-
ceiver. This information is maintained for every receiver. If at any instant a particular
receiver gets congested, only the rate of transmission for that receiver will be varied
while allowing the other receiver flows to continue at the same rate. We also define
two levels of control in this scheme. The acknowledgment might come with a feed-
back information which will tell the sender by how much to slow down. Thus, we can
define the marks based on which the receiver might want to slow down the sender
accordingly.

The advantages of this scheme are enumerated as follows.

e We are able to reuse the existing reliability infrastructure for sending flow con-

trol information.

24

e We are able to avoid the overhead associated with forming a new control frame

for sending the receiver state to the sender.

e The acknowledgments are sent every so often and hence we are able to supply
the latest state of the receiver to the sender at constant intervals without much

overhead.

e We don’t have to worry about the acknowledgment frame getting lost and hence
the state information getting lost as the acknowledgment frames are sent every
so often and hence the sender will always come to know the latest receiver buffer

state.

When we implemented the above scheme we noticed that we were getting too
much. This led us to look more carefully at our scheme and we discovered that some
calculations (e.g. remaining buffer size) were taking too much time. One required
the use of a division instruction for doing these calculation. However, the Alteon NIC
does not provide such an instruction so we had simulated one in the software, using
repeated subtraction. However, this was adding too much overhead. We avoided this

by calculating the remaining buffer size using the bitwise operations.
2.3.2 Virtual memory and descriptors

As discussed in the design section, we translate addresses from virtual to physical
on the host. This is done by the kernel and invoked from the user application (library)
as an ioctl system call. This overhead is included in the performance results below.

The descriptors which are used to pass the information between the host and the
NIC each require 20 bytes of memory, and we currently allocate static storage on the
NIC for 640 of these to serve both message receives and sends. The physical address of

25

every page in a transfer must be passed to the NIC, which leads us to define multiple
descriptor formats to include these addresses.

The first simply includes a single 8-byte address in the 20-byte descriptor and can
describe a message up to a page in size. The second is built by chaining up to four
descriptors which among them describe a message up to seven pages long (28 kB on
x86). The descriptor format used for messages larger than this is similar to the short
format in that only one address is given to the NIC, but this address is a pointer to a
page full of addresses which the NIC uses indirectly to get the address of any single
page in the transfer. In all these formats we always provide a 16-bit length field along
with each page address which allows us to do scatter/gather transfers, so that if an
application specifies a message which is not even contiguous in user memory (such as
with an arbitrary MPI Datatype), the NIC can gather the individual chunks when
preparing a message for the network, and the reverse when receiving a network frame.

A diagram of the descriptor layout is shown in Figure 2.5, where all the descriptors
physically reside in NIC memory, but the host will take ownership of some when it
needs to post a new send or receive. After writing the relevant information for the
transfer, ownership is passed to the NIC (by modifying the “stat” field), which will

then carry out the transfer and return ownership to the host.
2.3.3 Host library

A small library provides a simple interface to the functionality provided by the
firmware. It includes calls to post transmits and receives, test and wait for messages

to complete, and manage descriptors. Other functionality includes initialization of

26

HOST ﬂ

\
u64 addr u64 addr
e o o | U32totlen u32 totlen o o o
ul6 stat, len ul6 stat, len

ul6 peer, tag| | ul6 peer,tag

NIC J

Figure 2.5: Some short-format descriptors in the NIC memory, showing ownership by
either the HOST or the NIC.

the NIC, and loading a “route” table which gives an ordered list of host names and
Ethernet hardware addresses which are used when generating Ethernet frames.

The steps involved in a short message transmission by the host are:

e Convert the user message address to a physical address.

Get a new descriptor from the host-managed free pool.

Fill the fields with address, length, destination, tag.

Write the 20 bytes to NIC memory through the window in a PIO burst.

Poke the NIC address of the descriptor in the transmit mailbox.

Wait until the NIC acknowledges receipt of the descriptor.

Later, when the application must be sure that the message has been sent, it can poll
the status field in the descriptor, then release the descriptor back to the free pool.

(Each poll of a descriptor status takes 380 ns on our hardware, which is described

27

later.) On the receive side, the application must first pre-post an area into which
a message will be received, following the same steps as for a transmission. When a
message arrives which matches the designated source and tag (or wildcards), the NIC
will place it directly in the pre-arranged message area and mark the status field of
the descriptor. Frequently, applications will send to or receive from the same loca-
tion multiple times (persistent transfers in MPI parlance). In this case, subsequent
transfers are simplified and require only poking the NIC mailbox and waiting for

acknowledgment.
2.3.4 Initialization

We facilitate the interaction of an arbitrary user application and the network
interface card by a piece of code resident in the kernel. Our module is inserted into a
running linux, or compiled statically, and provides services to applications through a
character device interface. No operations beyond this module insertion require root
privileges. The kernel module probes for a known PCI card with the Alteon chipset
and initializes the basic PCI interface settings. Then, as each user application wants
to use the NIC, it will open a character device /dev/emp-alteon. The kernel makes
sure that only one user at a time can access the hardware during this open. Next the
user application calls mmap to get a mapping to the PCI address space of the NIC.
Reads and writes into this mapped page go directly to the NIC without further kernel
intervention. The final piece of functionality provided by the kernel is a single ioctl

which is used to convert a user address into a physical address.

28

2.4 Performance Evaluation

We compare basic networking performance with two other systems which are
frequently used for MPI message passing. The base case for using Gigabit Ethernet
is to use standard TCP/IP, which uses exactly the same Alteon NIC, but running
the default firmware coupled with a TCP stack in the kernel. The second system
is GM over Myrinet, which uses different hardware, but shares with EMP the NIC

programmability features and the focus on message passing.
2.4.1 Experimental setup

We had two experimental setups. The first one had two dual 933 MHz Intel PIII
systems built around the ServerWorks LE chipset which has a 64-bit 66 MHz PCI
bus, and unmodified Linux version 2.4.2. The hosts in this setup were connected back
to back (no switch) for all the tests. For tests with Myrinet we use the same setup
with LANai 7.2 cards.

The second setup had two quad 700 MHz Intel PIII systems built around the
ServerWorks LE chipset which has a 64-bit 66 MHz PCI bus, and unmodified Linux
version 2.4.18. The hosts in this setup were connected via a packet engine switch for
Gigabit Ethernet and a Myricom switch for Myrinet. For tests with Myrinet we use
the same setup with LANai 9.2 cards.

For both the setups our Gigabit Ethernet NICs were Netgear 620 [16], which have
512 kB of memory.

All tests using Ethernet were performed with a maximum transfer unit (MTU) of
1500 bytes. The TCP tests used 64 kB socket buffers on both sides; more buffering

did not increase performance.

29

2.4.2 Results and discussion

In this Section first we discuss the role of flow control in EMP and then we discuss

the bandwidth and latency results followed by the host CPU utilization results.

1100

1000

900

700 |}

600 r

500 |

400

i i 114/
/ s /
Wi AN ALY
AW e WA
- i (AN VAV
e 1 1
1

Unidirectional bandwidth (Mb/s)

no_flow_control
with_flow_control

0

5

10

15

20 25 30 35

45

1200

1100

1000

900

800

700

600

500

400

Unidirectional bandwidth (Mb/s)

no_flow_control
with_flow_control -—-------

[¢)]

10

15 20

25 30 35 40

Figure 2.6: Comparison of bandwidth with flow control vs. no flow control. The
x-axis is message size in Kb and y-axis is bw in Mb/s. These results are on 933 MHz
hosts with no switch in between (left) and 700 MHz hosts with the switch (right).

Impact of Flow Control

Figure 2.6 shows the bandwidth measurements with the flow control and without

the flow control for both the setups. In Section 2.2.1 we indicated that there is a

tradeoff involved between flow control and multiple retransmissions. By looking at

the figure we can conclude that EMP without the flow control but with multiple

30

45

retransmissions does better than EMP with the flow control and minimum retrans-
missions. Thus, for the remaining part of the evaluation, we consider cases without

the flow control.

Latency and Bandwidth Measurements

Figure 2.7 shows plots for the latency and bandwidth for each of the three systems
as a function of the message size. The latency is determined by halving the time to
complete a ping-pong test, and the bandwidth is calculated from one-way sends with
a trailing return acknowledgment. Each test is repeated 10000 times to average the
results.

The latency for TCP over Gigabit Ethernet is much higher than the other two
systems due to the overhead of invoking the operating system for every message. GM
and EMP both implement reliability, framing, and other aspects of messaging in the
NIC. In the very small message range under 256 bytes, GM imposes a latency which
is up to 10 us lower than that of EMP, but the per-byte scaling of both EMP and
GM is similar and message latencies are comparable.

Figure 2.8 shows the same plots with the switch in between and on the 700 MHz
hosts. One can see that the switch and the slower host do not have effect on the peak
bandwidth attained but it does affect the latency numbers for EMP by 5-6 us for
small message sizes. However, the latency in the presence of the switch does increase
significantly for larger message sizes.

The theoretical wire speed of our test version of Myrinet is 1200 Mb/s (LANai 7.2)
and 2000 Mb/s (LANai 9.2), and GM delivers very near to that limit (Figures 2.7
& 2.8). Gigabit Ethernet is limited at 1000 Mb/s, but EMP only delivers 80% of
that limit. The packet size used in GM is 4 kB, and it exhibits the same periodic

31

200 T T T
1200 F .,
/ }) ! ‘}‘W K
[y W
1000 b | i i
150 Latency (us) - P
TCP - Lo
e GM L
v — 800
100 | i 600
400 £ Bandwidth (Mb/s) .
GM -
| EMP ——
200 I TCP
0 1 1 1 0 1 1 1 1
0 1 2 3 4 0 5 10 15 20 25
The quantity measured on the

Figure 2.7: Latency and bandwidth comparisons.
abscissa is message size in kilobytes, for all three plots. These results are on 933 MHz

hosts with no switch in between.

250 T T T 2000 T
y‘, 1 H i
200 | -)
1500 / 1
/ "
150 | - EMP ——
Latency (us)
EMP 1000
100 | oM
500
0 1 1 1 0
0 1 2 3 4
The quantity measured on the

Figure 2.8: Latency and bandwidth comparisons.
abscissa is message size in kilobytes, for all three plots. These results are on 700 MHz

hosts with the switch in between.
32

performance drop as does EMP, since that coincides with the host page boundary.
For EMP, the jumps at the frame size of 1500 bytes where the NIC must process an
extra frame are clearly visible, and jumps at the page size of 4096 bytes where the
NIC must start an extra DMA are also visible. The bandwidth of TCP never exceeds

about 600 Mb/s.

33

CHAPTER 3

PARALLELIZATION OF EMP

In this chapter we outline the parallelization of the EMP protocol which we de-
scribed in the previous chapter. We first explain in detail the breakup of the basic
EMP protocol in different steps. Then we look at the new design challenges en-
countered for a NIC-based implementation of a parallelized messaging layer. This is
followed by the possible alternatives for parallelizing the NIC-driven protocol. Next,
we look at how best to exploit the NIC hardware capability for achieving paralleliza-
tion and pipelining. Finally, we evaluate the different strategies with respect to their

effectiveness while providing the results of our experiments.

3.1 EMP Protocol

In this section we provide the detailed steps of the basic EMP protocol [20] [21].
We first provide an overview of the basic steps. Next, we discuss these steps in
detail. Finally, we present a timing analysis of these steps on a single-CPU NIC. The
description of the steps and the timing analysis help us to understand the challenges

involved in parallelizing the EMP protocol.

34

3.1.1 Basic steps at the sending and receiving side

Here we outline the basic steps happening at the sending side and the receiving side

of the EMP protocol. The sending side performs the following steps.

1. Send bookkeeping: The process of preparing a frame before transmitting. Here

we keep a record of all the information which is necessary for reliability purposes.

2. Transmission: This step involves the actual sending of data to the wire once all

the bookkeeping is over.

3. Receive acknowledgment: This step happens when the receiving side acknowl-

edges that it has received a certain number of frames.
Similarly, the receiving side performs the following steps.

1. Receive bookkeeping: The process of keeping track of incoming frames for reli-

ability purposes and allowing for the acceptance of out of order frames.

2. Receive: Here the data is communicated to the host via DMA after the book-

keeping phase is over.

3. Send acknowledgment: Once the receiver has processed a known number of
frames it sends an acknowledgment to the sender. This step is required for

reliability.
These steps are described in detail below.
Send bookkeeping

Send bookkeeping refers to the operations which take place for preparing the frame
for being sent. The bookkeeping operations can be outlined as:

35

e Handle posted transmit descriptor: This step is initiated by the host which
operates asynchronously with the NIC. The introduction of each new transmit
request leads to the rest of the operations. This operation takes place for every

message.

e Message fragmentation: The host desires to send a message, which is a user-
space entity corresponding to some size of the application’s data structures.
The NIC must fragment this into frames, which is a quantity defined by the
underlying Ethernet hardware as the largest quantum of data which can be
supported in the network, 1500 bytes in our system. Thus, the NIC determines
how many frames will be necessary to send this message. The overhead incurred
for large messages is more since they contain a larger number of frames. This

implies that the bookkeeping effort will increase with increasing message size.

e Initialize transmission record: Each message which enters the transmit queue on
the NIC is given a record in a NIC-resident table which keeps track of the state
of that message including how many frames, a pointer to the host data, which
frames have been sent, which have been acknowledged, the message recipient,
and so on. The NIC prepares this structure for each message, then updates it
as the message is processed through the various stages of transmission. This

record is maintained for each message which is being transmitted.

Transmission

The steps involved in the transmission of the frames to the wire can be outlined

as:

36

e DMA from HOST to the NIC: The NIC contains two DMA channels to transfer
data between its local memory and the host memory. Managing these channels
in order to keep them active can require significant resources of the internal
processor. To help off-load some of these tasks from the internal processor, the
“DMA Assist” state machine is used to perform the most time critical tasks.
DMA descriptors are used by firmware to pass the relevant information about a
DMA to the assist logic. These DMA descriptors reside in a small portion of the
local memory and are organized into a ring structure. Once the bookkeeping
steps for the frame are over, the DMA assist engine queues a request for data
from the HOST. When the transfer completes, it automatically informs the
MAC to send the frame. The transfer is made in the send buffer which is
updated after each transfer. These set of operations take place for every frame

and hence will take time for large message sizes.

e MAC to wire: The NIC uses MAC transmit descriptors to keep track of frames
being sent to the serial Ethernet interface. The format of these descriptors is
fixed to allow the hardware to directly reference the fields within the descriptors.
The MAC is responsible for sending frames to the external network interface by
reading the associated MAC transmit descriptor and the frame from the local
memory buffer. Frames are sent only when a valid descriptor is ready and the
send buffer indicates that the data is available. The send buffer is updated
after the DMA is completed by the DMA assist engine which informs the MAC
to start sending the data. There are 256 MAC transmit descriptors which can

be used for transmitting data. This operation happens for every single frame

37

and each frame uses one MAC descriptor, hence the overhead incurred increases

with increasing message size.

Send acknowledgment

This step, though it happens on the receiver, involves a combination of book-
keeping and transmission. The acknowledgment is sent as a single frame with some
control information but no data. Hence the overhead involved in this step is not as
large as that for any data frame. Moreover, this does not involve per-frame overhead

because an acknowledgment is sent only for complete groups of frames.

Receive bookkeeping

The receive bookkeeping refers to the operations which need to be performed

before the frame can be sent to the host. These operations are:

e Handle pre-posted receive descriptor: This step is initiated by the host for
messages it expects to receive in future. Here the state information which is
necessary for matching an incoming frame is stored at the NIC. In the current
setup if a frame arrives and it does not find a matching pre-posted descriptor,
it is simply dropped. This is done to avoid buffering at the NIC [20]. This step

happens for every message.

e (lassify frame: This step does multiple things. It looks at the header of each
incoming frame and identifies whether it is a header frame, data frame, acknowl-
edgment frame or negative acknowledgment. It also identifies the pre-posted
receive to which the incoming frame belongs by going through all the pre-posted

records. In the process it also identifies if the frame has already arrived and,

38

if so, drops it. In case a data frame arrives arrives before the corresponding
header frame, it is dropped as well. Classify frame is performed for every frame

and hence the overhead per message increases with increasing message size.

e Receive frame: Once the frame has been correctly identified in the previous
step, the information in the frame header is stored in the receive data structures
for reliability and other bookkeeping purposes. Receive frame also initiates the
DMA of the incoming frame data after filling in the receive data structures with
fields including message sequence number, frame sequence number, etc. After
this step the frame is ready to be DMAed to the host. Receive frame is also

done for every frame and the overhead increases as the message size increases.

Receiving

The step comprising the actual receiving process involves the following operations:

e Wire to MAC: Similar to transmission, the NIC uses MAC receive descriptors
to keep track of frames being received from the serial Ethernet interface. Again,
the format of these descriptors is fixed like the transmit descriptors to allow the
hardware to directly reference the fields within the descriptors. Error conditions
are monitored during frame reception and reported to the firmware through the
status word located in the descriptors. Before the data is given to the NIC the

32 bit CRC is verified and noted in the status word.

e NIC to HOST: Here the DMA Assist engine comes into play exactly like in the
transmit case. The only difference is that the DMA assist engine operates in

the reverse direction, moving the data to the host instead of to the NIC.

39

Receive acknowledgment

Once the sender knows that the receiver has successfully received the frames it
can release the resources related to the sent data. In this step there is no data to be
DMAed to the host and hence the overhead is lower than that of receiving any data
frame. Receive acknowledgment introduces only minimal per-frame overhead, again,

because acknowledgment is a process which applies only to groups of frames [20].
3.1.2 Timing analysis of the messaging layer components

We did a complete time profiling of our protocol to find out how much time is
spent in each of the steps. As we discussed, each of the steps consists of one or
more operations. But for the sake of clarity we are showing only the timings for the
major steps. Table 3.1 shows the analysis. These numbers correspond to two dual
933 MHz Intel PIII systems, built around the ServerWorks LE chipset which has a
64-bit 66 MHz PCI bus, and using unmodified Linux 2.4.2.

Receive bookkeeping is more expensive than send bookkeeping because while send-
ing, the frames are sent in order but they can arrive out of order on the receive side
(due to switch dropping and reordering of frames). So extra effort is needed per frame
to accept these out of order frames and put them in the correct order. Moreover, since
the frames can be out of order, for each frame one has to go through all the pre-posted

records to see if it belongs to any of them which also contributes to a large overhead.

3.2 Challenges in Taking Advantage of a Multi-CPU NIC

In order to take advantage of a multi-CPU NIC, the basic steps in sending and

receiving need to be distributed across the processors. However these steps need to

40

Uperation

d1ime (us)

Send bookkeeping

Handle posted transmit descriptor
Message fragmentation
Initialize transmission record

5.25

Transmission

DMA from host to NIC
Queue frame to MAC

5.50

Receive acknowledgment

5.75

Recv bookkeeping

Classify frame
Receive frame

Handle posted receive descriptor

10.50

Receiving

Receive frame from MAC
DMA from NIC to host

2.75

Send acknowledgment

2.50

Table 3.1: Timing analysis for the major functional operations.

share some common state information at some point in the execution. Typically, NICs
have very limited hardware resources to assist in this operation without introducing

additional overhead. Here, we take a critical look at the limitations of the Alteon

NIC and the potential alternatives for achieving our objective.

3.2.1 NIC constraints

As indicated in Section 2.1, the Alteon NIC does not provide hardware support
for concurrency. There is only one lock, hence fine-grained parallelism is expensive.
Coarse-grained parallelism is inappropriate for the kind of operations performed at
the NIC, due to its limited resources. Shared resources (MAC, DMA) do not have

hardware support for concurrency, and use the only available lock, thus overloading

that single semaphore.

41

3.2.2 Achieving concurrency

Consider a simple unidirectional flow scenario for reliable communication. While
the send is happening on the sender side, a receive is also actually taking place
(e.g. receive acknowledgments) on the same side. Thus the process of sending data
(or acknowledgments) can be overlapped with the process of receiving data (or ac-
knowledgments) on different processors on the sending side and/or the receiving side.
During this overlap there are scenarios where the state information needs to be shared
between the conceptual sending steps and the receiving steps.

To minimize sharing of such state one may keep separate data structures for send
bookkeeping and receive bookkeeping so that both the operations can happen in
parallel without needing to access the other’s data structure for state information.
However, this cannot be guaranteed for every case. Thus, even while the data struc-
tures might be different for send and receive processing, there will still be a need for
some form of mechanism for sharing information.

One way to solve this problem would be to share the data structures across the
CPUs. However this would mean that each access to the data structure requires
synchronization. This would be very expensive since the data structures are accessed
frequently, and each access would lead to synchronization overhead.

To reduce the synchronization overhead, the bookkeeping data structures can
be fine-grained so that locking one data structure does not lead to halting of other
operations which can proceed using other unrelated data structures.

One may also accomplish synchronization by allocating a special region in the
NIC SRAM where one CPU would write the data needed by the other CPU, which

would then read the common data from there. This would help in communicating the

42

common data across the CPUs without causing the overhead related to the sharing of
data structures. There is an overhead involved in this operation, of course, but this
overhead is only explicitly generated when there is a need for data sharing between
the CPUs. This might be a better option because if we allow the send and receive
data structures to be shared there will be overhead for each access to them even when
there is no need simply because it happens to be shared data. One problem with this

solution, though, could be the contention for the common area.
3.2.3 Exploiting pipelining and parallelization

Amdahl’s law states that the speed-up achievable on a parallel computer can be
significantly limited by the existence of a small fraction of inherently sequential code
which cannot be parallelized. In any reliable network protocol there will be a lot of
steps which have to be executed sequentially. In fact, serially constrained operations
become the norm. As an example, in transmission, before the frame can be sent,
one has to attach the frame header and perform other bookkeeping operations for
reliability purposes. This puts a limit on the amount of work which can be scheduled
in parallel. This limitation forces us to think about the underlying implementation
and make appropriate changes so that we can perform the maximum number of
operations in parallel. In addition to parallelization, pipelining can also be exploited,
where the operations happen one after another but not in parallel. In the previous
example, if the bookkeeping steps for a frame happen on one processor and the actual
transmission on another it will be an example of pipelining, because for the same frame
both these steps cannot happen at the same time. Bookkeeping and transmission can

happen in parallel but for different frames, hence must be categorized as pipelining as

43

opposed to parallelism. In this thesis, we explore both pipelining and parallelization

to enhance the performance of user-level protocols with multi-CPU NICs.

3.3 Schemes for Parallelization and Pipelining

In this section, we propose and analyze alternative schemes to enhance the perfor-
mance of the EMP protocol with the support of a two-CPU NIC. The basic approach
was to distribute the major steps of send and receive paths to achieve a balance
of work on the two processors. This break-up was done with the goal of achieving
pipelining or parallelism—whichever would be possible depending on the implemen-
tation. We tried to achieve the latter as much as possible but were limited by the
inherent sequentiality of the protocol in many cases.

We analyzed the send path and the receive path for parallelization based on our

timing analysis and recognized the following four alternatives.

e SO: The send path only is split up across the NIC CPUs.
e RO: The receive path only is split up across the NIC CPUs.
e DSR: The send path and receive path have dedicated processors to themselves.

e SR: Both send and receive path are split up.

For each of these alternatives, we illustrate how different components (steps) are
distributed over two processors at both the sending and receiving sides. We compare
our schemes with the base case scheme where all the sending-side components happen

on the same CPU, as do the receive-side operations. CPU B is not used.

44

3.3.1 SO

The split up of the send path in SO happens as shown in Table 3.2. Here, we
are aiming to achieve pipelining by running the bookkeeping phase of a later message
with the transmission phase of an earlier message for a unidirectional flow. The idea
is to have another message ready for transmission by processor A while the previous
message is actually being transmitted by B. There is some parallelism also happening
at the receiver between ‘send ack’ (2.50 us) and a part of receiving(2.75 us). The
receive path for SO remains the same as in the base case. One needs to distinguish
the difference between the receive path and receive side. The receive path is made
up of receive bookkeeping and actual receiving (DMA). The assignment of send ac-
knowledgment on the receiver is a part of the SO scheme since send ack involves steps

which are used in sending and not receiving.
3.3.2 RO

The split up of functions in RO happens as shown in Table 3.2. Here, we are
able to achieve true parallelism. The send ack (2.50 ps) happens in parallel with
the receive dma (2.75 us) and a part of receive bookkeeping (4.25 us). The split-up
of receive bookkeeping helps in achieving pipelining also. We are able to achieve a
very good balance of functions on the receiving side. The send path remains the
same as in the base case. Again, similar to the receive path scenario one needs to
distinguish between the send path and sending side. The sending side has a receive
step happening which is a part of the receive path and hence happening as in the

base case as well.

45

Send | cpu A (us) | cpu B (ps)

SO send bookkeep | 5.25 | transmission 5.50
recv ack 5.75
RO send bookkeep | 5.25
transmission 5.50
recv ack 5.75

DSR | send bookkeep | 5.25 | recv ack 3.25
transmission 5.50
recv ack 2.50

SR send bookkeep | 5.25 | transmission 5.50
recv ack 5.75

Recv | cpu A (us) | cpu B (us)

SO recv bookkeep | 6.25 | send ack 2.50
recv frame 4.25
receiving 2.75

RO recv bookkeep | 6.25 | recv frame 4.25

send ack 2.50 | receiving 2.75

DSR | send ack 2.50 | recv bookkeep | 6.25

recv frame 4.25

receiving 2.75

SR recv bookkeep | 6.25 | recv frame 4.25

receiving 2.75

send ack 2.50

Table 3.2: Function distribution (unidirectional).

46

3.3.3 DSR

In this case, we are dedicating one CPU each for the send path and the receive
path on the sending as well as receiving side. This helps us to achieve an almost
complete split of the send and receive paths. The receive acknowledgment step is
split on the sending side because a part of it needs to update the send data structures
and hence it is scheduled at the send processor. The functions are distributed as

shown in Table 3.2.

3.3.4 SR

Here we combine the optimized send path and receive path together to see if we
can benefit from the overall optimization of the protocol. It is a combination of SO
and RO as depicted in Table 3.2. This is an attempt to extract the maximum benefit
by putting together the individually optimized send and receive paths. We hope to
gain from the benefits of pipelining on the send side and parallelization on the receive

side.

3.4 Exploiting the NIC Hardware Capability

To solve the problem of synchronization we allocated a special common area in the
NIC SRAM through which the CPUs can communicate common data. The benefits
of such an approach were discussed in Section 3.2.

We developed a pair of calls, spin_lock and spin_unlock, which are used to
gain exclusive access for protected code regions. We would have preferred to have
multiple points of synchronization to implement object-specific locking, but the hard-

ware provides exactly one point for inter-CPU synchronization through a semaphore.

47

Thus accesses to protected regions become potentially very expensive due to high
contention for this single lock.

The other communication mechanism we used was to set bits in the event register
of each processor. These calls use spin locks to guarantee exclusive access to the event
register, whereby one CPU sets a bit in the event register of the other. The second
CPU will notice this event in its main priority-based dispatch loop, clear the bit, and
process the event. We used an “edge-triggered” model, and guarantee that events do
not get lost by using the lock and by having the setting processor check to make sure
that the bit is clear first.

Running two processors simultaneously puts more load on the memory system
in the NIC. We attempted to alleviate this pressure somewhat by moving frequently
used variables to the processor-private “scratchpad” memory area in each CPU. This
small region (16 kB on cpu A, 8 kB on cpu B) also has faster access times, so we
put frequently-called functions there too. Important functions that are used by both
processors are replicated into both scratchpads. Source code annotations and a special

linker script are used to position the functions in the various memory areas.

3.5 Performance Evaluation
3.5.1 Experimental setup

We had two experimental setups. The first one had two dual 933 MHz Intel PIII
systems built around the ServerWorks LE chipset which has a 64-bit 66 MHz PCI

bus, and unmodified Linux version 2.4.2. The hosts in this setup were connected back

to back (no switch) for all the tests.

48

The second setup had two quad 700 MHz Intel PIII systems built around the
ServerWorks LE chipset which has a 64-bit 66 MHz PCI bus, and unmodified Linux
version 2.4.18. The hosts in this setup were connected via a packet engine switch.

For both the setups our Gigabit Ethernet NICs were Netgear 620 [16], which have
512 kB of memory.

All tests using Ethernet were performed with a maximum transfer unit (MTU) of

1500 bytes.
3.5.2 Results and discussion

In this Section we analyze the results derived from the alternatives discussed so
far. We tested each of our alternatives for unidirectional as well as bidirectional flows.
For unidirectional flow, we evaluated latency as well as bandwidth. For bidirectional
flow, we evaluated bandwidth. We get better performance than the base case (single
CPU per NIC) by using at least one alternative in each of the cases.

In all the alternatives the gain achieved due to pipelining/parallelism is offset
to some extent by the overhead involved in switching control between CPUs. This
happens because during the execution of the protocol one CPU might come across a
task which is to be scheduled on the other processor. Hence, there is an extra overhead
involved in this communication. This overhead is different for the various alternatives

depending on how the components have been distributed across the CPUs.

Unidirectional Traffic

The latency is determined by halving the time to complete a single ping-pong test.
The “ping” side posts two descriptors: one for receive, then one for transmit, then a

busy-wait loop is entered until both actions are finished by the NIC. Meanwhile the

49

1200 T T T T

1100 r .
1000 4
900 r
800 r
00 - S |

it Unidirectional bandwidth (Mb/s)

i base case ——
600 r | SO e i

] RO
500 |- PR
400 1 1 1 1

0 5 10 15 20

Figure 3.1: Bandwidth comparisons for unidirectional traffic. The x-axis is indicates
message size in kilobytes. The y-axis shows bandwidth in Mb/sec. These results are
on 933 MHz hosts with no switch in between.

1200 T T T .
1100 .
1000 .
900
800 -
700
600 r Unidirectional bandwidth (Mb/s) .
base case
SO ——
500 RO E
DSR -
400 i | | | SR L
0 5 10 15 20

Figure 3.2: Bandwidth comparisons for unidirectional traffic with the switch. The
x-axis is indicates message size in kilobytes. The y-axis shows bandwidth in Mb/sec.
These results are on 700 MHz hosts with the switch in between.

50

“pong” side posts a receive descriptor, waits for the message to arrive, then posts and
waits for transmission of the return message. This entire process is run in a loop of
10000 iterations from which an average round-trip time is produced, then divided by
two to estimate one-way latency.

The trend observed for latency numbers with the switch and slower hosts is the
same as with no switch and faster hosts. The only difference is that, because of the
switch delay the absolute latency readings are higher in the measurements done with
the switch.

The unidirectional throughput is calculated from one-way sends with a trailing
return acknowledgment. The user-level receive code posts as many receive descriptors
as possible (about 400), and continually waits for messages to come in and posts new
receives as slots become available. The transmit side posts two transmit descriptors
so that the NIC will always have something ready to send, and loops waiting for one of
the sends to complete then immediately posts another to take its place. Each transmit
is known to have completed because the receiving NIC generates an acknowledgment
message which signals the sending NIC to inform the host that the message has
arrived. This is iterated 10000 times to generate a good average.

Like the latency, the unidirectional throughput results have been presented with
and without the switch in between. The switch or the host speed has little or no

effect on the bandwidth measurements.

SO: The unidirectional bandwidth (Figures 3.1 & 3.2) is the same as in the base
case. To analyze this case we need to consider the factors which are speeding up

execution and the factors which are impeding it. On the sending side the benefit is

ol

obtained due to pipelining (when send bookkeeping and transmit work one after the
other) and parallelism (ack receive happens at the same time as transmit).

However the gains are offset by two factors. First, the overhead in inter-CPU
communication. Next, while comparing the receive path and the send path, we can see
that the receive path has more overhead than the send side. The sending side cannot
send at any rate since it will swamp the receiver. It waits for the acknowledgment from
the receiving side for a certain number of messages (two in our case) before it sends
out more messages. Thus whatever speedup which can be gained due to pipelining or
parallelism is limited by the reception of acknowledgments from the receiver which is
again dependent on receive processing. Since the receive processing is happening in
the same way as the base case except for a very small amount of parallelism (which
is offset by the inter-CPU communication overhead), the pipelining/parallelization
does not demonstrate much benefit for the SO case.

The pipelining benefits will not be seen for a latency test because we are timing
only one message. However, because of inter-CPU communication there will be some
degradation of latency. By looking at Figure 3.3 we can conclude that latency does
not degrade much even for large message sizes. For a 10-byte message we see a latency
of 24.52 us, which was marginally higher than the base case latency of 24.31 us, a
degradation of less than one percent. These results are with 933 MHz hosts and no
switch. Even with the switch in between, the latency shows a degradation of less
than one percent though the absolute numbers are higher due to the switch delay

(Figure 3.4).

92

60 T T T 200 T T T

50
150
40
30 Latency (us) 100 -
base case
, SO - =
20 - RO - _ =~ Latency (us)
DSR o base case
o -
10 R DSR -
SR
0 1 1 1 0 1 1 1
0 1 2 3 4 0 4 8 12

Figure 3.3: Latency comparisons for small and large message sizes with unidirectional
traffic. The z-axis is indicates message size in kilobytes. The y-axis shows latency in
microseconds. These results are on 933 MHz hosts with no switch in between.

80 T T T 200 ; ,
70
150 r
60 r
50 - 100
40 + Latency (us)
base case
Latency (us) 50 SQ - il
i/ base case RO
30 @/ SO ———- 1 DSR -
RO SR ———---
DSR -
20 - - SR - 0 . .
0 1 2 3 4 0 4 8 12

Figure 3.4: Latency comparisons for small and large message sizes with unidirectional
traffic with the switch. The z-axis is indicates message size in kilobytes. The y-axis
shows latency in microseconds. These results are on 700 MHz hosts with the switch
in between.

93

RO: The unidirectional bandwidth (Figures 3.1 & 3.2) is much better than the base
case. In fact it reaches up to 99.78% of the theoretical throughput limit on Gigabit
Ethernet (taking into account the required preamble and inter-frame gap and our

protocol headers). Factors which speed up the execution are:

e On the receiving side, the benefit is obtained due to parallelization of send
acknowledgment on CPU A and receive bookkeeping and receive DMA on CPU

B.

e The distribution of jobs on the receiving side is well balanced, resulting in both

the CPUs being occupied most of the time.

Since the receive side, which is more demanding of processor cycles than is the send
side, has been parallelized effectively we can achieve almost the maximum possible
bandwidth. This implies that the receive side is the bottleneck which is also confirmed
by our results from the SO case where we left the receive side unaltered and did not
achieve any benefits even though we had pipelining and parallelism on the send side.

By looking at Figures 3.3 & 3.4 we can observe that even the latency improves
for RO parallelism, both at small and large message sizes. For a 10-byte messages we
obtained a latency of 22.62 us which is an improvement over the base case latency of
24.31 ps, a gain of about 7%. For a message size of 14 kB we were able to achieve a
latency improvement of about 8.3%, indicating that the rate of latency improvement
increases with increasing message size. With the switch in between and a much slower

host, the gains are around 6% and 7% respectively.

54

By this we can conclude that whatever overhead is involved in inter-CPU commu-
nication is more than offset by the parallelism between receive bookkeeping, receive

DMA, and send acknowledgment.

DSR: The unidirectional bandwidth (Figures 3.1 & 3.2) is marginally better than
the base case. Here the scenario is very similar to the SO case with the receive
side being the bottleneck. However, since on the receive side we do schedule send
acknowledgment to happen on a different CPU, we are able to see the marginal
improvement in bandwidth numbers. The improvement is marginal because send
acknowledgment is only a very small portion of the entire receive side processing.
By looking at Figures 3.3 & 3.4 we can conclude that latency also benefits with
this approach though the benefit is marginal. For a 10-byte message, the latency is
22.76 ps which is a 6.4% improvement over the base case latency. With the slower

hosts and the switch, the improvement is around 4%.

SR: This alternative gives the best unidirectional bandwidth. One is able to achieve
almost complete utilization of Gigabit Ethernet’s bandwidth. The results are very
similar to the RO case but one can see the benefits of pipelining/parallelizing the
send path also in the SR case (Figures 3.1 & 3.2). If we look at Figures 3.3 & 3.4 we
can see that with increasing message sizes the latency also goes on reducing like in

the RO case though the improvement is not as much as in the RO case.

Bidirectional Traffic

Bidirectional throughput is calculated in a manner similar to the unidirectional

throughput, except both sides are busy sending to each other. After the startup

95

Send | cpu A (pus) | cpu B (ps)
SO send bookkeep | 5.25 | transmission 5.50
recv ack 5.75 | send ack 2.50
recv bookkeep | 6.25
recv frame 4.25
receiving 2.75
RO send bookkeep | 5.25 | recv frame 4.25
transmission 5.50 | receiving 2.75
recv ack 5.75
recv bookkeep | 6.25
send ack 2.50
DSR | send bookkeep | 5.25 | recv bookkeep | 6.25
transmission 5.50 | recv frame 4.25
recv ack 2.50 | receiving 2.75
send ack 2.50 | recv ack 3.25
SR send bookkeep | 5.25 | transmission 5.50
recv bookkeep | 6.25 | recv frame 4.25
recv ack 5.75 | receiving 2.75
send ack 2.50
Recv | cpu A (us) | cpu B (ps)
SO send bookkeep | 5.25 | transmission 5.50
recv ack 5.75 | send ack 2.50
recv bookkeep | 6.25
recv frame 4.25
receiving 2.75
RO send bookkeep | 5.25 | recv frame 4.25
transmission 5.50 | receiving 2.75
recv ack 5.75
recv bookkeep | 6.25
send ack 2.50
DSR | send bookkeep | 5.25 | recv bookkeep | 6.25
transmission 5.50 | recv frame 4.25
recv ack 2.50 | receiving 2.75
send ack 2.50 | recv ack 3.25
SR send bookkeep | 5.25 | transmission 5.50
recv bookkeep | 6.25 | recv frame 4.25
recv ack 5.75 | receiving 2.75
send ack 2.50

Table 3.3: Function distribution (bidirectional).

26

pre-posting of many receive descriptors, the timer is started on one side. Then two
messages are initiated at each side, and a main loop is iterated 10000 times which
consists of four operations: wait for the oldest transmit to complete, wait for the
oldest receive to complete, post another transmit, post another receive. Using one
application rather than two on each host ensures that we do not suffer from operating
system scheduler decisions. Testing in this alternative manner gives the same results,
although longer averages are necessary due to burstiness induced by context switches.

As we will see in the following discussion we obtain very good benefits for all the
schemes compared to the base case for the bidirectional traffic. However, the absolute
numbers with the second platform (700 MHz with the switch) are lower because of
the packet engine switches, which shows that the bandwidth can vary depending on
the switch in between. The slower host has no effect on the bandwidth because the
entire protocol is NIC-driven and it can be seen that even with a slower host we get
the same readings as with the 933 MHz hosts when we connect them back to back
(Figure 3.7).

Bidirectional traffic is more complex than unidirectional traffic. In order to un-
derstand the benefits of our schemes for bidirectional traffic, let us analyze the distri-

bution of the basic steps for these cases. These distributions are shown in Table 3.3.

SO: For bidirectional traffic, the distribution of steps is as shown in Table 3.3.
This is not a different implementation but just the adjustment of steps from the
unidirectional case when there is traffic in both the directions. The same is true for

all other parallelization alternatives.

o7

The bidirectional bandwidth (Figures 3.5 & 3.6) shows considerable improvement
over the base case. This is happening because both the CPUs have more functions
to perform in parallel (Table 3.3). Thus, the gain obtained more than offsets the

inter-CPU communication overhead.

1200 T T T T

1100 b !

1000 r

900

800 | i

700 il Bidirectional bandwidth (Mb/s) .

base case

SO

600 r RO .
DSR -

500 | SR -

400 1 1 1 1

0 5 10 15 20 25

Figure 3.5: Bandwidth comparisons for bidirectional traffic. The x-axis indicates
message size in KBytes. The y-axis shows bandwidth in Mb/sec. These results are
on 933 MHz hosts with no switch in between.

RO: The bidirectional bandwidth (Figures 3.5 & 3.6) shows considerable improve-
ment over the base case. This is happening because both the CPUs again are kept
busier, and hence operate more in parallel (Table 3.3), once again offsetting the com-
munication overhead. As we approach large message sizes the bandwidth drops below

SO. This may be attributed to the following factors:

o8

1200 : : :

1100

1000

900

800 |

700

600 | i Bidirectional bandwidth (Mb/s) -
ib base case —
| SO ,,,,,,,,,

500 | RO -
| DSR

400 |t : : SR

0 5 10 15 20

Figure 3.6: Bandwidth comparisons for bidirectional traffic with switch. The x-axis
indicates message size in KBytes. The y-axis shows bandwidth in Mb/sec. These
results are on 700 MHz hosts with the switch in between.

1200 T T .
1100
1000
900
800 -
700
i
600 | Bidirectional bandwidth (Mb/s) .
g base case
| SO ————
500 -; RO g
; DSR -
400 é‘ | | |SR o
0 5 10 15 20

Figure 3.7: Bandwidth comparisons for bidirectional traffic with switch. The x-axis
indicates message size in KBytes. The y-axis shows bandwidth in Mb/sec. These
results are on 700 MHz hosts with no switch in between.

99

e In the RO case every frame causes communication overhead as compared with
the SO case where only every third frame (acknowledgment group size) causes

communication overhead.

e The amount of work which can happen in parallel on CPU B is less than that

available in the SO case.

However, in Figure 3.5 the RO bandwidth numbers for medium-sized messages is
larger than the SO case. This may be because for small messages there will be fewer
frames and hence less communication overhead while receiving as compared to large
message sizes. Also, the ratio of work distribution on A and B is better for RO as
compared to SO. These factors combine to give RO better bandwidth numbers for

medium-sized messages.

DSR: The bidirectional bandwidth (Figures 3.5 & 3.6) shows considerable improve-
ment over the base case as well, for the same reasons as in the previous two strategies.
However the gain is not as much as the RO scheme for medium-sized messages because
the receive bottleneck offsets the gain obtained by the parallelism whereas in the RO
case the gains due to distribution of receive path offsets the the inter-CPU commu-
nication overhead. However, for large messages (more frames) this communication
overhead starts to affect the RO case and it starts dropping. The SO scheme outper-
forms all other alternatives, showing that for large messages the send path pipelining
begins to have a positive impact on the bandwidth and overcomes the effect of the
receive bottleneck. This is corroborated by the reduction in bandwidth in the RO
case at larger message sizes indicating that splitting the receive path introduces a lot
more overhead in the bidirectional case for large messages.

60

SR: The bidirectional bandwidth (Figures 3.5 & 3.6) shows maximum improvement
over all the cases up till medium sized messages. However, it begins to drop after a
certain message size. This happens because initially the gain obtained by parallelism
offsets the inter-CPU communication.

Since we have combined the optimized paths of SO and RO case we are able to
schedule maximum number of steps in parallel. Hence we derive the best performance
initially. However, since there are more number of steps which are happening in par-
allel, the inter-CPU communication is also the maximum among all the alternatives.
As the message size starts increasing this negates the gain obtained due to paral-
lelism. For this reason the performance drops below all the other options for very

large message sizes.

61

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this chapter we present the summary of the entire thesis in the following manner.
First we bring out the main conclusions and then we look at the current work being

done in this area. This is finally followed by future works.

4.1 Conclusions

The objective of this thesis was to produce a reliable, low latency and high
throughput, NIC-driven messaging system for Gigabit Ethernet. We came across
numerous design challenges for accomplishing this which were overcome by redis-
tributing the various functions of the messaging system in a novel way. We moved all
the protocol related functions to the NIC and utilized the processing capabilities of
the Alteon NIC, removing the kernel altogether from the critical path. All the work
of moving the multiple frames of the message, ensuring reliability, demultiplexing in-
coming frames, and addressing are performed by the NIC. This resulted in our base
protocol, EMP.

Given the fact that the Alteon NIC had two CPUs we showed how to take ad-

vantage of the multi-CPU NIC. Using EMP protocol (valid for single-CPU NIC) we

62

analyzed different alternatives to parallelize and pipeline different steps of the com-
munication operation. We had four alternative enhancements: splitting up the send
path only (SO), splitting up the receive path only (RO), splitting both the send and
receive paths (SR), and assigning dedicated CPUs for send and receive (DSR).

Our study shows that parallelizing the receive path can deliver maximum benefits
for unidirectional latency and bandwidth. In fact, this scheme allows us to reach the
theoretical throughput of the medium, something which has not been accomplished
before. Similarly, dedicated assignment of send and receive functionalities to different
CPUs delivers very good bidirectional bandwidth. Though the strategies and results
have been suggested for EMP, they are applicable to any user-level protocol.

The NIC handles all queuing, framing, and reliability details asynchronously, free-
ing the host to perform useful work. We obtained a latency of 24 us for 4 byte message
and a throughput of 880 Mb/s utilizing the single CPU of the multi-CPU Alteon NIC.
With the parallelized receive path we obtained a latency of around 22 ps and band-
width of 964 Mbps. These results were obtained with the 933 MHz hosts connected
back to back. With the slower hosts (700 MHz) and a packet engine switch we ob-
tained a latency of 28 us for 4 byte message and bandwidth of 880 Mbps for the basic
EMP protocol. The parallelized version (RO) gave a latency of around 26 us and
bandwidth of 964 Mbps.

Our results suggest that EMP, in particular EMP parallelized on the Alteon NIC

holds tremendous potential for high performance applications on Gigabit Ethernet.

63

4.2 Current work

EMP is a lower layer which has given us excellent latency and bandwidth results.
Since the parallel applications are written using higher level programming models
(Sockets, MPI, DSM) we are in the process of providing higher layer implementations
on top of EMP.

We have already provided an MPI implementation on top of EMP for writing
MPI programs. Our initial results have shown excellent benefits, which are even
comparable to GM results. We plan to bring out these results in a publication soon.

We have also implemented sockets over EMP which gives us excellent benefits
compared to the native sockets API on TCP. This allows the existing TCP applica-
tions to run using the high performance EMP protocol without incurring the overhead

of TCP. For more details one may refer [1].

4.3 Future work

As a result of our investigations in developing a high performance user-level pro-
tocol for Gigabit Ethernet, we have determined multiple promising paths for future
study. Currently the distribution of steps in the parallelized implementation of EMP
happens at compile time. We would like to produce a truly dynamic event scheduling
system, where the next available event is handled by either processor when it becomes
free.

The study so far has been done for point to point communication. We plan to
expand this for collective communication operations also. We would like to predict if

doing the collective communication operations at the NIC, given its multiple CPUs

64

and other resources, we can transport good benefits to the application. It would be
interesting to see if the role of flow control becomes significant in this scenario.

We have shown in our analysis that the flow control for EMP is not useful for two
node case. We intend to investigate the role of our flow control scheme further with
bigger systems.

Our success with the multi-CPU implementation of EMP has encouraged us to
predict the NICs of the future. We are working on developing a protocol simulator
for Gigabit Ethernet where we can experiment with different parameters like number
of CPUs at the NIC, the speed of each CPU, etc. to come out with the optimal NIC

design.

65

BIBLIOGRAPHY

[1] P. Balaji, P. Shivam, P. Wyckoff, and D. Panda. High performance user level
sockets over gigabit ethernet. In Proceedings of Cluster2002, June 2002.

[2] M. Banikazemi, V. Moorthy, L. Herger, D. Panda, and B. Abali. Efficient Virtual
Interface Architecture support for the IBM SP switch-connected N'T clusters. In
IPDPS, May 2000.

[3] R. Bhoedjang, K. Verstoep, T. Ruhl, H. Bal, and R. Hofman. Evaluating design
alternatives for reliable communication on high-speed networks. In Proceedings
of ASPLOS-9, November 2000.

[4] N. Boden, D. Cohen, and R. Felderman. Myrinet: a gigabit per second local-area
network. IEEE Micro, 15(1):29, February 1995.

[6] M. Boosten, R. W. Dobinson, and P. D. V van der Stok. MESH: Messaging
and scheduling for fine-grain parallel processing on commodity platforms. In
Proceedings of PDPTA, June 1999.

[6] G. Chiola and G. Ciaccio. GAMMA, http://www.disi.unige.it/project/gamma.

[7] B. Chun, A. Mainwaring, and D. Culler. Virtual network transport protocols for
Myrinet. Technical Report CSD-98-988, UC Berkeley, 29 1998.

[8] C. Csanady and P. Wyckoff. Bobnet: High-performance message passing for
commodity networking components. In Proceedings of PDCN, December 1998.

[9] P. Gilfeather and T. Underwood. Fragmentation and high performance IP. In
CAC Workshop, October 2000.

[10] Infiniband. http://www.infinibandta.org.

[11] Srinivasan Keshav. Flow control in high-speed networks with long delays. In
Proceedings of INET, 1992.

[12] H. T. Kung and R. Morris. Credit-based flow control for ATM networks. In
IEEE Network Magazine, March 1995.

66

[13] William F. Lawry, Christopher R. Wilson, and Arthur B. Maccabe. OS bypass
implementation benchmark. http://www.cs.unm.edu/~maccabe/SSL, 2001.

[14] R. Martin, A. Vahdat, D. Culler, and T. Anderson. Effects of communication
latency, overhead, and bandwidth in a cluster architecture. In Proceedings of
ISCA, June 1997.

[15] MVIA. http://www.nersc.gov/research/FTG/via, 1998.
[16] Netgear. http://www.netgear.com/adapters_main.asp.

[17] S.Pakin, M. Lauria, and A. Chien. High performance messaging on workstations:
Illinois Fast Messages (FM) for Myrinet, 1995.

[18] Pekka Pietikainen. Hardware acceleration of Scheduled Transfer Protocol.
http://oss.sgi.com/projects/stp.

[19] Tan Pratt and Keir Fraser. Arsenic: a user-accessible gigabit ethernet interface.
In Proceedings of Infocom, April 2001.

[20] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-bypass NIC-driven
gigabit ethernet message passing. In Proceedings of SC01, November 2001.

[21] P. Shivam, P. Wyckoff, and D. Panda. Can user level protocols take advantage
of multi-CPU NICs? In Proceedings of IPDPS, April 2002.

[22] E. Speight, H. Abdel-Shafi, and J. Bennett. Realizing the performance potential
of a virtual interface architecture. In Proceedings of the International Conference
on Supercomputing, June 1999.

[23] S. Sumimoto, H. Tezuka, A. Hori, H. Harada, T. Takahashi, and Y. Ishikawa.
High performance communication using a gigabit ethernet. Technical Report
TR-98003, Real World Computing Partnership, 1998.

[24] TechFest. http://www.techfest.com/networking/lan/ethernet2.htm.
[25] VL. http://www.viarch.org, 1998.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network
interface for parallel and distributed computing. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, December 1995.

67

