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Abstract—Clusters featuring the InfiniBand intercon-
nect are continuing to scale. As an example, the “Ranger”
system at the Texas Advanced Computing Center (TACC)
includes over 60,000 cores with nearly 4,000 InfiniBand
ports. The latest Top500 list shows 30% of systems and
over 50% of the top 100 are now using InfiniBand as
the compute node interconnect. As these systems continue
to scale, the Mean-Time-Between-Failure (MTBF) is re-
ducing and additional resiliency must be provided to the
important components of HPC systems, including the MPI
library.

In this paper we present a design that leverages the
reliability semantics of InfiniBand, but provides a higher-
level of resiliency. We are able to avoid aborting jobs in the
case of network failures as well as failures on the endpoints
in the InfiniBand Host Channel Adapters (HCA). We
propose reliability designs for rendezvous designs using
both Remote DMA (RDMA) read and write operations.
We implement a prototype of our design and show that
performance is near-identical to that of a non-resilient
design. This shows that we can have both the performance
and the network reliability needed for large-scale systems.

I. INTRODUCTION

Large-scale deployments of clusters designed from
largely commodity-based components continue to be
a major component of high-performance computing
environments. A significant component of a high-
performance cluster is the compute node interconnect.
InfiniBand [1], is an interconnect of such systems that is
enjoying wide success due to low latency (1.0-3.0µsec),
high bandwidth and other features.

The Message Passing Interface (MPI) [2] is the
dominant programming model for parallel scientific
applications. As such, the MPI library design is crucial
in the overall environment.

Clusters featuring the InfiniBand interconnect are
continuing to scale. As an example, the “Ranger” sys-
tem at the Texas Advanced Computing Center (TACC)
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includes over 60,000 cores with nearly 4,000 InfiniBand
ports [3]. The latest list shows 30% of systems and over
50% of the top 100 are now using InfiniBand as the
compute node interconnect.

Along with this increasing scale of commodity-based
clusters is a concern with the Mean Time Between
Failure (MTBF). As clusters continue to scale higher, it
becomes inevitable that some failure will occur in the
system and hardware and software need to be designed
to recover from these failures. Providing resiliency
within systems, middleware, and libraries is an area
gaining a significant degree of interest [4], [5], [6].
One very important aspect of providing resiliency is to
recover from network failures.

We seek to answer the following questions with this
work:

• Can an MPI library be designed in a resilient
manner for InfiniBand which can tolerate and re-
cover from network faults including end-node Host
Channel Adapter (HCA) failures?

• How much overhead will such a scheme incur?
What will be the recovery cost for HCA failure?

• Can such a scheme maintain performance and
scalability?

In this paper we design a light-weight reliability
protocol for message passing software. As an example,
we use the InfiniBand interconnect given its promi-
nence in many HPC deployments. We explain how our
design leverages network features to provide a high-
performance yet resilient design. We define resiliency
to mean the ability to recover from network failures
including core switches and cables, but also failures on
the end-node network devices themselves. We propose
designs for both the eager and rendezvous protocols
in MPI and support for both Remote Direct Memory
Access (RDMA) read and put operations. We show that
our proposed method has an insignificant overhead and
is able to recover from many categories of network fail-
ures that may occur. We show that our design also uses
limited memory for additional buffering of messages.

The remaining parts of the paper are organized as



follows: In Section II we provide an overview of
InfiniBand and then in Section III we describe the
reliability semantics and error notification it provides.
Our reliability design is presented in Section IV. Sec-
tion V gives our experimental setup and Section VI
is an evaluation and analysis of an implementation of
our design. Work related to our design is presented in
Section VII. Finally, conclusions and future work are
presented in Section VIII.

II. INFINIBAND ARCHITECTURE

InfiniBand is a processor and I/O interconnect based
on open standards [1]. It was conceived as a high-
speed, general-purpose I/O interconnect, and in recent
years it has become a popular interconnect for high-
performance computing to connect commodity ma-
chines in large clusters.

Communication in InfiniBand is accomplished using
a queue based model. Sending and receiving end-points
have to establish a Queue Pair (QP) which consists
of Send Queue (SQ) and Receive Queue (RQ). Send
and receive work requests (WR) are then placed onto
these queues for processing by InfiniBand network
stack. Completion of these operations is indicated by
InfiniBand lower layers by placing completed requests
in the Completion Queue (CQ).

There are four transport modes defined by the Infini-
Band specification, and one additional transport that is
available in the new Host Channel Adapters (HCAs)
from Mellanox: Reliable Connection (RC), Reliable
Datagram (RD), Unreliable Connection (UC), Unreli-
able Datagram (UD), and eXtended Reliable Connec-
tion. RD is not available with current hardware.

We will focus our efforts on the RC and XRC
transports since they are traditionally the ones used for
MPI and other applications over InfiniBand. Additional
information on the reliability semantics of these trans-
ports is covered in the next section.

III. INFINIBAND STATES AND RELIABILITY
SEMANTICS

In this section we first describe the Queue Pair
(QP) states followed by a discussion on the reliability
semantics of InfiniBand. Lastly, we describe how error
states are communicated from the hardware.

A. Queue Pair States

Queue Pairs (QPs) are communication endpoints. In
the case of RC, a single QP is a connection to another
QP in another process. Each QP has its own state, each
with different characteristics. Figure 1 shows the state
diagram for each of these states:
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Figure 1. Queue Pair State Diagram

• Reset: This is the base state of a QP after creation.
No work requests can be processed.

• Init: After moving from Reset, new receive re-
quests can be issued, but no incoming or outgoing
requests are satisfied.

• Ready to Receive (RTR): In this mode a QP can
process receive requests, but will not process any
outgoing send requests.

• Ready to Send (RTS): This is the working state
of the QP. Incoming and outgoing requests are
serviced.

• Send Queue Drain (SQD): In this mode send oper-
ations will halt except for those that were already
underway.

• Send Queue Error (SQE): This state is entered
if a completion error occurs when processing an
outgoing send request. For Reliable Connection
(RC) this state is not used and the QP will directly
enter the ”Error State” instead.

• Error: In this state the QP is “broken” and all
requests that have errored out and not completed
will be placed onto the CQ.

B. Reliability Semantics

The reliable transports of InfiniBand: Reliable Con-
nection (RC), eXtended Reliable Connection (XRC)
and Reliable Datagram (RD) provide certain reliability
guarantees. As with other transports, there is both a
variable CRC and end-to-end CRC that makes sure that
data is not corrupted in transit across the network.

Further, the reliable transports of InfiniBand guar-
antee ordering and arrival of messages sent. When a
message is placed into the Send Queue (SQ), it will
not be placed into the Completion Queue (CQ) until the
complete data has arrived at the remote HCA. Therefore,
upon send completion the sender knows that the data
has reached the remote node, but not that the data has
arrived in the memory of the other node. This is an
important aspect to note. It is not sufficient simply to
wait for a send completion if the sender wants to make



sure that data has been placed into the end location.
Errors on the HCA or over the PCIe bus may prevent
data completion.

Further, the lack of a send completion on the sender
does not imply that the receiver has not received the
data. For example, the data may be received, however,
before the hardware-level ACK message is sent there
may become a network partition. In this case the sender
QP will move to an error state with that request marked
as incomplete.

Note that InfiniBand does provide an Automatic Path
Migration (APM) feature that can automatically failover
to another network path. In high availability system
deployments the alternate path will typically go through
separate FRUs (Field Replacable Units) such as cables,
switch chips, switch enclosures in the Fabric. Typically
an HCA has two ports and both ports are connected
to separate fabrics or separate parts of the fabric. Using
this approach, however, does not allow trying more than
one alternate path, so if this one also fails then the QP
will fall into an error state.

C. Error Notification

Errors in InfiniBand are provided both via asyn-
chronous events as well as through the CQ. In many
cases the errors will eventually be provided to the CQ,
where they can be pulled out and reprocessed if needed.
When an error occurs the QP moves into the Error state
and must be moved to the Init stage to become usable
again.

IV. DESIGN

The goal of our design is to provide a resilient MPI
for InfiniBand that can survive both general network
errors as well as failure of even the HCA. Further, our
goal is to keep the overhead of providing this resiliency
at a minimum.

As noted in Section III, the InfiniBand network
provides certain guarantees and error notifications when
using reliable transports. These guarantees, however, are
not enough for an MPI library since send completion
does not guarantee the data has been received by the
MPI library of the receiver.

A. Message Completion Acknowledgment

Since InfiniBand completions are not a strong guar-
antee of data transmission, we must provide message
acknowledgments from within the MPI library. Unlike
previous work that showed reliability for unreliable
transports [7], there is no need for the MPI library
to record timestamps and retransmit after a timeout.

InfiniBand will signal an error to the upper-level if there
has been a failure. With this level of hardware support,
the acknowledgment design can have lower overhead.
Thus, we only need to maintain the messages in memory
until a software-level acknowledgment is received from
the receiver.

MPI is generally implemented with two protocols:
Eager and Rendezvous. Eager is generally used for
smaller messages and can be sent to the receiver without
checking if the corresponding receive has already been
posted. Rendezvous is used when the communication
must be synchronized or there are large messages. In
the following paragraphs we describe our designs for
these two protocols:

1) Eager Protocol: For the eager protocol we follow
a traditional mechanism to signal message completion
that is common in flow control protocols [8]. The ac-
knowledgment can be piggybacked on the next message
back to that process. As shown in Figure 2(a), this
requires no additional messages. If the communication
is not bi-directional, then after a preconfigured number
of messages or data size an explicit acknowledgment,
as shown in in Figure 2(b). Thus, very few additional
messages are required.

It is important to note that traditional eager protocol
implementations, including the one used in MVAPICH,
make a copy of the data to be sent into a registered
buffer. Thus, the send buffer is available immediately
after the copy and the send operation can be marked
complete according to the MPI specification.

In the case of our resilient design, since there are
no timeouts the only additional cost in providing this
support is to hold onto this temporary message buffer
longer. As noted above, since the send operation is
already marked as complete there is no additional time
required for an eager send operation to complete from
the MPI application point of view.

2) Rendezvous: When transferring long messages,
the usual process of data transfer is to use a zero-copy
protocol. These are generally classified into two cate-
gories: RPut and RGet. We examine reliability designs
for each of these methods.

RPut: In this mode the sender notifies the receiver
with a Request to Send (RTS) message and the receiver
will respond with a Clear to Send (CTS) message
that includes the address where the message should be
placed. The sender can then perform an RDMA write
operation to directly put the message into the memory
of the receiver. Normally the sender can mark the send
complete as soon as the RDMA write completion is
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Figure 2. Reliability Protocols

placed in the CQ. With our strengthened semantics
though, it cannot be freed until the receiver sends an
explicit acknowledgment, as shown in Figure 2(c).

RGet: With this protocol the sender sends the source
address in the RTS message. The receiver can then do an
RDMA read to directly place the data from the source
into the destination buffer. Then the receiver sends a
finish message (FIN) to the sender. There is no need for
an additional ACK in this case. Thus, there should be no
additional overhead. In other words, our approach does
not modify the original RGet protocol. (Figure 2(d))

B. Error Recovery

There are two main forms of errors that can occur to
the MPI library. These can be classified as Network
Failures or Fatal Events. Figure 3 shows the basic
recovery flow that is attempted in our design.

1) Network Failure: In this case the error is internal
to the network. It may come in the form of a “Retry
Exceeded” error, which can denote either a cable or
switch failure or even severe congestion. In this case
we should be able to retry the same network path again
since it may be a transient issue.

To attempt to reconnect, each side will attempt to
send another out-of-band message to the other side.
In our prototype, this is done using the Unreliable
Datagram (UD) transport where QPs do not fall into
the error state due to network errors. If the remote peer
replies then the QPs can be repaired and the messages
that have not arrived can be re-transmitted. If the remote
peer does not respond it could be an internal network
failure so we can attempt different paths within the
network, with timeouts for each. After a pre-configured
length of time the job could be configured to fail.

2) Fatal Event: If we receive an asynchronous event
from the InfiniBand library of a “Fatal Event” from the
HCA meaning it is not able to continue, we attempt to
reload the HCA driver. In this case we must unload
all InfiniBand resources (QPs, unpin memory). The
resources must be freed in order to allow the driver
to reset the device and restart itself. After reloading we
must recreate most of these resources. Some resources,
such as QPs, will be re-created once communication
restarts by the connection manager. If the same HCA is
not available after a driver reset the library should move
connections over to another HCA, if available.

We will then attempt to re-connect with the remote
peer. The remote peer will have to reload the connec-
tions and memory, but this can be conveyed with control
messages.

Note that the sender will interpret a fatal event on
the receiver as a Network Failure, so the receiver must
reconnect to the sender. In the case of fatal events on
both the sender and receiver, reconnect requests must
be sent through the administrative network since no
InfiniBand resources will be available for either side
to reconnect.

V. EXPERIMENTAL SETUP

Our experimental test bed is a 576-core InfiniBand
Linux cluster. Each of the 72 compute nodes have
dual 2.33 GHz Intel Xeon “Clovertown” quad-core
processors for a total of 8 cores per node. Each node
has a Mellanox MT25208 dual-port Memfree HCA.
InfiniBand software support is provided through the
OpenFabrics/Gen2 stack [9], OFED 1.3 release.

We have implemented a prototype of our design over
the verbs interface of the OpenFabrics stack [9]. Our
prototype design is designed within the MVAPICH MPI
library [10]. Our design uses only InfiniBand primitives
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Figure 3. Recovery Flow Chart: Upon failure, a reconnect request will take place out-of-band. If this fails or if a fatal HCA event was received
then attempt to reopen the HCA or switch to another HCA.

for re-connection and can recover from network failures
and fatal events.

We have evaluated our prototype by using both spe-
cialized firmware to introduce errors, defective switches
and directly moving QPs to error states. We observed
that the prototype was able to reconnect and withstand
these errors.

VI. EXPERIMENTAL EVALUATION

In this section we describe the evaluation of our
prototype design. We first present an evaluation on
both microbenchmarks and application kernels. Then we
examine the cost of recovering from an error using this
design.

A. Methodology

In this section we evaluate each of the following
combinations to determine the cost of reliability:

• RPut-Existing (RPut): This configuration is the
base MVAPICH 1.1 version with the RPut ren-
dezvous protocol.

• RGet-Existing (RGet): Same as RPut-Existing, but
using the RGet protocol.

• RPut-Resilient (RPut-Rel): In this configuration
we use the modified MVAPICH version that uses
the design from Section IV with the RPut protocol.

• RGet-Resilient (RGet-Rel): This configuration is
the same as Resilient-RPut, but uses the RGet
protocol instead.

B. Microbenchmark Performance

We performed an evaluation of base-level mi-
crobenchmarks to determine if our resiliency design
incurs any overhead. We found that for all standard
microbenchmarks including latency, bandwidth and bi-
directional bandwidth there is no overhead. Results for
latency and bandwidth are shown in Figure 4.

C. Application Benchmarks

In this section we evaluate the performance of all of
our configurations on the NAS Parallel Benchmark suite
to expose any additional overhead.

Figure 5 shows the results of our evaluation of each
of the NAS benchmarks. All of these results are with
256 processes on classes B and C, as indicated on the
graph. The results show very low overhead, with nearly
unnoticeable overhead in the RGet-Rel cases. The RPut-
Rel configuration, however, has higher overhead. Recall
from Section IV, that a reliable form of RPut requires an
additional acknowledgment message. For SP.C, which
has many large messages, this overhead is most appar-
ent. The overhead reaches 4% for RPut-Rel with only
a 1.5% overhead for RGet-Rel. From these results we
can determine that the RGet-Rel configuration should
be the default configuration.

A different potential overhead of our design is the
requirement to buffer messages until they are acknowl-
edged. Large messages will take the rendezvous path
and will not be buffered, so only smaller messages will
take this path. Table I shows the memory per process on
average required for buffering in both the normal case
as well as our design. From the table we can observe
that no process requires more than 0.45 MB of memory
for the additional reliability semantics.

D. Recovery Cost

In this initial evaluation we determine the overhead
to detect failures and reconnect required connections.
For this evaluation we add a series of transitions to
the Error state within a microbenchmark between two
nodes and track the amount of time from setting the
failure to response and reconnection.

Our evaluations show that a single reconnection due
to an error takes on average 0.335 seconds. This is faster
than could be achieved using a standard multi-second
timeout within the MPI library. Our approach uses the
hardware based timeouts from the InfiniBand device to
determine if there is a connection failure.
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Figure 5. NAS Parallel Benchmarks Performance (256 Processes)

Class BT.C CG.C FT.C IS.C LU.C MG.C SP.C

Reliable 3.46 MB 6.92 MB 0.07 MB 0.01 MB 1.65 MB 0.16 MB 5.33 MB
Normal 3.20 MB 6.48 MB 0.07 MB 0.01 MB 1.53 MB 0.13 MB 4.95 MB

Difference 0.26 MB 0.44 MB 0.00 MB 0.00 MB 0.12 MB 0.03 MB 0.38 MB

Table I
COMPARISON OF AVERAGE MAXIMUM MEMORY USAGE PER PROCESS FOR MESSAGE BUFFERING

VII. RELATED WORK

Other researchers have explored providing reliability
at the MPI layer as part of the LA-MPI project [11],
[12]. LA-MPI is focused on providing network fault-
tolerance at the host to catch potential communication
errors, including network and I/O bus errors. Their
reliability method works on a watchdog timer within
the MPI library with a several second timeout, focusing
on providing checksum acknowledgment support in the

MPI library. Saltzer et al. [13] discusses the need for
end-to-end reliability instead of a layered design.

The authors of this work have previous work [7], [14]
providing reliability over the unreliable transports of
InfiniBand, including Unreliable Connection and Unre-
liable Datagram. These works have not ever considered
HCA failure or attempting to leverage the reliability
from InfiniBand.

Other MPI designs have included support for failover



in the past. Vishnu, et. al., showed how to provide
failover for uDAPL to other networks if there was
a network partition [15]. Again, this work did not
address the issue of HCA failure and relied only on
the network guarantees of the underlying InfiniBand
hardware. Open MPI [16] also provides support for
network failover using their Data Reliability component,
but this component can occur a very large overhead on
performance since it does not take into account any
reliability provided by the hardware and is similar to
the support in LA-MPI.

VIII. CONCLUSION

InfiniBand is becoming increasingly common in clus-
ter environments. In existing MPI designs for Infini-
Band, some network-level errors will result in a crash
of the end application.

In this work we have designed a resilient MPI for
InfiniBand that can withstand network failures as well
as HCA failures. To the best of our knowledge, this is
the first MPI design that contains all of these features for
InfiniBand. We have evaluated our design on 256 cores
and the performance between the non-resilient design
and resilient designs is near identical. We have also
shown that the amount of memory required for buffering
messages is also very low (less than 1 MB). Our design
allows for increased network resiliency with very low
overhead.

In the future we plan to look into additional failure
resiliency techniques through querying of the network
subnet manager to determine the causes of network
failures and to pick different paths.

Software Distribution: The software described in this
paper has been incorporated into the MVAPICH 1.2
release and is available for download from MVAPICH
web page [10].
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