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Abstract

Due to its high performance and open standard, Infini-
Band is gaining popularity in the area of high performance
computing. In this area, MPI has been the de facto standard
for writing parallel applications. One of the most popular
MPI implementations is MPICH. Its successor, MPICH2,
features a completely new design which aims to provide
more performance and flexibility. To ensure portability, it
provides a hierarchical structure based on which porting
can be done at different levels.

In this paper, we present our experiences designing and
implementing MPICH2 over InfiniBand. Our study fo-
cuses on optimizing the performance of MPI-1 functions in
MPICH2. One of our objectives is to exploit Remote Di-
rect Memory Access (RDMA) to achieve high performance.
We have based our design on the RDMA Channel interface
provided by MPICH2, which encapsulates architecture de-
pendent communication functionalities into a very small set
of functions.

Starting with a basic design, we apply different opti-
mizations and also propose a zero-copy based design. We
characterize the impact of our optimizations and designs
using micro-benchmarks. We have also performed applica-
tion level evaluation using NAS Parallel Benchmarks. Our
optimized MPICH2 implementation achieves 7.6 � s latency
and 857MB/s bandwidth, which are close to the raw perfor-
mance of the underlying InfiniBand layer. Our study shows
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that the RDMA Channel interface in MPICH2 provides a
simple yet powerful abstraction, which enables implemen-
tations with high performance by exploiting RDMA oper-
ations in InfiniBand. To the best of our knowledge, this
is the first high performance design and implementation of
MPICH2 on InfiniBand using RDMA support.

1 Introduction

During the last ten years, the research and industry com-
munities have been proposing and implementing user-level
communication systems to address some of the problems
associated with the traditional networking protocols. The
Virtual Interface Architecture (VIA) [6] was proposed to
standardize these efforts. More recently, InfiniBand Archi-
tecture [9] has been introduced which combines storage I/O
with Inter-Process Communication (IPC).

In addition to send and receive operations, Infini-
Band architecture supports Remote Direct Memory Access
(RDMA). RDMA operations enable direct access to the ad-
dress space of a remote process. These operations introduce
new opportunities and challenges in designing communica-
tion protocols.

In the area of high performance computing, MPI [25]
has been the de facto standard for writing parallel applica-
tions. After the original MPI standard (MPI-1), an enhanced
standard (MPI-2) [18] has been introduced which includes
features such as dynamic process management, one-sided
communication and I/O. MPICH [7] is one of the most pop-
ular MPI-1 implementations. Recently, work is under way

1



to create MPICH2 [1], which aims to support both MPI-1
and MPI-2 standards. It features a completely new design,
which provides better performance and flexibility than its
predecessor. MPICH2 is also very portable and provides
mechanisms which make it easy to re-target it to new com-
munication architectures such as InfiniBand.

In this paper, we present our experiences in designing
and implementing MPICH2 over InfiniBand using RDMA
operations. Although MPICH2 supports both MPI-1 and
MPI-2, our study focuses optimizing the performance of
MPI-1 functions. We have based our design on the RDMA
Channel interface provided by MPICH2, which encapsu-
lates architecture dependent communication functionalities
into a very small set of functions. Despite its simple inter-
face, we have shown that the RDMA Channel does not pre-
vent one from achieving high performance. In our testbed,
our MPICH2 implementation achieves 7.6 � s latency and
857MB/s peak bandwidth, which are quite close to the raw
performance of our InfiniBand platform. We have also eval-
uated our designs using NAS Parallel Benchmarks [21].
Overall, we have demonstrated that the RDMA Channel in-
terface is a simple yet powerful abstraction which makes it
possible to design high performance MPICH2 implementa-
tions with less development effort.

In our design, we use RDMA operations exclusively for
communication. Our design starts with an emulation of
a shared memory based implementation. Then we intro-
duce various optimization techniques to improve its perfor-
mance. To show the impact of each optimization, we use
latency and bandwidth micro-benchmarks to evaluate our
design after applying it. We also propose a zero-copy de-
sign for large messages. Our results show that with pig-
gybacking and zero-copy optimizations for large messages,
our design achieves very good performance.

The remaining part of the paper is organized as fol-
lows: In Section 2, we provide an introduction to InfiniBand
and its RDMA operations. Section 3 presents an overview
of MPICH2, its implementation structure, and the RDMA
Channel interface. We describe our designs and implemen-
tations in Sections 4 and 5. In Section 6, we compare our
RDMA Channel based design with another design based on
a more complicated interface called CH3. Application level
performance evaluation is presented in Section 7. In Sec-
tion 8, we describe related work. In Section 9, we draw
conclusions and briefly mention some of the future research
directions.

2 InfiniBand Overview

The InfiniBand Architecture (IBA) [9] defines a switched
network fabric for interconnecting processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In

an InfiniBand network, processing nodes and I/O nodes are
connected to the fabric by Channel Adapters (CA). Chan-
nel Adapters usually have programmable DMA engines
with protection features. There are two kinds of channel
adapters: Host Channel Adapter (HCA) and Target Chan-
nel Adapter (TCA). HCAs sit on processing nodes.

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel adapters to
consumers belongs to the transport layer. A queue-based
model is used in this interface. A Queue Pair in InfiniBand
Architecture consists of two queues: a send queue and a re-
ceive queue. The send queue holds instructions to transmit
data and the receive queue holds instructions that describe
where received data is to be placed. Communication opera-
tions are described in Work Queue Requests (WQR), or de-
scriptors, and submitted to the work queue. The completion
of WQRs is reported through Completion Queues (CQs).
Once a work queue element is finished, a completion queue
entry is placed in the associated completion queue. Appli-
cations can check the completion queue to see if any work
queue request has been finished. InfiniBand also supports
different classes of transport services. In this paper, we fo-
cus on the Reliable Connection (RC) service.

2.1 RDMA Operations in InfiniBand Architec-
ture

InfiniBand Architecture supports both channel and mem-
ory semantics. In channel semantics, send/receive opera-
tions are used for communication. To receive a message,
the programmer posts a receive descriptor which describes
where the message should be put at the receiver side. At the
sender side, the programmer initiates the send operation by
posting a send descriptor.

In memory semantics, InfiniBand supports Remote
Direct Memory Access (RDMA) operations, including
RDMA write and RDMA read. RDMA operations are one-
sided and do not incur software overhead at the remote side.
In these operations, the sender (initiator) starts RDMA by
posting RDMA descriptors. A descriptor contains both the
local data source addresses (multiple data segments can be
specified at the source) and the remote data destination ad-
dress. At the sender side, the completion of an RDMA oper-
ation can be reported through CQs. The operation is trans-
parent to the software layer at the receiver side.

Since RDMA operations enable a process to access the
address space of another process directly, they have raised
some security concerns. In InfiniBand architecture, a key
based mechanism is used. A memory buffer must first
be registered before they can be used for communication.
Among other things, the registration generates a remote key.
This remote key must be presented when the sender initiates
an RDMA operation to access the buffer.
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Compared with send/receive operations, RDMA oper-
ations have several advantages. First, RDMA operations
themselves are generally faster than send/receive operations
because they are simpler at the hardware level. Second, they
do not involve managing and posting descriptors at the re-
ceiver side, which would incur additional overheads and re-
duce the communication performance.

3 MPICH2 Overview

MPICH [7] is developed at Argonne National Labora-
tory. It is one of the most popular MPI implementations.
The original MPICH provides support for the MPI-1 stan-
dard. As a successor of MPICH, MPICH2 [1] aims to sup-
port not only the MPI-1 standard, but also functionalities
such as dynamic process management, one-sided communi-
cation and MPI I/O, which are specified in the MPI-2 stan-
dard. However, MPICH2 is not merely MPICH with MPI-2
extensions. It is based on a completely new design, aim-
ing to provide more performance, flexibility and portability
than the original MPICH. One of the notable features in the
implementation of MPICH2 is that it can take advantage
of RDMA operations if they are provided by the underly-
ing interconnect. These operations can be used not only
to support MPI-2 one-sided communication, but also to im-
plement normal MPI-1 communication. Although MPICH2
is still under development, beta versions are already avail-
able for developers. In the current version, all MPI-1 func-
tions have been implemented. MPI-2 functions are not com-
pletely supported yet. In this paper, we mainly focus on the
MPI-1 part of MPICH2.

3.1 MPICH2 Implementation Structure

One of the objectives in MPICH2 design is portability.
To facilitate porting MPICH2 from one platform to another,
MPICH2 uses ADI3 (the third generation of the Abstract
Device Interface) to provide a portability layer. ADI3 is a
full-featured abstract device interface and has many func-
tions, so it is not a trivial task to implement all of them. To
reduce the porting effort, MPICH2 introduces the CH3 in-
terface. CH3 is a layer that implements the ADI3 functions,
and provides an interface consisting of only a dozen func-
tions. A “channel” implements the CH3 interface. Chan-
nels exist for different communication architectures such as
TCP sockets, SHMEM, etc. Because there are only a dozen
functions associated with each channel interface, it is easier
to implement a channel than the ADI3 device.

To take advantage of architectures with globally shared
memory or RDMA capabilities and further reduce the port-
ing overhead, MPICH2 introduces the RDMA Channel
which implements the CH3 interface. The RDMA Channel

interface only contains five functions. We will discuss the
details of RDMA Channel Interface in the next subsection.

The hierarchical structure of MPICH2 , as shown in Fig-
ure 1, gives much flexibility to implementors. The three
interfaces (ADI3, CH3, and RDMA Channel Interface) pro-
vide different trade-offs between communication perfor-
mance and ease of porting.

ChannelChannel

CH3

ADI3

SHMEM

RDMA

Sys V

Shared Memory

Multi−Method

Channel

MPICH2

InfiniBand

SHMEMTCP Socket

Figure 1. MPICH2 Implementation Structure

3.2 MPICH2 RDMA Channel Interface

MPICH2 RDMA Channel interface is designed specif-
ically for architectures with globally shared memory or
RDMA capabilities. It contains five functions, among
which only two are central to communication. (Other func-
tions deal with process management, initialization and fi-
nalization, respectively.) These two functions are called put
(write) and get (read).

Both put and get functions accept a connection structure
and a list of buffers as parameters. They return to the caller
the number of bytes that have been successfully put or got-
ten. If the bytes completed is less than the total length of
buffers, the caller will retry the same get or put operation
later.

Figure 2 illustrates the semantics of put and get. Logi-
cally, a pipe is shared between the sender and the receiver.
The put operation writes to the pipe and the get operation
reads from it. The data in the pipe is consumed in FIFO or-
der. Both operations are non-blocking in the sense that they
return immediately with the number of bytes completed in-
stead of waiting for the entire operation to finish. We should
note that put and get are different from RDMA write and
RDMA read in InfiniBand. While RDMA operations in In-
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finiBand are one-sided, put and get in the RDMA Channel
interface are essentially two-sided operations.

Put and get operations can be implemented on archi-
tectures with globally shared memory in a straightforward
manner. Figure 3 shows one example. In this implementa-
tion, a shared buffer (organized logically as a ring) is placed
in shared memory, together with a head pointer and a tail
pointer. The put operation copies the user buffer to the
shared buffer and adjusts the head pointer. The get oper-
ation involves reading from the shared buffer and adjusting
the tail pointer. In the case of buffer overflow or underflow
(detected by comparing head and tail pointers), the opera-
tions return immediately and the caller will retry them.

Put Get
FIFO

Put/Get Operations

Buffers

Buffer Pointers

ReceiverSender

Figure 2. Put and Get Operations

Data

Empty
Tail Pointer

Head Pointer

Put

Get

Figure 3. Put and Get Implementation with
Globally Shared Memory

Working at the RDMA Channel interface level is better
than writing a new CH3 or ADI3 implementation for many
reasons:

1. Improvements done at this level can affect all shared-
memory like transports such as globally shared-
memory, RDMA over IP, Quadrics and Myrinet.

2. Other protocols on InfiniBand need efficient process-
ing, including one-sided communication in MPI-2,
DSM systems and parallel file systems. The RDMA
Channel interface can potentially be used also for
them.

3. Designing proper interfaces to similar systems im-
proves performance and portability in general.

In collaboration, the OSU and ANL teams are also cur-
rently working together to design an improved interface
which can benefit communication systems in general.

4 Designing and Optimizing MPICH2 over
InfiniBand

In this section, we present several different designs of
MPICH2 over InfiniBand based on the RDMA Channel in-
terface. We first start with a basic design which resembles
the scheme described in Figure 3. Then we apply various
optimization techniques to improve its performance. In this
section, the designs are evaluated using micro-benchmarks
such as latency and bandwidth. We show that by taking
advantage of RDMA operations in InfiniBand, we can not
only achieve low latency for small messages, but also high
bandwidth for large messages using the RDMA Channel in-
terface. In Section 5, we present a zero-copy design. In Sec-
tion 6, we also present a design based on the CH3 interface
and compare it with our designs based on the RDMA Chan-
nel interface. In Section 7, we will present performance
results using application level benchmarks.

4.1 Experimental Testbed

Our experimental testbed consists of a cluster system
with 8 SuperMicro SUPER P4DL6 nodes. Each node
has dual Intel Xeon 2.40 GHz processors with a 512K L2
cache and a 400 MHz front side bus. The machines are
connected by Mellanox InfiniHost MT23108 DualPort 4X
HCA adapter through an InfiniScale MT43132 Eight 4x
Port InfiniBand Switch. The HCA adapters work under the
PCI-X 64-bit 133MHz interfaces. We used the Linux Red
Hat 7.2 operating system with 2.4.7 kernel. The compilers
we used were GNU GCC 2.96 and GNU FORTRAN 0.5.26.

4.2 Basic Design

In Figure 3, we have explained how the RDMA Channel
interface can be implemented on shared memory architec-
tures. However, in a cluster connected by InfiniBand, there
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is no physically shared memory. In our basic design, we use
RDMA write operations provided by InfiniBand to emulate
this scheme.

We put the shared memory buffer in the receiver’s main
memory. This memory is registered and exported to the
sender. Therefore, it is accessible to the sender through
RDMA operations. To avoid the relatively high cost of reg-
istering user buffers for sending every message, we also use
a pre-registered buffer at the sender which is the same size
as the shared buffer at the receiver. User data is first copied
into this buffer and then sent out. Head and tail pointers
also need to be shared between the sender and the receiver.
Since they are used frequently at both sides, we use repli-
cation to prevent polling through the network. For the tail
pointer, a master copy is kept at the receiver and a replica
is kept at the sender. For the head pointer, a master copy is
kept at the sender and a replica is kept at the receiver. For
each direction of every connection, the associated “shared”
memory buffer, head and tail pointers are registered during
initialization and their addresses and remote keys are ex-
changed.

At the sender, the put operation is implemented as fol-
lows:

1. Use local copies of head and tail pointers to decide how
much empty space is available.

2. Copy user buffer to the pre-registered buffer.

3. Use RDMA write operation to write the data to the
buffer at the receiver side.

4. Adjust the head pointer based on the amount of data
written.

5. Use another RDMA write to update the remote copy
of head pointer.

6. Return the number of bytes written.

At the receiver, the get operation is implemented in the
following way:

1. Check local copies of head and tail pointers to see if
there is new data available.

2. Copy the data from the shared memory buffer to user
buffer.

3. Adjust the tail pointer based on the amount of data that
has been copied.

4. Use an RDMA write to update the remote copy of tail
pointer.

5. Return the number of bytes successfully read.

We should note that copies of head and tail pointers are
not always consistent. For example, after a sender adjusts
its head pointer, it uses RDMA write to update the remote
copy at the receiver. Therefore, the head pointer at the
receiver is not up-to-date until the RDMA write finishes.
However, this inconsistency does not affect the correctness
of the scheme because it merely prevents the receiver from
reading new data temporarily. Similar, inconsistency of tail
pointer may prevent the sender from writing to the shared
buffer. But eventually the pointers will become up-to-date
and the sender or the receiver will be able to make progress.

4.2.1 Performance of the Basic Design

We use latency and bandwidth tests to evaluate the perfor-
mance of our basic design. The latency test is conducted in
a ping-pong fashion and the results are derived from round-
trip time. In the bandwidth test, a sender keeps sending
back-to-back messages to the receiver until it has reached
a pre-defined window size W. Then it waits for these mes-
sages to finish and send out another W messages. The re-
sults are derived from the total test time and the number of
bytes sent.

Figures 4 and 5 show the results. Our basic design
achieves a latency of 18.6 � s for small messages and a band-
width of 230MB/s for large messages. (Note that unless
stated otherwise, the unit MB in this paper is an abbrevi-
ation for 10 � bytes.) However, these numbers are much
worse than the raw performance numbers achievable by the
underlying InfiniBand layer (5.9 � s latency and 870MB/s
bandwidth).
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Figure 4. MPI Latency for Basic Design

A careful look at the basic design reveals many ineffi-
ciencies. For example, a matching pair of send and receive
operations in MPI require three RDMA write operations to
take place: one for transfer of data, two for updating head
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Figure 5. MPI Bandwidth for Basic Design

and tail pointers. This not only increases latency and host
overhead, but also generates unnecessary network traffic.

For large messages, the basic scheme leads to two ex-
tra memory copies. The first one is from user buffer to the
pre-registered buffer at the sender side. The second one is
from the shared buffer to user buffer at the receiver side.
These memory copies consume resources such as memory
bandwidth and CPU cycles. To make matters worse, in the
basic design the memory copies and communication oper-
ations are serialized. For example, a sender first copies the
whole message (or part of the message if it cannot fit itself
in the empty space of the pre-registered buffer). Then it ini-
tiates RDMA write to transfer the data. This serialization
of copying and RDMA write greatly reduces the bandwidth
for large messages.

4.3 Optimization with Piggybacking Pointer Up-
dates

Our first optimization targeted to avoid separate head and
tail pointer updates whenever possible. The technique we
used is piggybacking, which combines pointer updates with
data transfer.

At the sender side, we combine data and the new value
of head pointer into a single message. To help the receiver
detect the arrival of the message, we attach the size with the
message and put two flags at the beginning and the end of
the message. The receiver detects arrival of the new mes-
sage by polling on the flags. To avoid possible situations
where the buffer content happens to have the same value as
the flag, we divide the shared buffer into fixed-size chunks.
Each message uses a different chunk. In this way, the situa-
tions can be handled by using two polling flags or “bottom
fill”. Similar techniques have been used in [17, 23].

At the receiver side, instead of using RDMA write to
update the remote tail pointer each time data has been read,

we delay the updates until the free space in the shared buffer
drops below a certain threshold. If there are messages sent
from the receiver to the sender, the pointer value is attached
with the message and no extra message is used to transfer
pointer updates. If there are no messages sent from the re-
ceiver to the sender, eventually we will explicitly send the
updates by using an extra message. The sender updates its
pointer after receiving this message. However, even in this
case the traffic can be reduced because several consecutive
updates of the tail pointer can be sent using only one mes-
sage.

The use of piggybacking and delayed pointer updates
can greatly improve the performance of small message.
From Figure 6 we see that the latency is reduced from
18.6 � s to 7.4 � s. Figure 7 shows that the optimization also
improves bandwidth for small messages.
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Figure 6. MPI Small Message Latency with
Piggybacking

4.4 Optimization with Pipelining of Large Mes-
sages

As we have discussed, our basic design suffers from se-
rialization of memory copies and RDMA writes. A better
solution is to use pipelining to overlap memory copies with
RDMA write operations.

In our piggybacking optimization, we divide the shared
memory buffer into small chunks. When sending and re-
ceiving large messages, we need to use more than one such
chunks. At the sender side, instead of starting RDMA writes
after copying all the chunks, we initiate the RDMA trans-
fer immediately after copying each chunk. In this way, the
RDMA operation can be overlapped with the copying of the
next chunk. Similarly, at the receiver side we start copying
from the shared buffer to the user buffer immediately after
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Figure 7. MPI Small Message Bandwidth with
Piggybacking

a chunk is received. In this way, the receive RDMA opera-
tions can be overlapped with the copying.

Figure 8 compares the bandwidth of the pipelining
scheme with the basic scheme. (Piggybacking is also used
in the pipelining scheme.) We can see that pipelining,
combined with piggybacking, has greatly improved MPI
bandwidth. The peak bandwidth has been increased from
230MB/s to over 500MB/s. However, this result is still not
satisfying because InfiniBand is able to deliver bandwidth
up to 870MB/s.

To investigate the performance bottleneck, we have con-
ducted memory copy tests in our testbed. We have found
out that memory copy bandwidth is less than 800MB/s for
large messages. In our MPI bandwidth tests, with RDMA
write operations and memory copies both using the mem-
ory bus, the bandwidth achievable at the application level is
even less. Therefore, it is clear that memory bus becomes
a performance bottleneck for large messages due to extra
memory copies.

4.4.1 Impact of Chunk Size on Pipelining Performance

In the pipelining optimization, it is very important that we
balance each stage of the pipeline so that we can get max-
imum throughput. One parameter we can change to bal-
ance pipeline stages is the chunk size, or how much data we
copy each time for a large message. Figure 9 shows MPI
bandwidth for different chunk sizes for the pipelining op-
timization. We can observe that MPI does not give good
performance when the chunk size is either too small (1K
Bytes) or too large (32K Bytes). MPI performs comparably
for chunk sizes of 2K to 16K Bytes. In all remaining tests,
we have chosen a chunk size of 16K Bytes.
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5 Zero Copy Design

As we have discussed in the previous subsection, it is de-
sirable to avoid memory copies for large messages. In this
section, we describe a zero-copy design for large messages
based on the RDMA Channel interface.

In our new design, small messages are still transferred
using RDMA write, similar to the piggybacking scheme.
However, for large messages, RDMA Read, instead of
RDMA write, is used for data transfer. The basic idea of
our zero-copy design is to let the receiver “pull” the data
directly from the sender using RDMA read.

For each connection, shared buffers are still used for
transferring small messages. However, the data for large
messages is not transferred through the shared buffer. At the
sender, when the put function is called, we check the user
buffer and decide whether to use zero-copy or not based on
the buffer size. If zero-copy is not used, the message is sent
through the shared buffer as discussed before. If zero-copy
is used, the following steps happen:

1. Register the user buffer.

2. Construct a special packet which contains information
about the user buffer such as address, size, and remote
key.

3. The special packet is sent using RDMA write through
the shared buffer.

After these steps, the put function returns a value of 0, indi-
cating that the operation is not finished yet. After the packet
arrives at the other side, the receiver finds out that it is a spe-
cial packet by checking its header. When the get function is
called, the receiver will check the shared buffer and process
all the packets in order. If it is a data packet, the data is
copied to user buffer. If it is a special packet, the user buffer
is registered and an RDMA read operation is issued to fetch
the data from the remote side directly to the user buffer. Af-
ter initiating the RDMA read, the get function returns with
a value of 0, indicating that the operation is still in progress.
When the RDMA read is finished, calling the get function
will lead to an acknowledgment packet being sent to the
sender. The get function also returns with the number of
bytes successfully transferred. Then, at the sender side, the
acknowledgment packet is received. Since the sender now
knows that the transfer has finished, the user buffer is de-
registered and the next call of put function will return with
the number of bytes transferred. The zero-copy process is
illustrated in Figure 10.

In the current InfiniBand implementation, memory reg-
istration and de-registration are expensive operations. To
reduce the number of registration and de-registration, we
have implemented a registration cache [8]. The basic idea
is to delay the de-registration of user buffers and put them

RDMA Read

Sender Receiver

Control Packet

Control Packet
Done
Get

Get

Done
Put

Put

Figure 10. Zero-Copy Design

into a cache. If the same buffer is reused some time later,
its registration information can be fetched directly from the
cache instead of going through the expensive registration
process. De-registration happens only when there are too
many registered user buffers.

It should be noted that the effectiveness of registration
cache depends on buffer reuse patterns of applications. If
applications rarely reuse buffers for communication, regis-
tration overhead cannot be avoided most of the time. For-
tunately, our previous study with the NAS Parallel Bench-
marks [16] has demonstrated that buffer reuse rates are very
high in these applications.

We compare the bandwidth of the pipelining design and
the zero-copy design in Figure 11. We can observe that
zero-copy greatly improves the bandwidth for large mes-
sages. We can achieve a peak bandwidth of 857MB/s,
which is quite close to the peak bandwidth at the Infini-
Band level (870MB/s). We can also see that due to cache
effect, bandwidth for large messages drops for pipelining
design. Due to the extra overhead in the implementation,
the zero-copy design slightly increases the latency for small
messages, which is now around 7.6 � s.

Our zero-copy implementation uses RDMA read oper-
ations, which let the receiver to pull data from the sender.
An alternative is to use RDMA write operations and let the
sender to “push” data to the receiver. Before the sender
can push the data, the receiver has to use special packets
to advertise availability of new receive buffers. Therefore,
this method can be very efficient if the get operations are
called before the corresponding put operations. However, in
the current MPICH2 implementation, the layers above the
RDMA Channel interface are implemented in such a way
that get is always called after put for large messages. There-
fore, we have chosen an RDMA read based implementation
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instead of RDMA write.

6 Comparing CH3 and RDMA Channel In-
terface Designs

The RDMA Channel interface in MPICH2 provides a
very simple way to implement MPICH2 in many communi-
cation architectures. In the previous section, we have shown
that this interface does not prevent one from achieving good
performance. Nor does it prevent zero-copy implementation
for large messages. Our results have shown that with vari-
ous optimizations, we can achieve a latency of 7.6 � s and a
peak bandwidth of 857MB/s.

The CH3 interface is more complicated than the RDMA
Channel Interface. Therefore, porting it requires more ef-
fort. However, since CH3 provides more flexibility, it is
possible to achieve better performance at this level.

To study the impact of different interfaces on MPICH2
performance, we have also done a CH3 level implementa-
tion. This implementation uses RDMA write operations for
transferring large messages, as shown in Figure 12. Before
transferring the message, a handshake happens between the
sender and the receiver. User buffer at the receiver is reg-
istered and its information is sent to the sender through the
handshake. The sender then uses RDMA write to transfer
the data. A registration cache is also used in this implemen-
tation.

Figures 13 and 14 compare this implementation with our
RDMA Channel based zero-copy design using latency and
bandwidth micro-benchmarks. We can see that the two im-
plementations perform comparably for small and large mes-
sages. However, the CH3 based design outperforms RDMA
Channel based design for mid-size messages (32K to 256K

bytes) in bandwidth.

Figure 15 shows the bandwidth of RDMA read and
RDMA write at the InfiniBand VAPI level. (VAPI is the
programming interface for our InfiniBand cards.) With
the current VAPI implementation, we can see that RDMA
write operations have a clear advantage over RDMA read
for mid-size messages. Therefore, the fact that CH3 based
design outperforms RDMA Channel based design for mid-
size messages is more due to the raw performance differ-
ence between RDMA write and RDMA read than the de-
signs themselves.

Receive

Sender Receiver

Control Packet

Control Packet

Control Packet

RDMA Write

Done
Receive

Send

Send
Done

Figure 12. CH3 Zero-Copy with RDMA Write
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7 Application Level Evaluation

In this section, we carry out application level evalua-
tion of our MPICH2 designs using NAS Parallel Bench-
marks [21]. We run class A benchmarks on 4 nodes and
class B benchmarks on 8 nodes. Benchmarks SP and BT
require square number of nodes. Therefore, their results are
only shown for 4 nodes.

The results are shown in Figures 16 and 17. We have
evaluated three designs: RDMA Channel implementation
with pipelining for large messages (Pipelining), RDMA
Channel implementation with zero-copy for large messages
(RDMA Channel) and CH3 implementation with zero-copy
(CH3). Although the performance difference of these three
designs is not much, we have observed that the pipelining
design performs the worst in all cases. The RDMA Channel
based zero-copy design performs very close to the the CH3
based zero-copy design. On average, the CH3 based design
performs less than 1% better on both 4 nodes and 8 nodes.

Figure 16. NAS Class A on 4 Nodes

Figure 17. NAS Class B on 8 Nodes
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8 Related Work

As the predecessor of MPICH2 and one of the most pop-
ular MPI implementations, MPICH supports a similar im-
plementation structure as MPICH2. MPICH provides ADI2
(the second generation of Abstract Device Interface) and
Channel interface. Various implementations exist based on
these interfaces[3, 19, 22, 14]. Our MVAPICH implemen-
tation [17], which exploits RDMA write in InfiniBand, is
based on the ADI2 interface.

Since MPICH2 is relatively new, there exists very little
work describing its implementations on different architec-
tures. In [2], a CH3 level implementation which is based on
TCP/IP is described. Work in [24] presents an implementa-
tion MPICH2 over InfiniBand, also using the CH3 interface.
However, in our paper, our focus is on the RDMA Chan-
nel interface instead of the CH3 interface. MPICH2 is de-
signed to support both MPI-1 and MPI-2 standards. There
have been studies about supporting the MPI-2 standard, es-
pecially one-sided communication operations [5, 11]. Cur-
rently, we have concentrated on supporting MPI-1 functions
in MPICH2. We plan to explore the support of MPI-2 func-
tions in the future.

Due to its high bandwidth and low latency, InfiniBand
Architecture has been used as the communication sub-
system in a number of systems other than MPI, such as
distributed shared memory systems and parallel file sys-
tems [12, 15].

The RDMA Channel Interface presents a stream based
abstraction which is somewhat similar to the traditional
socket interface. There have been studies about how to
implement user-level socket interface efficiently over high
speed interconnects such as Myrinet, VIA and Gigabit
Ethernet [20, 13, 4]. Recently, Socket Direct Protocol
(SDP) [10] has been proposed which provides a socket in-
terface over InfiniBand. The idea of our zero-copy scheme
is similar to the Z-Copy scheme in SDP. However, there
are also differences between the RDMA Channel interface
and the traditional socket interface. For example, put and
get functions in RDMA Channel interface are non-blocking,
while functions in the traditional sockets are usually block-
ing. To support traditional socket interface, one has to make
sure the same semantics are maintained. We do not have to
deal with this issue for the RDMA Channel interface.

9 Conclusions and Future Work

In this paper, we present a study of using RDMA oper-
ations to implement MPICH2 over InfiniBand. Our work
takes advantage of the RDMA Channel interface provided
by MPICH2.

The RDMA Channel interface provides a very small set
of functions to encapsulate the underlying communication

layer upon which the whole MPICH2 implementation is
built. Consisting of only five functions, the RDMA Channel
Interface is easy to implement for different communication
architectures. However, the question arises whether this ab-
straction is powerful enough so that one can still achieve
good performance.

Our study has shown that the RDMA Channel interface
still provides the implementors much flexibility. With opti-
mizations such as piggybacking, pipelining and zero-copy,
MPICH2 is able to deliver good performance to the applica-
tion layer. For example, one of our designs achieves 7.6 � s
latency and 857MB/s peak bandwidth, which come quite
close to the raw performance of InfiniBand. In our study,
we characterize the impact of each optimization by using
latency and bandwidth micro-benchmarks. We have also
conducted application level evaluation using the NAS Par-
allel Benchmarks.

So far, our study has been restricted to a fairly small plat-
form which consists of 8 nodes. In the future, we plan to use
larger clusters to study various aspects of our designs re-
garding scalability. Another direction we are currently pur-
suing is to provide support for MPI-2 functionalities such as
one-sided communication using RDMA and atomic opera-
tions in InfiniBand. We are also working on how to support
efficient collective communication on top of InfiniBand.
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