
Evaluating the Impact of RDMA on Storage I/O over InfiniBand
�

Jiuxing Liu Dhabaleswar K. Panda Mohammad Banikazemi
�
1

Computer and Information Science
The Ohio State University

Columbus, OH 43210�
liuj, panda � @cis.ohio-state.edu

�
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
mb@us.ibm.com

Abstract

Recently, several protocols such as iSER (iSCSI Exten-
sion for RDMA) and SCSI RDMA Protocol (SRP) have been
proposed to improve the performance of storage I/O. These
protocols promise a better performance by taking advan-
tage of Remote Direct Memory Access (RDMA) operations.
The need for design and development of new hardware and
management infrastructure have made it difficult to eval-
uate these protocols and the impact of RDMA on storage
I/O. On the other hand, recently InfiniBand solutions with
RDMA capability have become available. Even though In-
finiBand has been designed to be a unified interconnection
network for both inter-processor and storage communica-
tion, its use has been mostly limited to inter-processor com-
munication and not storage I/O. In this paper, we propose a
new design through which the use of InfiniBand for storage
I/O and the impact of RDMA operations on storage I/O can
be evaluated.

Our design, which is called RDMA assisted iSCSI, ex-
tends the iSCSI protocol to exploit InfiniBand RDMA op-
erations for data transfers. By keeping the TCP/IP based
transport for management, control, and status messages
unchanged, RDMA assisted iSCSI maintains compatibility
with existing networking protocols and management infras-
tructure and makes its implementation in a reasonable time
possible. We present the basic idea and several design and
implementation issues and describe a prototype which has
been implemented for the Linux operating system. Our eval-
uation demonstrates that RDMA can be very effective in im-
proving the performance if certain requirements are met.
We discuss what these requirements are. Our performance
results show that with RDMA operations, we can improve
the file read bandwidth from 96 MB/s to over 417 MB/s. We
also show latency and host CPU overhead can be reduced
compared with the original iSCSI. Although our study is

�
The research was initiated during Jiuxing Liu’s visit to IBM T. J. Wat-

son Research Center as a summer intern. It is supported in part by De-
partment of Energy’s Grant #DE-FC02-01ER25506 and National Science
Foundation’s grants #CCR-0204429 and #CCR-0311542.

1Corresponding author.

conducted in the context of InfiniBand, our results can be
also applicable to other RDMA based designs such as iSER.

1 Introduction

During the last decade, the research and industry com-
munities have been proposing and implementing user-level
communication systems to address some of the problems
associated with the legacy networking protocols. The Vir-
tual Interface Architecture (VIA) [9] was proposed to stan-
dardize these efforts. More recently, InfiniBand Architec-
ture [11] has been introduced which combines storage I/O
with Inter-Processor Communication (IPC).

Due to its open standard and high performance, Infini-
Band is gaining popularity in building high performance
computing and database systems [12, 13, 18]. These sys-
tems are cluster based and consists of high-end machines in-
terconnected by InfiniBand. To maintain compatibility and
reduce management overhead, the TCP/IP protocol can be
used in these systems for networking. IPoIB protocol [3]
is the standard which defines the mapping of IP over Infini-
Band. To achieve maximum performance, InfiniBand native
protocols [1, 7] can be used for the communication needs of
computing and database applications.

The performance of storage systems can impact the over-
all performance of a system significantly. Many applica-
tions routinely process a large amount of data. Based on
the interface provided, storage systems can be classified
as Network Attached Storage (NAS) or Storage Area Net-
works (SANs). The use of high performance communica-
tion systems in NAS environments has been discussed else-
where [6, 8, 14]. In this paper, we focus on using the SAN
based approach in InfiniBand clusters.

Traditionally, Fibre Channel (FC) has been used for
building high performance SANs. However, in order to use
FC in an InfiniBand cluster, a separate FC network must be
installed. For large clusters, the cost of additional hardware
can be prohibitive. Therefore, it is desirable to build a SAN
with existing hardware in an InfiniBand cluster. To address
this issue, several solutions have been proposed.

1



SCSI RDMA Protocol (SRP) [24] is an ANSI standard
which takes advantage of InfiniBand Remote Direct Mem-
ory Access (RDMA) to carry SCSI traffic. SRP can be
implemented directly over native InfiniBand interfaces and
achieve very high performance. However, SRP has to be
implemented from scratch and it requires separate proto-
cols and infrastructures to be developed for management
services.

Recently, iSCSI [27] has been proposed which uses
TCP/IP as the underlying communication protocol for stor-
age access. Since iSCSI is implemented on top of TCP/IP,
usually no separate network is needed for storage. Us-
ing the TCP/IP protocol suite also greatly simplifies stor-
age management because the same infrastructure in TCP/IP
networks can be used for managing storage systems. Since
IPoIB already defines IP protocol over InfiniBand, it seems
more than natural to use iSCSI in an InfiniBand cluster to
provide storage access. If the storage target does not have
an InfiniBand interface, we can use gateways to connect it
to the InfiniBand network. Then clients can use iSCSI to
access storage through the gateway, as shown in Figure 1.

Storage Gateway

Legacy Storage

InfiniBand Network

Client

Client

Client

Figure 1. Using iSCSI in an InfiniBand Cluster

One problem in iSCSI is that overhead in TCP/IP may
prevent one from achieving the highest storage perfor-
mance. One major component of this overhead is due to
extra memory copies which greatly degrade storage band-
width and increase host CPU utilization. To address this
problem, special customized iSCSI HBA cards which can
directly place data into destination buffers have been de-
signed. However, this approach is not feasible with iSCSI
running over InfiniBand without designing new hardware.
As an extension to the original iSCSI protocol, iSER [20, 4]
has been recently proposed which exploits RDMA over
IP [21] to eliminate extra memory copies in the TCP/IP
protocol. Similar to HBA based methods, this approach re-
quires special “RDMA enabled NICs” (RNICs) and there-

fore is not feasible in an InfiniBand cluster either.
Although existing approaches cannot be used directly,

the basic idea of placing data directly into the destination
buffer without extra memory copies, can still be applicable
in an InfiniBand cluster. Based on this idea, we propose us-
ing native RDMA operations in InfiniBand to enhance the
original iSCSI protocol. Our design, which is called RDMA
assisted iSCSI, preserves many advantages of the original
iSCSI protocol such as backward compatibility and ease of
management. The key idea of our design is to perform SCSI
read and write data transfers by using InfiniBand RDMA
operations. With this design, we not only avoid unneces-
sary copies, but also simplify the communication protocol.
Although a similar idea was sketched elsewhere [28], in
this paper we present a thorough study of this approach.
We present our main idea and many design issues. We
also carry out detailed performance evaluation. Our per-
formance study shows that the RDMA assisted design can
greatly improve storage bandwidth and reduce client over-
head. It can achieve more than four times the bandwidth
compared with the original iSCSI protocol in our InfiniBand
cluster.

Our study in this paper not only provides a practical stor-
age solution for InfiniBand clusters, but also can give in-
sights into the potential of using RDMA in storage com-
munication protocols in general. For example, iSER proto-
col requires RNICs that supports RDMA over IP. Although
no such NICs are available yet, our design can serve as a
close approximation to the iSER based approach. There-
fore, some of our conclusions are also applicable to iSER.

In the remaining part of the paper, we first introduce the
background information and related work in Section 2. In
Section 3, we present the general idea of our RDMA as-
sisted iSCSI design. We discuss detailed implementation
issues in Section 4. Performance evaluation results are pre-
sented in Section 5. In Section 6, we present our conclu-
sions and a few directions for future work.

2 Background and Related Work

In this section, we first present an overview of InfiniBand
and iSCSI. Then we discuss the related work.

2.1 InfiniBand Architecture and iSCSI

The InfiniBand Architecture (IBA) [11] defines a
switched network fabric for interconnecting processing
nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication
and I/O. In an InfiniBand network, processing nodes and
I/O nodes are connected to the fabric by Channel Adapters
(CA). There are two kinds of channel adapters: Host Chan-
nel Adapter (HCA) and Target Channel Adapter (TCA).

2



HCAs are connected to processing nodes while TCAs con-
nect devices. InfiniBand Architecture supports both channel
and memory semantics. In channel semantics, send/receive
operations are used for communication. In memory seman-
tics, InfiniBand supports Remote Direct Memory Access
(RDMA) operations, including RDMA write and RDMA
read. RDMA operations are one-sided and transparent to
the software layer at the receiver side.

iSCSI [27, 16] is a protocol that defines a transport layer
for SCSI over TCP/IP. In this protocol, SCSI command,
data and status are encapsulated into iSCSI Protocol Data
Units (PDUs). iSCSI PDUs are then transferred between
initiators and targets using the TCP/IP protocol. Since
iSCSI is built on top of TCP/IP, it does not require a sep-
arate physical network for storage access traffic. Thus, its
deployment and management cost is considerably less than
the cost of other protocols such as Fibre Channel (FC). Dif-
ferent software/hardware combinations can be used to im-
plement iSCSI [23, 22]. The iSCSI protocol can be han-
dled completely in software. However, to improve storage
access performance and reduce host overhead, the protocol
can also be offloaded to the network interface cards [16, 17].
In the latter approach, it is possible to directly place SCSI
data into the final destination memory without using any in-
termediate buffers in TCP/IP.

2.2 Related Work

The performance limitations of TCP/IP in high speed
networks have been studied in [5]. In this subsection, we
discuss the existing work which uses RDMA or similar ap-
proaches to address performance issues due to TCP/IP over-
head in the iSCSI protocol. These include the iSCSI Exten-
sion for RDMA (iSER) protocol [4, 20], direct data place-
ment in iSCSI Host Bus Adapters (HBAs) [16, 22], and the
Voltaire iSCSI RDMA approach [28].

The iSER protocol has been recently proposed to extend
the iSCSI protocol by taking advantage of the iWARP [21]
protocol suite. By using RDMA over IP provided by
iWARP, iSER allows RDMA enabled NICs (RNICs) to di-
rectly put or get data from client buffers, without using in-
termediate memory copies in TCP/IP. This approach is sim-
ilar to ours in that our design also uses RDMA to speed up
iSCSI protocol and eliminate extra data copies. However,
instead of using RDMA over IP and RNICs, which are not
yet available, we have based our study on the RDMA op-
erations provided by the InfiniBand Architecture and have
shown how we can provide a high performance storage so-
lution for InfiniBand based clusters. In many cases, our de-
sign can serve as an approximation of iSER. Thus, our study
also provides insights into the potential of iSER.

The iSCSI protocol itself provides some general mecha-
nisms to enable direct placement of SCSI data without extra

buffering in the TCP/IP protocol [16]. Using these mecha-
nisms, a network interface card can be customized to allow
iSCSI and TCP/IP to be offloaded. These iSCSI aware NICs
are often called iSCSI HBAs. The iSCSI protocol provides
information necessary for the direct placement of data. The
HCAs then use this information to do placement and avoid
extra copies. The basic idea of direct data placement in
HBAs is similar to the aforementioned RDMA based iSER
approach. However, instead of using a general RDMA in-
terface, HBAs often rely on ad-hoc protocols. Therefore,
they tend to be incompatible with similar products. Because
they do not have a uniform interface, it is difficult to develop
software that works with different HBAs.

Recently, Voltaire Inc. has published a white paper de-
scribing how InfiniBand RDMA can be used in iSCSI for
InfiniBand clusters [28]. Among all related work, the idea
behind this work is the most similar to ours. However, only
high level concepts are described in this work. In this paper,
we present many design issues and also conduct detailed
performance evaluation.

3 Design of RDMA Assisted iSCSI over In-
finiBand

As we have mentioned, using iSCSI in an InfiniBand
cluster has the advantage of reusing existing software
implementations and management infrastructures, which
makes a fast deployment and an easy transition possible.
However, TCP/IP protocol over InfiniBand (IPoIB) [3] has
high overhead, making it difficult to achieve high perfor-
mance and low overhead for storage I/O. Therefore, we base
our design on the original iSCSI protocol and focus on in-
vestigating how InfiniBand features can be utilized to im-
prove its performance.

The key idea in our design is to offload data transfers
in iSCSI (SCSI reads and SCSI writes) from TCP/IP to
InfiniBand RDMA operations. Figure 2 shows the band-
width of raw InfiniBand RDMA and TCP over IPoIB in
our testbed. (The details of the testbed used is described
in Section 5.1.) We can see that for large messages, Infini-
Band achieves much higher performance than IPoIB. This
also suggests that TCP/IP over InfiniBand has much larger
overhead. A large portion of this overhead is due to extra
memory-to-memory copies in the TCP/IP protocol, which
increases with the message size. In the iSCSI protocol, con-
trol traffic usually consists of small messages. However,
data transfers (SCSI reads and SCSI writes) usually involve
large messages. Therefore, in order to achieve high perfor-
mance in the storage protocol, one has to reduce or elim-
inate this overhead in iSCSI data transfers. Next, we will
discuss several design issues.

3



 0

 200

 400

 600

 800

 1000

512 1K 2K 4K 8K 16K 32K 64K 128K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

Raw InfiniBand
TCP over IPoIB

Figure 2. Bandwidth Comparison of Raw In-
finiBand and TCP/IP over InfiniBand

3.1 Using RDMA for Data Transfer

In iSCSI, all communication traffic, including control in-
formation and data, goes through TCP/IP. Figure 3 shows
the communication of SCSI read commands in the iSCSI
protocol. To process a SCSI read command, iSCSI first cre-
ates a packet (or PDU) to transfer the read request from the
initiator to the target. After getting this request, the target
processes it and sends back the data to be read. Since iSCSI
has a limit for the maximum number of bytes in a single
PDU, more than one PDU may be required to send the data.
Also the initiator may have limited buffering space. There-
fore, after sending a certain amount of data, the target may
need to wait for a flow control update from the initiator be-
fore it can continue sending more data. After all data has
been sent, the target sends back the status information for
the SCSI read command. For a SCSI write command, simi-
lar steps are taken, as shown in Figure 4.

The above approaches to handle read and write com-
mands have potential performance problems when used di-
rectly in an InfiniBand cluster. First, as shown in Figure 2,
TCP/IP over InfiniBand is not able to deliver high band-
width. Therefore, performance for SCSI read and write will
also be limited. Second, we see that for a single SCSI read
or write command, multiple data packets and flow control
packets may be required. Typically, each packet will gen-
erate at least one interrupt at the receiver. Since interrupts
have high overhead, multiple incoming packets may signif-
icantly degrade performance. Also, having multiple pack-
ets means that the iSCSI protocol layer and the underlying
communication layer must interact with each other multiple
times to process these packets. These interactions can also
increase communication overhead.

To address these problems, we study the use of RDMA

to offload SCSI reads and writes to InfiniBand RDMA op-
erations. For the SCSI read, instead of using TCP/IP, we
let the target use an RDMA write operation to transfer data
directly to the destination buffer at the initiator. Similarly,
in a SCSI write operation, the target uses RDMA read to
get data from the initiator. Figures 5 and 6 show the com-
munication protocol after the offloading. RDMA operations
require the user buffers to be registered. In our design, this
registration information, together with buffer addresses, is
attached with request messages from initiators.

Initiator Target

Request

Data In

......
Data In

Data In

Status

Flow Control

......

Figure 3. Data Read in iSCSI

Initiator Target

Request

Data Out

......

Flow Control

Status

Data Out

Data Out

......

Figure 4. Data Write in iSCSI

We should note that control packets, including SCSI re-
quest and status packets, still go through TCP/IP in our de-
sign. Since control packets are usually small, communica-
tion performance is not significantly limited by the underly-
ing TCP/IP protocol. More importantly, existing iSCSI im-
plementations are usually driven by the processing of vari-
ous control packets. Therefore, preserving the communica-
tion and processing of control packets can minimize port-

4



RDMA Write

Initiator Target

Request

Status

TCP/IP

InfiniBand RDMA

Figure 5. Data Read in iSCSI with RDMA

Initiator Target

InfiniBand RDMA

TCP/IP

Request

Status

RDMA Read

Figure 6. Data Write in iSCSI with RDMA
ing efforts from existing iSCSI implementations. We plan
to study using InfiniBand also for control packets in future.

Using RDMA operations for iSCSI data transfers gives
several advantages compared with the original iSCSI. First,
since RDMA read and RDMA write are native InfiniBand
operations, they have a much higher performance compared
to TCP/IP over InfiniBand which suffers from memory
copies. Therefore, we can potentially achieve a much higher
bandwidth for data transfers in iSCSI. Second, since RDMA
operations transfer data directly to or from the buffers at the
initiator, there is usually no need for software flow control.
If the buffers are contiguous, only one RDMA operation is
needed for the entire SCSI read or SCSI write request. Al-
though the maximum transfer unit (MTU) size in InfiniBand
is at most 4 KB, message fragmentation and reassembly are
handled entirely in hardware. As a result, the software over-
head of processing multiple packets is also eliminated.

3.2 Dealing with Memory Registration Cost

By offloading SCSI data transfers to RDMA operations,
RDMA assisted iSCSI can eliminate extra copies in the
communication protocol. However, RDMA operations re-
quire that communication buffers are registered first. Buffer
registration usually serves two purposes. First, it ensures
the buffer will be pinned down in physical memory so that it
can be safely accessed by InfiniBand hardware using DMA.

Second, it provides the InfiniBand hardware with address
translation information so that buffers can be accessed by
virtual addresses. Buffer registration is usually a very ex-
pensive operation. Figure 7 shows the cost of registration
for buffers of different sizes in our InfiniBand testbed. We
can see that the cost is very high. Therefore, one central
issue in our RDMA based design is to reduce or eliminate
memory registration cost whenever possible. This problem
can be easily addressed at the target side since storage tar-
gets usually have total control over their buffers and it is
possible for them to pre-register the buffers to avoid regis-
tration cost. Next, we will discuss several techniques to deal
with this issue at the initiator side.

 50

 100

 150

 200

 250

 300

4K 8K 16K 32K 64K 128K

R
eg

is
tr

at
io

n 
T

im
e 

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

Figure 7. InfiniBand Memory Registration
Cost

3.2.1 Memory Registration Cache (MRC)

One way to avoid memory registration cost is to use a mem-
ory registration cache. The basic idea is to maintain a cache
of registered buffers and to do buffer de-registration in a
lazy manner. When a buffer is first registered, it enters the
cache. When it is de-registered, the actual de-registration is
not carried out. Instead, the buffer stays in the cache. There-
fore, when the buffer is used next time, it does not need to
be registered since it is still in the registration cache. A
buffer is de-registered when there are too many buffers in
the registration cache beyond a certain threshold.

The effectiveness of memory registration cache depends
heavily on buffer reuse patterns. In MPI applications, we
have observed high reuse rate of communication buffers
[13]. Therefore, registration cache is very effective in that
context. However, the buffer reuse pattern in storage sys-
tems may be quite different from those in scientific appli-
cations. Usually, data is cached at the client side, either by
the operating system (file system cache) or the applications

5



themselves (such as database systems). In these cases, after
an I/O buffer is used, it will hold cached data. Therefore,
it is unlikely to be re-used soon. As a result, buffer reuse
rate may be lower for storage clients. Therefore, memory
registration cache may not be an effective technique for our
design.

3.2.2 Fast Memory Registration (FMR)

Another scheme to reduce memory registration cost is to
use a technique called Fast Memory Registration (FMR). In
FMR, memory registration is divided into two steps. The
first step is responsible for allocating resources needed by
the registration, including address translation table in the
InfiniBand HCA. The actual registration is done in the sec-
ond step using resources obtained from the first step. Since
resource allocation and de-allocation can be managed sepa-
rately and in a batched fashion, usually only the second step
will occur in the critical path of data transfers. As a result,
FMR can achieve a much faster memory registration.

FMR exists in iSER and RDMA over IP [4, 21] and
some InfiniBand implementations [15]. It is a very gen-
eral technique and not dependent on application reuse pat-
terns. Therefore, it can be used to reduce memory registra-
tion overhead in our design. Work done in [29] presents a
design which combines MRC and FMR.

3.2.3 Zero-Cost Kernel Memory Registration (ZKMR)

In this subsection, we propose a new technique called Zero-
Cost Kernel Memory Registration (ZKMR) to reduce mem-
ory registration cost for our storage clients. ZKMR is based
on the observation that all buffers handed to our SCSI driver
must have been pinned down in memory, otherwise the
buffers could not be safely used for I/O operations. As
we have discussed, memory registration includes buffer pin-
ning and address translation. Since buffer pinning is already
done, we only need to inform InfiniBand hardware about the
necessary address translation information.

We achieve the goal of address translation in two steps.
First, we register all physical pages. In Linux, since all
physical pages are mapped to a contiguous kernel virtual
memory area, this step can be done with a single memory
registration operation. Also since this memory area is phys-
ically contiguous, very little resource is required for stor-
ing the translation table in the HCA. In the second step, we
translate a buffer address to its physical address. Once this
translation is done, registration information will be avail-
able because all physical pages are already registered in the
first step.

We should note the first step in ZKMR is done during
initialization. Thus, only the second step needs to be per-
formed during the memory registration operation. In Linux,

this step can usually be achieved by a single arithmetic op-
eration on the buffer address. We name it Zero-Cost Ker-
nel Memory Registration because of its negligible cost. Al-
though our implementation of ZKMR is specific to Linux,
the general idea can be applied to other operating systems.

One drawback of ZKMR is that all physical pages must
be registered. Since InfiniBand can only register virtual
addresses, this requires that all physical memory must be
mapped to the kernel virtual address space. In certain
cases1, not all physical pages can be mapped. In these
cases, ZKMR cannot be used for memory pages that are
not mapped initially.

3.3 Session Management

An iSCSI session is a logical association between the
initiator and the target. A session must be established before
iSCSI is functional. An iSCSI session usually consists of
two phases: a login phase and a full-featured phase.

After the initiator has discovered an appropriate iSCSI
target, it establishes a TCP/IP connection with the target.
Then the login phase begins. One important task in the lo-
gin phase is exchanging and negotiating session parameters.
After both sides agree on a set of parameters, the session
enters the full-featured phase, where the initiator can issue
SCSI requests to the target.

Our design does not change the way bootstrapping and
target discovery are done. Therefore, existing protocols
such as iSNS [26] can still be used. The session login is
also carried out as the original iSCSI protocol. However,
we add a new session parameter which indicates whether
RDMA offloading is supported or not. If both the initia-
tor and the target are in the same InfiniBand cluster and
support offloading, RDMA assisted iSCSI will be used to
achieve better performance. Otherwise, RDMA offloading
will not be used and the communication will be done as in
the original iSCSI protocol. Therefore, our implementation
has high compatibility with existing implementations. For
example, it is able to inter-operate with existing iSCSI im-
plementations on the same InfiniBand cluster that do not
support offloading. It can also work with targets across a
WAN that do not have InfiniBand connections.

3.4 Reliability and Security

The original iSCSI protocol puts much focus on reliabil-
ity. The TCP/IP protocol uses checksum to help detect cor-
rupted packets. In iSCSI, Cyclic Redundancy Code (CRC)
can be used to achieve higher reliability. The use of CRC is
optional and can be negotiated during login negotiation.

In our design, SCSI read and write data transfers use
InfiniBand RDMA operations whenever possible. Control

1For example, Linux on X86 with more than 1GB physical memory.

6



traffic goes through TCP/IP, which also uses InfiniBand as
the underlying data link layer. Since InfiniBand provides its
own end-to-end CRC [11], CRC is no longer necessary in
the iSCSI protocol. As a result, iSCSI CRC is always nego-
tiated to “none” when RDMA offloading over InfiniBand is
used.

Security is another important issue. During the login
phase, different protocols such as Challenge Handshake
Authentication Protocol (CHAP) and Secure Remote Pass-
word (SRP) can be used for authentication in our design,
just as in the original iSCSI protocol. To achieve data con-
fidentiality, IPSec [25] can be used in the original iSCSI
protocol. However, since SCSI read and write data transfer
bypasses TCP/IP in our RDMA assisted iSCSI, IPSec can-
not be used directly and confidentiality must be addressed
explicitly. Since currently InfiniBand clusters usually con-
sist of trusted nodes, most of the time performance is of
higher priority than data confidentiality. However, we plan
to investigate how to provide data confidentiality in future.

4 Implementation

We have implemented a prototype of our design. In this
section, we provide an overview of our prototype, followed
by discussions about issues such as memory registration,
buffer re-organization and target implementation.

4.1 Implementation Overview

The Linux operating system organizes its SCSI subsys-
tem in a layered structure [10, 19], as shown in Figure 8.
At the upper layer, Linux has different components to pro-
vide SCSI device abstractions such as block devices (SD for
hard disks and SR for CDROMs) and character devices (ST
for tape devices and SG for SCSI generic devices). Usu-
ally a SCSI hard disk is accessed through the SD interface.
The middle layer is common for all devices. It is responsi-
ble for transforming commands from upper layer into SCSI
requests. It then hands over these requests to lower layer
drivers. At the bottom, lower layer drivers interface with
Host Bus Adapters or provide an emulation layer for non-
SCSI devices.

At the client side, we have implemented our design as a
SCSI driver at the lower layer of the Linux SCSI layers. In-
stead of driving a piece of hardware, our driver uses TCP/IP
and InfiniBand RDMA to deliver SCSI commands to a tar-
get node. As a result, storage provided by the target can be
used transparently, just like any local SCSI disks. Our im-
plementation is based on the Intel iSCSI project at Source-
Forge [2]. We used the InfiniBand Access Layer (IBAL) [1]
to access functionalities provided by the underlying Infini-
Band hardware.

Upper Layer

Middle Layer

SD SR ST SG

Generating SCSI requests from commands

HBA Driver iSCSI Driver Other Drivers Lower Layer

Figure 8. Linux SCSI Subsystem

4.2 Implementation of Memory Registration
Handling

In the previous section we have proposed three tech-
niques to reduce or avoid buffer registration cost for stor-
age clients: MRC, FMR and ZKMR. As we have discussed,
MRC may not be an effective method for our design. Cur-
rently, FMR is not yet support in IBAL. Therefore, we have
used ZKMR in our implementation.

4.3 Buffer Re-Organization

In order to improve performance, another optimization in
our design is to reduce the number of RDMA operations for
each SCSI read or write request. For each request, the target
side information includes a Logical Unit Number (LUN), a
starting address and a size. The client information usually
includes a list of buffers. In InfiniBand, each RDMA oper-
ation can only access one contiguous buffer at the remote
side while the local buffers can be made of a list of buffers
(gather/scatter list). To reduce the number of RDMA oper-
ations needed, we re-organize the client buffer list to find as
many contiguous chunks as possible. For each chunk, we
use only one RDMA operation for data transfer. One exam-
ple of this process is illustrated in Figure 9. In this example,
initially the client side has four buffers. However, we can
combine them into a single buffer through re-organization.

Buffer reorganization is very effective when our RDMA
assisted iSCSI is used for Linux file system I/O. Because of
the way Linux manages its page cache, most of the time the
re-organizing process is able to combine the client buffer
list into a single buffer. Thus, the data transfer process can
be achieved using a single RDMA operation with very low
overhead.

4.4 Target Implementation

In our prototype, we implemented a RAM disk based
storage target running in the user space. Our target imple-

7



Target Buffer

S/G List

S/G List

Initiator Buffer

Initiator Buffer

Target Buffer

Buffer Re−Oganization

RDMA

Figure 9. Client Based Buffer Reorganization

mentation is single threaded and serves one SCSI request at
a time. Since most of the time client overhead is the perfor-
mance bottleneck, currently this design is not a significant
restriction. We chose to use a RAM disk instead of an ac-
tual storage system to simplify the implementation of the
prototype. It should be noted that in a single client envi-
ronment where an actual disk is being accessed, disk access
time can become the performance bottleneck. This in turn
can mask any benefits one can expect to achieve from using
RDMA operations. However, such a system does not rep-
resent a realistic environment. In high end systems where
we suspect InfiniBand is going to be primarily used, stor-
age systems usually support multiple disks, several RAID
levels, large caches, and sophisticated cache replacement
techniques. Furthermore, these storage systems are used to
provide services to multiple clients. The implementation of
such a target node is beyond the scope of this paper. In fu-
ture, we plan to extend our work by implementing such a
multi-disk target node with support for multiple clients and
study the performance of our RDMA assisted iSCSI.

5 Performance Evaluation

In this section, we compare the performance of our
RDMA assisted iSCSI with the original iSCSI implemen-
tation [2], which runs on top of IPoIB [3]. We also evaluate
the impact of various techniques we used, such as Zero-
Cost Kernel Memory Registration (ZKMR) and buffer re-
organization.

5.1 Experimental Testbed

Our experimental testbed consists of a cluster system
with a number of SuperMicro SUPER P4DL6 nodes. Each
node has dual Intel Xeon 2.40 GHz processors with 512K
L2 cache and a 400 MHz front side bus. The machines are
interconnected by Mellanox InfiniHost MT23108 DualPort
4X HCA adapters through an InfiniScale MT43132 Eight
4x Port InfiniBand Switch. The HCA adapters work under
the PCI-X 64-bit 133MHz interfaces. We used the Linux
Red Hat 7.2 operating system with 2.4.18 kernel. Source-
Forge IB Access Layer version 1.118 was used for Infini-
Band and IPoIB.

5.2 Benefits of RDMA Assisted Design

In order to study the benefits of our RDMA assisted de-
sign, we compare it with the original iSCSI implementation
using micro-benchmarks for measuring bandwidth, latency
and client host overhead. To avoid adding more complexity,
we focus on the SCSI read performance.

5.2.1 Bandwidth

In the bandwidth test, we use buffered read calls to get data
from the iSCSI device file. Thus, the data will first go into
the file system cache, and then it will be copied to the user
buffer. It should be noted that buffered read bandwidth is
affected by file system read-ahead policies. We set the max-
imum read-ahead window size to 255 in the tests. We study
the effect of read-ahead window size in the next subsection.

Figure 10 shows the results for different block sizes.
From the figure we see that without RDMA, iSCSI can
only achieve bandwidth up to 96 MB/s. Its performance
is limited by both the underlying IPoIB implementation and
the extra memory copies from file system cache to the user
buffer. However, with the help of RDMA, we can achieve
bandwidths up to 417 MB/s for 16 KB blocks. This per-
formance is limited mostly by the memory copies from file
system cache to the user buffer and other client side over-
heads such as protocol processing and interrupt handling.
From the figure we can also see that when the block size
becomes larger than 16 KB (8KB for the original iSCSI)
bandwidth starts to decrease. This is due to processor cache
effects.

5.2.2 Impact of Read-Ahead Window Size
In the Linux file system, file read normally goes through
the file system cache. The operating system also has a
mechanism to detect sequential file access patterns and uses
file read-ahead (also called prefetching) to improve perfor-
mance. The read-ahead window size can have a significant
impact on performance.

8



Figure 10. File Read Bandwidth

In Figure 11, we show the bandwidth results for different
maximum read-ahead window sizes. The block size used in
the tests is 16KB. We can see that as the read-ahead window
size increases, bandwidth also improves. This is because
our tests read data sequentially and a bigger window size
allows for more prefetching and more overlapping of differ-
ent requests. For the original iSCSI, a window size of 15
is enough to achieve peak performance. However, RDMA
assisted iSCSI needs a much larger window size (255) in
order to achieve peak performance.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 3  7  15  31  63  127  255  511 1023

B
an

dw
id

th
 (

M
B

/s
)

Read-Ahead Window Size

Original iSCSI
RDMA Assisted iSCSI

Figure 11. Impact of Read-Ahead Window
Size

5.2.3 Latency

In the latency test, we need to eliminate the impact of
file system read-ahead. Therefore, we used Linux raw
I/O, which bypasses the file system cache and does not
trigger file system read-ahead. Figure 12 shows the per-
formance results. We can see that for block sizes larger
than 1KB, RDMA assisted design outperforms the original
iSCSI. However, factors of improvement are smaller com-
pared with those in the bandwidth tests of the previous sub-

section. The reason is that requests for each block are se-
rialized in the latency test. Since the RDMA assisted de-
sign uses TCP/IP for control messages, its performance is
limited by the latency of IPoIB. In the bandwidth tests, dif-
ferent requests can be overlapped. Therefore, the RDMA
assisted design can achieve a much better performance.

For small block sizes (1KB or less), it can be observed
that the original iSCSI performs slightly better than the
RDMA assisted design. This is due to an optimization in
iSCSI called phase collapse. In phase collapse, the re-
quested data and the status can be sent from the target to the
initiator using a single message, which can achieve better
performance than using two separate messages. However,
in the RDMA assisted design, two separate messages have
to be sent: one through InfiniBand RDMA and one through
TCP/IP. Therefore, we obtain a slightly lower performance.

Figure 12. File Read Latency (Raw I/O)

5.2.4 Host Overhead
In the bandwidth tests which use buffered file system I/O,
we have observed that client CPU utilization is close to
100% for both the orignal iSCSI and the RDMA assisted
iSCSI. The high CPU utilization is mainly due to extra
copies from the file system cache to user buffers. This also
implies that client side overhead is the performance bottle-
neck in the bandwidth tests. Since RDMA assisted iSCSI
can achieve more than 4 times the bandwidth, it also means
that with RDMA, CPU time can be reduced to less than
one-fourth of the original time when transferring the same
amount of data. Therefore, InfiniBand RDMA can greatly
reduce host overhead.

We also show CPU utilization in the raw I/O latency
tests. In Figure 13, we can see that RDMA assisted design
consumes less CPU time compared with the original iSCSI
for large block sizes. In fact, for large block sizes, CPU
utilization decreases when the block size increases. How-
ever, CPU utilization for the original iSCSI increases with
the block size. This is mostly due to the cost of copying.

9



Figure 13. Host CPU Utilization in Raw I/O La-
tency Tests

5.3 Impact of Memory Registration and Buffer
Re-Organization

In this section, we consider the impact of avoiding mem-
ory registration and doing buffer re-organization. As men-
tioned earlier, we use ZKMR to reduce memory registration
overhead. We also conducted bandwidth tests without using
this technique. That is, we explicitly register and de-register
buffers during the experiments. The results are shown in
Figure 14. We can see that performance drops significantly
in this case. Therefore, avoiding high memory registration
cost is very important in the RDMA assisted design. This
also justifies the efforts of incorporating fast memory reg-
istration techniques in RDMA over IP [4, 21] and some In-
finiBand implementations [15].

In Figure 15, we compare bandwidth results with and
without using buffer re-organization. We can observe that
using buffer re-organization only slightly improves the per-
formance. This is because in the bandwidth tests, client
side CPU is the bottleneck. Although buffer re-organization
can reduce target side overhead, it does not bring much im-
provements to the overall performance.

Figure 14. Impact of Memory Registration

Figure 15. Impact of Buffer Re-Organization

6 Conclusions and Future Work

In this paper, we presented our new design called RDMA
assisted iSCSI and combines iSCSI with RDMA over Infini-
Band which provides a high performance storage solution
for InfiniBand clusters. The original iSCSI protocol is based
on TCP/IP, which means that it can take advantage of exist-
ing networking infrastructure and reduce maintenance and
management overhead. However, it also suffers from per-
formance inefficiencies of the TCP/IP protocol. We showed
how our design performs iSCSI data transfers by using In-
finiBand RDMA operations and achieves a higher perfor-
mance and lower host overhead.

We discussed the basic idea and detailed design and im-
plementation issues related to RDMA assisted iSCSI. A
prototype of RDMA assisted iSCSI has been implemented
for the Linux operating system. Our performance evalua-
tion shows that with RDMA assisted iSCSI, we can improve
file read bandwidth from around 96 MB/s to over 417 MB/s.
Our results also show that RDMA assisted iSCSI can reduce
storage latency and host overhead. We have also found that
handling buffer registration cost is very important in RDMA
based designs. Unless this issue is addressed properly, we
cannot obtain any benefit from RDMA. Our study can also
shed light on what can be expected from iSER, the protocol
newly proposed to take advantage of RDMA operations.

Currently, we have implemented a RAM disk based tar-
get for our RDMA assisted iSCSI. In future, we plan to en-
hance this design by using a disk based storage target which
uses main memory as cache. We will also extend our im-
plementation so that the storage target can handle multiple
SCSI requests simultaneously. For performance evaluation,
We are planning to carry out experiments using real world
applications. Another direction we are currently working
on is to study the benefit of offloading iSCSI control pack-
ets from TCP/IP to InfiniBand.

10



Acknowledgments

We would like to thank Bulent Abali of IBM T. J. Watson
Research Center for valuable discussions and his support.

References

[1] IBAL: InfiniBand Linux SourceForge Project. http://-
infiniband.sourceforge.net/IAL/Access/IBAL.

[2] Intel iSCSI SourceForge Project. http://sourceforge.-
net/projects/intel-iscsi.

[3] IP over InfiniBand Working Group. http://www.ietf.org/-
html.charters/ipoib-charter.html.

[4] M. Chadalapaka, H. Shah, U. Elzur, P. Thaler, and M. Ko. A
Study of iSCSI Extensions for RDMA (iSER). In ACM SIG-
COMM workshop on Network-I/O convergence: experience,
lessons, implications, August 2003.

[5] J. Chase, A. Gallatin, and K. Yocum. End System Optimiza-
tions for High-Speed TCP. IEEE Communications Maga-
zine, 39(4):68–74, 2001.

[6] DAFS Collaborative. Direct Access File System Protocol,
V1.0, August 2001.

[7] DAT Collaborative. uDAPL and kDAPL API Specification
V1.0, June 2002.

[8] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck,
T. Talpey, and M. Wittle. The Direct Access File System. In
2nd USENIX Conference on File and Storage Technologies
(FAST ’03), March 2003.

[9] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, F. Berry, A. Merritt, E. Gronke, and C. Dodd. The
Virtual Interface Architecture. IEEE Micro, pages 66–76,
March/April 1998.

[10] D. Gilbert. The Linux SCSI Subsystem in 2.4. http://-
www.torque.net/scsi/linux scsi 24/.

[11] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.0, October 24 2000.

[12] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. P.
Kinis, P. Wyckoff, and D. K. Pand. Micro-Benchmark Level
Performance Comparison of High-Speed Cluster Intercon-
nects. In Hot Interconnect 11, August 2003.

[13] J. Liu, B. Chandrasekaran, J. W. W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, and D. K. Panda. Perfor-
mance Comparison of MPI Implementations over Infini-
Band Myrinet and Quadrics. In Supercomputing 2003: The
International Conference for High Performance Computing
and Communications, Nov. 2003.

[14] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase,
A. Gallatin, R. Kisley, R. Wickremesinghe, and E. Gabber.
Structure and Performance of the Direct Access File System.
In Proceedings of USENIX 2002 Annual Technical Confer-
ence, Monterey, CA, pages 1–14, June 2002.

[15] Mellanox Technologies. Mellanox InfiniBand InfiniHost
Adapters, July 2002.

[16] K. Z. Meth and J. Satran. Design of the iSCSI Protocol. In
20th IEEE Symposium on Mass Storage Systems, 2003.

[17] J. C. Mogul. TCP Offload Is a Dumb Idea whose Time Has
Come. In 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), May 2003.

[18] Oracle. Achieving Main-Frame Class Performance
on Intel Servers Using InfiniBand Building Blocks.
http://otn.oracle.com/deploy/availability/pdf/oracle IB.pdf.

[19] A. Palekar, N. Ganapathy, A. Chadda, and R. D. Russell. De-
sign and implementation of a Linux SCSI target for storage
area networks. In 5th Annual Linux Showcase and Confer-
ence, November 2001.

[20] RDMA Consortium. iSCSI Extensions for RDMA (iSER)
and Datamover Architecture for iSCSI (DA) Specifications,
2003.

[21] RDMA Consortium. iWARP Protocol Suite Specifications,
2003.

[22] P. Sarkar, S. Uttamchandani, and K. Voruganti. Storage Over
IP: When Does Hardware Support Help? In 2nd USENIX
Conference on File and Storage Technologies (FAST ’03),
March 2003.

[23] P. Sarkar and K. Voruganti. IP Storage: The Challenges
Ahead. In 19th IEEE Symposium on Mass Storage Systems,
2002.

[24] Technical Committee T10. SCSI RDMA Protocol, 2002.
[25] The Internet Engineering Task Force. IP Security Protocol.

http://www.ietf.org/html.charters/ipsec-charter.html.
[26] The Internet Engineering Task Force. IP Storage Protocols.

http://www.ietf.org/html.charters/ips-charter.html, 2002.
[27] The Internet Engineering Task Force. iSCSI Specification,

2002.
[28] Voltaire Inc. High Performance SAN Connectivity

for InfiniBand Fabrics. http://www.voltaire.com/pdf/-
storage wp final.pdf.

[29] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. In Proceedings
of the 2003 International Conference on Parallel Processing
(ICPP 03), Oct. 2003.

11


