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Abstract Modern high-end computing systems utilize spe-

cialized offload engines to enhance various aspects of their

processing. For example, high-speed networks such as In-

finiBand, Quadrics and Myrinet utilize specialized hardware

to offload network processing to help improve performance.

However, such hardware units are expensive, and their man-

ufacturing complexity increases exponentially depending on

the number and complexity of tasks they offload. On the other

hand, the proliferation of multi- and many-core processors

into the general desktop and laptop markets is increasingly

driving their cost down due to the economies of scale. To take

advantage of the obvious benefits of multi/many-core archi-

tectures, we propose, design and evaluate ProOnE, a gen-

eral purpose Protocol Onload Engine. ProOnE utilizes a small

subset of the available cores on a multi-core CPU to “on-

load” various tasks in a dedicated manner instead of “offload-

ing” them to specialized hardware. The general purpose pro-

cessing capabilities of multi-core architectures allow ProOnE

to be designed in a flexible, extensible and scalable manner,

while benefiting from the reducing costs of general-purpose

CPUs. In this paper, we onload onto ProOnE, several tasks

relevant to communication sub-systems such as MPI that are

too complex for current hardware offload engines to support,
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and demonstrate significant benefits in terms of overlap of

computation and communication and improved application

performance.
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1 Introduction

High-end computing systems have benefited from the use of

specialized accelerators [27] to improve their performance

and scalability for many years. Network sub-systems were

among the early adopters of such techniques, providing hard-

ware-based solutions for intelligent communication offload-

ing. GigaNet [7] was one of the earliest network offload so-

lutions for the Virtual Interface Architecture (VIA) [1]. The

early generations of Myrinet [2] used similar network pro-

cessing solutions with specialized hardware. This trend was

continued to modern high-speed networks, including Infini-

Band [8], Quadrics [3] and TCP or iWARP offload engines [6].

While such hardware-based offload engines have contin-

ued to grow in performance and complexity, the requirement

for even more advanced processing has grown as well. For

example, with systems scaling to hundreds of thousands of

cores available today, more and more complex tasks such as

advanced network processing and data center services are re-

quired to be offloaded. However, the manufacturing complex-

ity of such hardware units increases exponentially with the

number and complexity of tasks they offload. As an instance,

various communication processing tasks, such as zero-copy

Rendezvous communication which is common for popular pro-

gramming models like Message Passing Interface (MPI) [13],

are too complicated for current hardware to handle, especially

given the various corner cases supported by the MPI standard.

Similarly, aspects of fault detection and process management

also increase hardware complexity tremendously, thus mak-

ing pure hardware offload solutions expensive and inflexible.
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On the other hand, multi- and many-core processors are

being increasingly deployed in clusters and even widely used

in desktops and laptops. Quad-core and Hex-core processors

are quickly gaining ground in many applications. In fact, more

than 80% of the systems in the November 2008 ranking of

the Top500 supercomputers [12] belonged to the multi/many-

core processor family. Future generation systems are getting

further augmented with not only multiple cores per processor,

but also with multiple hardware threads (SMTs) per core, as

illustrated by the Intel eXtreme [4] and SUN Niagara [5] fam-

ilies of processors that promise to support up to 2048 threads

within a single physical node in the near future.

Consequently, to take advantage of the obvious benefits

of multi-core architectures, we propose, design and evaluate a

general purpose Protocol Onload Engine, named as ProOnE.

ProOnE dedicates a small subset of the available cores on a

multi-core equipped node to “onloading” complex tasks while

still utilizing the features provided by hardware “offload” en-

gines. In other words, as the example illustrated in Figure 1,

ProOnE utilizes the existing offloaded features, but extends

them by onloading more complex functionality that cannot

be easily offloaded. The general purpose processing capabili-

ties of multi-core architectures allow ProOnE to be designed

in a flexible, extensible and scalable manner, while benefit-

ing from the reducing costs. We present details of the design

for the intra-node and inter-node communication interfaces,

synchronization handshake between ProOnE and application

processes, and various other aspects of the ProOnE design.

Further more, as a case study, we use ProOnE to onload

complex communication tasks relevant to MPI. We specially

focus on onloading the Rendezvous protocol for large mes-

sage communication and present the design issues and our

solutions. Our experimental results show that ProOnE can im-

prove MPI communication significantly, allowing almost full

overlap between communication and computation and close

to 100% application availability for large message communi-

cation. We also demonstrate the resilience of ProOnE to pro-

cess skew which is a major concern in large-scale systems,

and illustrate significant application-level benefits as well.

The rest of this paper is organized as follows. In Section 2,

we discuss the related work. Then we describe the design

including the general ProOnE infrastructure and MPI Ren-

dezvous protocol onload design in Section 3. We analyze the

experimental results in Section 4, and summarize conclusions

and possible future work in Section 5.
2 Related Work

The idea of protocol onloading is not new. There has been a

lot of work that focusses on onloading different computation

and communication related tasks such as TCP/IP processing

in data centers [23,22], MPI collective operations [25], and

distributed data management [30]. There has also been work

that compares onloading and offloading based solutions for

network communication [21]. However, all of this existing lit-

erature takes ad hoc approaches for onloading specific tasks

relevant to their environment. In this paper, on the other hand,

we propose a general purpose protocol onload engine that can

onload any task using a few of the many available cores. Dif-

ferent tasks can be added to ProOnE using task-specific plug-

ins, making it a central framework that allows all of the exist-

ing research and more to be plugged in.

There has also been a lot of research on improving com-

munication and computation overlap and asynchronous prog-

ress for the MPI Rendezvous protocol. R. Brightwell et al. an-

alyzed the impact of communication and computation overlap

[15] providing theoretical insights into this problem. Sancho

et al further quantified this for large-scale applications in [24].

Amerson et al. improved asynchronous progress with an inter-

rupt based approach [14] and an event-driven MPI library was

also designed to improve the communication responsiveness

in [20]. In [28] and [19], the authors improved communica-

tion progress for zero-copy communication using interrupts

and helper threads. Our work complements these efforts by

utilizing a few cores on the system to provide the required

computation and communication overlap, which in turn can

be used by the existing MPI libraries.

Using helper threads to allow for communication progress

has also been studied in [29] and the Myri-10G MX protocol

[2]. However, these approaches primarily focus on the com-

munication tasks and are not generic for all tasks. They need

to be extended by taking into account more aspects in HPC,

which is the objective ProOnE targets.

Thus, in summary, our work in this paper is orthogonal

and complementary to the existing work in that we focus on

designing a general purpose onload engine for onloading any

protocol (task), e.g., communication protocol, middleware-

specific tasks and application-specific tasks.

3 Designing a Protocol Onload Engine

In this section, we describe the design of ProOnE. We first

present the general infrastructure, and then take theRendezvous

protocol in MPI as an example to illustrate how to onload a

particular protocol.

3.1 The ProOnE Infrastructure

In parallel applications, all processes are inter-related, with

each following the pattern of interleaved computation and
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communication. If a part of this work is to be onloaded by

ProOnE, the application processes and the ProOnE processes

need to be considered as a whole, instead of separately. Figure

2 shows the overall architecture for a system with four cores

on each node where some of the cores are used by ProOnE in

a dedicated manner (typically, only a small subset of cores is

used by ProOnE). Each ProOnE process runs as a daemon that

executes a part of the work for one or more application pro-

cesses. To design such an infrastructure, we need to consider

two aspects, namely, (i) the local intra-node communication

and synchronization, and (ii) the inter-node communication.

Fig. 2 Architecture of ProOnE-equipped system

3.1.1 Intra-node Communication Interface

We used a shared-memory based approach for intra-node com-

munication and synchronization because of its simplicity. Spe-

cifically, an application or ProOnE process puts requests, sig-

nals or completions into shared memory regions from which

other application or ProOnE processes can read. To reduce

overhead, these requests or completions are managed as queues.

Hash functions are used to locate the free shared memory

blocks. As shown in Figure 2, each ProOnE process allocates

one shared memory region which is used for the communica-

tion with all other processes on the same node.

3.1.2 Inter-node Communication Interface

The inter-node communication in Figure 2 goes through the

traditional network messaging. Since each ProOnE process

may need to communicate with any remote ProOnE or appli-

cation process, there could be a large number of network con-

nections needed. As a performance and resource usage trade-

off, these connections can be established either upon launch-

ing of the application processes or on demand.

3.1.3 ProOnE Runtime Infrastructure

Considering the above requirements, we design the runtime

infrastructure for ProOnE as follows.

ProOnE processes: Each ProOnE process performs three

tasks during initialization: (i) creates its own communication

shared memory, (ii) attaches to the shared memory created

by other ProOnE processes, and (iii) listens to and accepts

connection requests from remote processes.

When a ProOnE process is initialized (e.g., ProOnE pro-

cess 0 on node 0 in Figure 2), it first creates or attaches to (if

one has been created) a global shared memory according to

a predefined shmem key. This global shared memory is used

to exchange process-specific information; we do not include

this in Figure 2 since it is not used after initialization. Then the

ProOnE process creates its own communication shared mem-

ory (e.g., ShMem 0) and writes the corresponding address ID

into the global shared memory where other processes can read

from. After that, it reads the address IDs of other ProOnE pro-

cesses’ communication shared memory (e.g., ShM- em 1) to

which it can attach. Finally, ProOnE processes listen on pre-

defined ports, waiting for connect requests from remote pro-

cesses. For network connections that are setup during initial-

ization, we use a client-server model to build all-to-all con-

nections among ProOnE processes.

It is to be noted that each ProOnE process creates only

one shared memory region. All the local ProOnE or applica-

tion processes will attach to this shared memory, but will use

different offsets to read or write different segments. An al-

ternative is to create one shared memory for each of the other

processes. Both approaches are quite light-weight, so we used

the first approach in our design due to its simplicity.

Application processes:Upon launch, each application pro-

cess performs a ProOnE-specific initialization (by linking to a

ProOnE client-side library). During initialization, it attaches

to the global shared memory, reads all the address IDs of the

communication shared memory regions and attaches to them.

For example, in Figure 2, application process 0 on node 0

reads address IDs of ShMem 0 and ShMem 1 and attaches to

them, respectively. Each application process then sends con-

nect requests to remote ProOnE processes. The initialization

completes after all the connect requests are accepted. Here

we choose to establish all the network connections before the

main application routine starts, but this can be easily extended

to be done on demand as well.

3.2 Onloading MPI Rendezvous

ProOnE is a general purpose onload engine that can be uti-

lized to onload various tasks. In this section, we target MPI as

a case study and onload its Rendezvous protocol. First we de-

scribe the asynchronous progress problem of the Rendezvous

protocol in most MPI implementations [10]. We then present

the details of our design, discuss the critical design issues and

describe our solutions.

3.2.1 Communication Progress in MPI Rendezvous

Many MPI designs [17,10] utilize a Rendezvous protocol for

communicating large messages. Rendezvous is typically a three-

step protocol. First, the sender sends a RTS (request to send)

message to the receiver. On receiving this, the receiver en-

sures it has enough buffer to accommodate the incoming data

and sends a CTS (clear to send) message to the sender. On

receiving the CTS, the sender can send the actual data.

An important but elusive issue in the Rendezvous proto-

col design is its inability to achieve efficient computation and
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communication overlap [15]. Specifically, the performance of

Rendezvous heavily depends on the skew between the sender

and the receiver. For example, as shown in Figure 3, when

the receiver calls an MPI Irecv, if it cannot find any match-

ing RTS, the receive buffer is posted and the application can

continue with its computation. Only when the computation

completes and the receiver makes another MPI call, it finds

the RTS and then sends back CTS. Similarly, when the CTS

arrives at the sender, if the sender is still busy with its compu-

tation, it has to wait for the computation to complete before

sending the actual data. Thus, the delay in detecting control

messages eventually results in large out-of-sync communica-

tion between the sender and the receiver, which leads to over-

all loss of performance.

Recent work [28,19] has addressed this issue mainly by

using hardware supported one-sided communication such as

RDMA operations. However, the benefits of RDMA-based

overlap are limited to specific cases. For example, at least

one of the sender or the receiver has to be ready for com-

munication. If both are not (e.g., when the sender calls a non-

blocking send, the receiver calls a non-blocking receive and

both perform computation), then the communication can be

delayed. Similarly, while there are existing network stacks

with message matching capabilities (MX Myri-10G [2] and

Quadrics QsNet [3]), they perform such matching only for

simple cases. For more complicated cases, these stacks can-

not perform any asynchronous progress.

On the other hand, the issues are much simpler with ProOnE,

since such processing is performed on a general purpose CPU

core. ProOnE processes are fully used for handlingRendezvous

processing in a dedicated manner, so they can detect control

messages in a timely manner and consequently better asyn-

chronous progress can be obtained.

3.2.2 Design Overview

As mentioned earlier, the basic idea of onloading Rendezvous

protocol is to hand over theRendezvous negotiation to ProOnE.

All the control messages are sent to ProOnE processes, so we

not only need to design the logic in ProOnE, but also have to

adjust the communication flow inside MPI. Suppose MPI pro-

cess 0 intends to send a large message to MPI process 1, and

proone 0 and proone 1 are their associated onload engines,

respectively. Figures 4(a) and 4(b) illustrate the interactions

in two situations, involving the following data structures:

SEND/RECV requests: These contain information about

MPI send/recv calls, such as tag, source/destination rank etc.

They are generated by the MPI processes and passed to ProOnE

through shared memory.

RTS/CTS messages: These are the MPI control messages

that ProOnE processes receive.

CMPLT notifications: These are created by ProOnE pro-

cesses upon finishing sending or receiving data, in order to

inform MPI processes about the completion.

Shared memory segments: The above three structures may

be stored in a shared memory region between a pair of ProOnE

process and MPI process, so this region is divided into three

segments for each purpose.

ProOnERequest queue: ProOnE processes maintain SEND

and RECV requests as queues.

Using these structures, ProOnE processes execute three

types of work: send or receive messages, write messages or

read requests through shared memory, and perform auxiliary

functions such as message matching.

3.2.3 Communication/Handshake Protocol

We present the flow of handshake among the MPI sender, MPI

receiver and their associated ProOnE processes in Figure 4.

When the sender has a large message to send, it posts a

SEND request into shared memory (step 1) where its asso-

ciated onload engine proone 0 will read from. It then sends

an RTS to the receiver’s associated ProOnE proone 1 (step 2).

proone 1 detects this message and tries to match it with an ex-

isting RECV request by searching the request queue and the

requests newly posted in shared memory which are not en-

queued yet (step 3). There are two resulting cases according

to the arrival order of the sender and receiver, i.e., the receiver

arrives earlier or late. In the first case (Figure 4(a)), proone



5

1 finds a matched RECV request, so it sends CTS back to

proone 0 (step 4). In the second case (Figure 4(b)), proone 1

does not find a match, so it posts the received RTS into shared

memory (step 4). Later, when the receiver performs an MPI

call, it will get matched with this RTS (step 5) and send a CTS

to proone 0 (step 6). Here, either the MPI receiver or its on-

load engine proone 1 sends a CTS to proone 0 so that it will be

detected in time. When proone 0 receives a CTS, it matches

it with the SEND request. With these steps, the Rendezvous

negotiation has completed. The following data transmission

can be handled by either MPI or ProOnE. We choose the lat-

ter one due to its potential for slightly larger overlap (step 5

in Figure 4(a) and step 7 in Figure 4(b)). At the end, ProOnE

processes post CMPLT in shared memory to notify MPI pro-

cesses about the send/recv completion.

3.2.4 Design Issues and Solutions

In this section, we discuss several design issues and our solu-

tions in incorporating them into MPICH2.

Message Matching: In MPICH2, a RTS is matched with

a RECV request based on a tuple (src rank, context id, tag).

However, in the context of ProOnE, there will be false match-

ing if we still use this criteria.

According to the MPI specification [13], a receiver is al-

lowed to post a buffer larger than the actual data size. Thus,

the receive buffer size alone is not sufficient to decide whether

MPI would use a short message eager protocol or the large

message Rendezvous protocol. To handle this, in our design,

any MPI Irecv with a large buffer posts a RECV request to

ProOnE if no existing match is found (Figure 4(b)). At the

same time, the RECV request is also enqueued into the MPIC-

H2’s posted request queue 1 in case it turns out that the mes-

sage is small and the sender uses the eager protocol. Now

both MPICH2 and ProOnE have the same RECV request,

which introduces false matching. For example, as shown in

Figure 5(a), MPI processes 0 and 1 issue two send and re-

ceive requests respectively, all of which have the same match-

ing tuple of (0,0,0). The correct semantic should be that first

message is matched with the first RECV at ProOnE side and

the second message with second RECV at MPI side. Unfor-

tunately, when MPI process 1 receives the second message

with a matching tuple of (0,0,0), it gets matched with the

first RECV. Similarly, in Figure 5 (b), the second message

(RTS) will be falsely matched with the first RECV request in

ProOnE process 1.

One possible solution to this problem is to force the MPI

and ProOnE processes to synchronize before matching, but

this introduces undesirable high overhead. Our approach is to

add one more field, i.e., a sequence number, on each channel,

to the matching tuple. A channel is decided by the original

matching tuple. Take Figure 5(a) as an example. The second

1 Posted request queue contains the arrived receive requests that have

not got matched yet.

MPI rank 0

recv 1(src=0, ctx_id=0, tag=0, len=1M)

recv 2(src=0, ctx_id=0, tag=0, len=1M)

MPI rank 1

send 1(src=0, ctx_id=0, tag=0, len=1)

send 2(src=0, ctx_id=0, tag=0, len=1M)

send 1(src=0, ctx_id=0, tag=0, len=1M)

send 2(src=0, ctx_id=0, tag=0, len=1)

MPI rank 0

recv 1(src=0, ctx_id=0, tag=0, len=1M)

recv 2(src=0, ctx_id=0, tag=0, len=1)

MPI rank 1

(a) send 2 is falsely matched with recv 1 at MPI process with matching tuple of (0,0,0)

(b) send 2 is falsely matched with recv 1 at ProOnE process with matching tuple of (0,0,0)

Fig. 5 False message matching

send has the matching tuple (0,0,0,1) while the first RECV

has the matching tuple (0,0,0,0), so they will not be matched.

Another problem with message matching is that one RTS

may be matched with multiple RECV requests. Within a node,

one ProOnE process could be associated with multiple MPI

processes that may post RECV requests targeting to receive

from the same source. These requests can have the same match-

ing tuple. The ProOnE process cannot differentiate among

them when performing match. To address this problem, we

include the destination rank to the matching tuple as well.

Therefore, the final matching tuple contains (src rank, dst rank,

context id, tag, sequence num). The sequence number is in-

creased per group of the first four elements. It is to be noted

that more complex mechanisms are required for wild-card

matching and will be investigated in future work.

Shared Memory Contention: Shared memory is a crit-

ical section resource, and we use semaphores to avoid con-

tention on it for a pair of MPI process and ProOnE process.

As mentioned in Section 3.2.2, a shared memory region

is divided into three segments. A natural question is whether

to use separate locks. In our approach, we do not use sepa-

rate locks. The segment containing SEND or RECV requests

and the segment containing RTS messages must be bound to-

gether using one lock. As an example, suppose an MPI Irecv

arrives and the MPI process searches the RTS message seg-

ment for any matched RTS, while at the same time, the asso-

ciated ProOnE process receives the corresponding RTS and

checks the SEND and RECV request segment for a matching

RECV request. It is possible that both of them cannot find a

match if the segments are locked independently. Thus, they

would post a RECV request and an RTS, respectively, assum-

ing that the later on the other side will handle the matching.

This pair of RECV request and RTS, then, would be left un-

matched forever. A simple solution is to lock the two seg-

ments together so that a pair of MPI and ProOnE processes

cannot try matching simultaneously.

MemoryMapping: As mentioned in Section 3.2.3, in the

current implementation data messages are sent and received

by ProOnE. At the sender side, ProOnE reads data from the

MPI process’ sending buffer and sends it out; and at receiver

side, ProOnE writes the received data into MPI process’ re-

ceiving buffer. Generally there are two approaches allowing a

ProOnE process to access the buffer in MPI processes. One is



6

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  200  300  400  500  600  700  800

O
v
e

rl
a

p
 r

a
ti
o

Computation time (usec)

Original
ProOnE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

O
v
e

rl
a

p
 r

a
ti
o

Computation time (msec)

Original
ProOnE

Fig. 6 Sender overlap performance: (a) 256 KB message (b) 1 MB message
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Fig. 7 Receiver overlap performance: (a) 256 KB message (b) 1 MB message

the user-level shared memory-based approach [16]. The other

is the kernel direct-copy method [18]. We use the second ap-

proach due to its lower overhead. MPI processes perform the

kernel-level mapping and wrap the mapping information in

the SEND/RECV requests. While the kernel context-switch

introduces some overhead, it is negligible for large messages.

4 Experimental Results

In this section, we present a comprehensive analysis of the ex-

perimental results. First we evaluate the ProOnE based Ren-

dezvous protocol in terms of computation/communicationover-

lap, program progress and the process skew impact. Then, we

evaluate ProOnE in the context of two popular scientific ap-

plication kernels: matrix multiplication and 2D Jacobi sweep.

For all the experiments, we use the basic MPICH2 without

ProOnE as the baseline for comparison. We use the legend of

“Original” referring to the basic MPICH2, and the legend of

“ProOnE” for our design with ProOnE.

Experimental Testbed: Our test bed consists of 64 nodes

with dual quad-core (8 cores in total) Xeon processors and 4

GB memory, running RHEL4 U4 with the kernel 2.6.9.34.

The nodes are connected by InfiniBand DDR cards, but we

use IPoIB (TCP/IP over IB) as the network transport as our

approach is independent of the transport and does not assume

any specific features from the network stack. For all the exper-

iments with ProOnE, we use one core (by setting CPU affin-

ity) on each node to run ProOnE daemon.

4.1 Computation and Communication Overlap

In this section we evaluate the capability of the ProOnE-based

Rendezvous protocol design to overlap computation with com-

munication. The benchmark is similar to that suggested in

[28]; overlap is defined as the ratio of the computation time

over the total time (computation and communication).

Sender-side overlap: Figure 6(a) presents the sender-side

overlap performance using a message size of 256 KB. With

ProOnE, as computation time increases, the overlap ratio be-

comes larger as longer computation time provides better op-

portunity to overlap communication. In fact, when the com-

putation time is larger than 600 µs, ProOnE can provide al-

most full overlap, while vanilla MPICH2 can only provide an

overlap of less than 0.6. This is because when the MPI pro-

cess is busy with computation, its associated ProOnE daemon

can proceed with communication simultaneously; however, in

MPICH2, the sender process cannot perform any communi-

cation during the whole computation period. In Figure 6(b),

we show a similar measurement by using 1MB messages;

we observe a similar trend, except that the full overlap is

achieved at a higher computation time. This is because the

higher communication time for transferring 1MB messages

requires longer computation for efficient overlap.

Receiver-side overlap: The receiver overlap performance

is shown in Figures 7(a) and 7(b). We see a similar trend

as the sender side overlap, except that a higher computation

time is needed to achieve good overlap. We attribute it to the

overhead of kernel-level memory mapping and copy. As men-

tioned in Section 3.2.4, we use ProOnE to send and receive

data in the current implementation. It involves the overhead

of a kernel memory copy at both sender and receiver. While

the sender’s performance is affected only by the overhead at

sender side, receiver’s performance suffers from the overhead

at both sides, resulting in longer communication time and

worse overlap.
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4.2 Impact of Process Skew
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Fig. 8 Progress performance with process skew

In this section we evaluate the impact of process skew on

Rendezvous asynchronous progress. Our benchmark consists

of a pair of MPI processes performing bidirectional commu-

nication. Each process initiates a MPI Irecv and a blocking

MPI Send. After that, they compute for some time W, and fi-

nally call MPI Wait. In this way, the skew is introduced, as

for a pair of send and receive, the receive call arrives earlier

than the send call. This whole process is repeated for 1000 it-

erations. We average the total time on either side with varying

W and show the results using message size of 1M in Figure 8.

In MPICH2, receiving calls at both sides arrive earlier and

thus cannot make progress until the computation completes

and Wait is called. Thus the computation on the sender and

the receiver is serialized and the total time includes both. On

the other hand, ProOnE can start the data transfer as soon as

one pair of send and receive arrives, so the total time is not

affected by skew and includes only its own computation time.

4.3 Application Availability

To measure application availability and overhead, we used

the Sandia Benchmark [26] (SMB). Figures 9(a) and 9(b)

show the sender’s availability percentage and overhead with

increasing message sizes. For small messages, both ProOnE

and MPICH2 exhibit high availability (around 91%) and low

overhead. However, performance deteriorates rapidly in MPI-

CH2 when the message size is larger than 1KB. On the other

hand, because of the independent asynchronous progress ca-

pability, ProOnE provides almost full availability and very

low overhead for medium and large messages (≥ 8KB). Note

that here we use 4KB as the Rendezvous protocol threshold,

so there is degradation for messages of 2KB and 4KB where

ProOnE is not utilized. At the receiver side, we noticed a sim-

ilar performance trend, but the results are not included here

because of the space constraints.

4.4 Application Performance

In this section we evaluate our design with two popular appli-

cation kernels widely used in many scientific and engineering

applications.

Matrix Multiplication: The kernel uses Cannon’s algorithm

and employs MPI for inter-node communication and OpenMP

[11] for intra-node communication. We use four nodes with

one MPI process on each and measure the completion time

with varying problem sizes (matrix sizes), as shown in Fig-

ure 11. As shown in the figure, ProOnE performs much bet-

ter especially for larger problem sizes. We further measured

this benefit with different cost ratios. Figure 12 illustrates the

normalized execution time for a square matrix of 1024 el-

ements on different system configurations. NxM means N

nodes with M cores on each node used, so larger M indi-

cates relatively lower percentage of resources in the system

used for ProOnE. We see that ProOnE provides consistent

benefits with decreasing percentage of additional cost. This

presents the promising future for applying ProOnE in appli-

cations with inexpensive multi-/many-core processors.

The second application we evaluated is a 2D Jacobi sweep

[9]. In this application, on each iteration every process initi-

ates the exchange of boundary data with all the neighbors,

and then performs computation on the internal data. Upon re-

ceiving all the boundary data, it also performs computation on

the received data. We use nonblocking send/recv calls to initi-

ate the boundary data exchange and use MPI Waitall after the

internal data computation to complete these operations. Fig-

ure 12 illustrates the time for MPI Waitall on a 4x4 process

grid (4 nodes with 4 MPI processes on each). We observe that

the design with ProOnE has much smaller waiting time than

the design without ProOnE, offering increasing benefits with

larger boundary data. This shows that ProOnE can effectively

drive the communication progress and thus provide signifi-

cant improvement on the overall application performance.

 0

 200

 400

 600

 800

 1000

 1200

8K 16K 32K 64K

T
im

e
 f
o
r 

W
a
it
a
ll 

(u
s
e
c
)

Boundary Data Size (Byte)

ProOnE
Original

Fig. 12 Jacobi sweep with varying boundary data size

5 Conclusions and Future Work

As high-end computing systems rapidly scale to very large

clusters, traditional protocol offload engines have to offload

more and more complex tasks to meet the performance and

scalability requirements. However, the hardware offloading is

quite expensive and inflexible due to its manufacturing com-

plexity. On the other hand, the increasing deployment of multi-

and many-core processors offers new opportunities to “on-

load” these tasks. In this paper we presented the design of a
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Fig. 9 Availability performance at sender: (a) availability percentage (b) overhead
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Fig. 11 Matrix multiplication with varying problem size
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Fig. 12 Matrix multiplication with varying system configuration

general purpose Protocol Onload Engine (ProOnE) that uti-

lizes a small subset of the available cores on a multi-core

equipped node to “onload” complex tasks. Additionally, we

utilized ProOnE to onload the Rendezvous protocol in MPI

and incorporated this into MPICH2. From our evaluations, we

find that the ProOnE-based MPI design provides almost full

communication/computation overlap, close to 100% applica-

tion availability, good resilience to process skew, and signif-

icant application level benefits in matrix multiplication and

Jacobi method applications.

For future work, we plan to study the performance and

scalability of applying ProOnE in large scale systems and in-

vestigate its benefits in other scientific and engineering ap-

plications. We also intend to use ProOnE for other protocols

such as enterprise data-center tasks and file system tasks.
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