
Scaling Alltoall Collective on Multi-core Systems∗

Rahul Kumar Amith Mamidala D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

{kumarra, mamidala, panda}@cse.ohio-state.edu

Abstract

MPI Alltoall is one of the most communication in-
tense collective operation used in many parallel appli-
cations. Recently, the supercomputing arena has wit-
nessed phenomenal growth of commodity clusters built
using InfiniBand and multi-core systems. In this con-
text, it is important to optimize this operation for these
emerging clusters to allow for good application scal-
ing. However, optimizing MPIAlltoall on these emerg-
ing systems is not a trivial task.

InfiniBand architecture allows for varying implemen-
tations of the network protocol stack. For example, the
protocol can be totally on-loaded to a host processing
core or it can be off-loaded onto the NIC or can use
any combination of the two. Understanding the char-
acteristics of these different implementations is critical
in optimizing a communication intense operation such
as MPI Alltoall. In this paper, we systematically study
these different architectures and propose new schemes
for MPI Alltoall tailored to these architectures. Specif-
ically, we demonstrate that we cannot use one common
scheme which performs optimally on each of these vary-
ing architectures. For example, on-loaded implementa-
tions can exploit multiple cores to achieve better net-
work utilization, and in offload interfaces aggregation
can be used to avoid congestion on multi-core systems.
We employ shared memory aggregation techniques in
these schemes and elucidate the impact of these schemes
on multi-core systems. The proposed design achieves a
reduction in MPIAlltoall time by 55% for 512Byte mes-
sages and speeds up the CPMD application by 33%.

∗This research is supported in part by DOE grants DE-FC02-
06ER25755 and DE-FC02-06ER25749, NSF Grants CNS-0403342
and CCF-0702675; grants from Qlogic, Intel, Sun MicroSystems,
Cisco Systems, and Linux Networks; and equipment donationsfrom
Intel, AMD, Apple, IBM, Microway, PathScale, SilverStorm and Sun
MicroSystems.

1 Introduction

The complete data exchange collective, MPIAlltoall,
is one of the most intensive communication patterns
used in various applications including molecular dy-
namics applications like CPMD [1], NAMD [14], LU-
factorization, FFT and matrix transpose. MPIAlltoall
is known to suffer from performance scaling problems.
With the increase in the number of processing elements,
owing to multi-core systems, it is highly desirable to op-
timize this data intensive communication primitive.

Several algorithms have been proposed to optimize
this collective in the past. With the introduction of
new architectural concepts such as multi-core proces-
sors, these algorithms need renewed attention. In multi-
core systems, the processes within a node have a very
low latency communication between them compared to
inter-node latency. This gives scope for improved al-
gorithms. Also, over the past few years there has been
a surge in network interface based processing (offload)
networks such as Infinihost III [2] from Mellanox. But
with change in processor architectures to multi-core pro-
cessor, host based NICs have re-emerged to take advan-
tage of faster processing power of on-board cores. One
example of this is Qlogic’s [15] implementation of In-
finiBand called InfiniPath. Mellanox has also introduced
its latest ConnectX adapter [3] which uses host process-
ing for small messages and network interface processing
for medium and large messages.

In this paper, we study the characteristics of the
above three NICs and demonstrate how algorithms for
MPI Alltoall is affected by these characteristics. Specif-
ically, we propose different algorithms for multi-core
systems connected with varying implementations of In-
finiBand network interfaces. In particular, we aim to
provide answers to the following questions:

• How do the current multi-core aware algorithms for
other collectives suit for alltoall?

• What are the advantages and disadvantages of those

1



schemes?

• What are the features and characteristics of modern
NICs?

• Are there better collective algorithms for modern
NICs?

We have implemented our designs and integrated
them into MVAPICH [12]. The proposed design has
been evaluated on a 512 core cluster. The optimiza-
tions proposed in this paper reduces the latency of
MPI Alltoall by 55% for 512Byte messages and speeds-
up the CPMD application benchmark by 33%. The rest
of the paper is organized in the following way. In Sec-
tion 2, we provide the background of our work. In
Section 3, the motivation for our scheme has been ex-
plained. In Section 4, we discuss related work. In Sec-
tion 5, we discuss detailed design issues and evaluate
our designs in Section 6 . Conclusion and future work
are presented in Section 7.

2 Background
In this section, we briefly describe the required back-

ground on current InfiniBand network interfaces, widely
employed alltoall algorithms and CPMD application [1].
The CPMD application extensively uses alltoall col-
lective and is used in the evaluation of our proposed
scheme.

2.1 InfiniPath

InfiniPath [15] is a network interface for InfiniBand
interconnect provided by Qlogic. It’s main difference
from other NICs is that it is host based and does not
offload network processing to the NIC. The network in-
terface does not have a send-side DMA so processor cy-
cles are used to copy data to the NIC. The NIC is only
responsible for streaming the data out to the network.
The rationale is that the host processor is generally much
faster than the NIC. Another reason is that data to be sent
out is usually in the cache of the host so unnecessary bus
transactions are avoided if the buffers are re-used. How-
ever, on receive side, it has a DMA engine that writes
the incoming data directly to main memory.

2.2 InfiniHost III and ConnectX

InfiniHost III is the third generation of InfiniBand
Host Channel Adapter (HCA) from Mellanox. It fea-
tures a full hardware implementation of the InfiniBand
architecture with Hardware Transport Engine that drasti-
cally reduces the host CPU overhead on communication.
ConnectX is the fourth generation InfiniBand HCA from
Mellanox. The ConnectX architecture is designed to im-
prove the processing rate of incoming packets. Com-
pared to the previous InfiniHost III architecture, it has

more advanced packet processing capabilities. These
enhancements to the ConnectX architecture are expected
to improve its performance on multi-core nodes when
multiple processes are communicating at the same time,
generating many simultaneous network messages. For
very small message sizes (less than around 512Bytes),
PIO is used to send data to the network interface. This is
different from the InfiniHost III architecture which uses
DMA for all message sizes.

2.3 CPMD Application

The Car-Parrinello Molecular Dynamics (CPMD) is
designed for ab-initio molecular dynamics. It is widely
used for research in computational chemistry, materi-
als science and biology. CPMD makes extensive use of
three-dimensional FFT, which requires efficient all-to-
all communication [8].

2.4 AlltoAll Algorithms

The most popular algorithms for alltoall currently
used are: 1. Bruck’s algorithm [4], 2. Irecv-Isend al-
gorithm [19] and 3. Pairwise Exchange [19].

Because none of the above algorithms gives the best
performance for all message sizes, we choose different
algorithms according to the message size. Bruck’s algo-
rithm completes in minimum number of steps, log P (P
is the number of processes). Hence, it is used for small
messages where start-up latencies are a dominant part of
the collective time. However, because it sends the same
message over the network more than once, it is not suit-
able for medium or large messages. In the Irecv-Isend
algorithm, each process sends the data directly to the
destined process, hence it requires P-1 steps to complete.
The amount of data going out of each node is equal to
the total amount of data that each node must send. The
amount of data going into each node is equal to the total
amount of the data that each node must receive. There-
fore, the algorithm is optimal in terms of amount of data
sent on the network and should be suitable for medium
and large messages. However, we found the algorithm is
not suitable for large messages. At large message sizes,
contention on the links comes into play. The algorithm
uses a cyclic pattern of communication which is not con-
gestion free on fat-tree networks [9]. The pairwise ex-
change algorithm gives better results for large messages.
At each stage of the pair-wise exchange algorithm, the
communication pattern is congestion free on fat-tree net-
works. Moreover, ‘irecv-isend’ algorithm makes loose
coupling among the sending and receiving processes. It
has been found that if processes are tightly coupled, the
latencies are lower for large messages [16]. Pair-wise
exchange uses send-recv, utilizing rendezvous protocol
for large messages and hence are tightly coupled.

2



We have found that network characteristics play a
role in tuning the alltoall collective for different network
interfaces. For example, the ‘irecv-isend’ algorithm per-
forms poorly on InfiniHost III and ConnectX. However,
it performs well for medium-sized messages on the In-
finiPath network interface. All of the above tuning are
available in the open source MVAPICH [12] software.

3 Motivation

Communication time of MPIAlltoall is dependent
on two factors: start-up costs and network bandwidth.
For small messages, MPIAlltoall time is dominated by
start-up costs. For large messages, network bandwidth
determines the time of the operation. To illustrate the
impact of start-up costs on latency of MPIAlltoall, we
conducted a simple test to measure the time of ‘irecv-
isend’ alltoall algorithm on a fixed set of nodes. How-
ever, we increase the number of cores involved in the
collective keeping the size of total data involved in the
operation the same. The experiment was conducted on
our InfiniPath cluster mentioned in section 6. Figure 1
shows the results. As shown in the figure, we observe
that there is a significant increase in MPIAlltoall time
with the increase in the number of cores per node al-
though the amount of data exchanged between the nodes
is the same. This is primarily due to an increasing num-
ber of sends issued which increases start-up costs. Thus,
reducing start-up costs is necessary to obtain good per-
formance.

 0

 50

 100

 150

 200

 250

 300

 350

168421

L
a

te
n

c
y
 (

u
s
e

c
)

Number of nodes

1 core/node
2 cores/node
4 cores/node
8 cores/node

Figure 1. Increase in Alltoall time with in-
crease in cores/node

On the other hand, different implementations of In-
finiBand network interfaces exist. These different in-
terfaces exhibit varying communication characteristics.
We demonstrate this using a simple bi-directional band-
width test between two nodes. The number of concur-
rent pairs involved in the test is increased from one to
four. Figures 2 and 3 show the multi-pair bi-directional
bandwidth performance on InfiniPath and ConnectX
adapters, respectively.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1M256K64K16K4K1K256641641

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 2. InfiniPath SDR: Multi-pair Bidi-
rectional Bandwidth.

 0

 500

 1000

 1500

 2000

 2500

 3000

1M256K64K16K4K1K256641641

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 3. ConnectX DDR: Multi-pair Bidi-
rectional Bandwidth.

We observe that using more than one core to send the
data out of the node is advantageous as it provides bet-
ter network utilization, as can be seen by the increase in
bandwidth on using more cores. This is not the case for
earlier generation InfiniHost III architecture, as can be
seen in Fig.4. For MPIAlltoall operations, this observed
behavior is significant because, like the bi-directional
test, multiple cores are involved in data exchange across
the nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

1M256K64K16K4K1K256641641

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 4. InfiniHost III DDR: Multi-pair Bidi-
rectional Bandwidth.

Also on multi-core systems, aggregation and distribu-
tion schemes can be used to decrease the network steps.
This is discussed further in the design section. In the
aggregation scheme, all cores of a node copy data from

3



the send buffers to a shared buffer, where data can be
sent out on the network. In the distribution scheme, af-
ter all cores of a node receive data from the network in
a shared memory location, the data is copied into the re-
spective receive buffers. We performed tests for both
schemes in which we measure the amount of time it
takes to perform the data copy operations. The results of
the experiment are plotted in Fig.5 for InfiniPath inter-
face. Although both schemes perform the same number
of memory copies with the same amount of data sizes,
the time taken to complete the copies are different. This
characteristic is seen only on host-based network inter-
faces where data is sent via PIO and not when the DMA
engine is used to copy the data to NIC. We believe this
performance gap is due to a memory cache transaction in
the distribution scheme; when receiving data from net-
work, the receive side DMA directly writes it to the main
memory. Whereas in the aggregation scheme, data copy
is from cache to cache because data to be sent is gener-
ally in the cache of the host. Therefore, we observe that
aggregation is better compared to distribution when PIO
is used to copy the data instead of DMA engine.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4K1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

send Aggregation
recv Distribution

Figure 5. Receive-side distribution more
costly than send-side aggregation.

Thus, as described above, different network inter-
faces exhibit varying communication characteristics.
The alltoall schemes need to take into account these fac-
tors to obtain good performance.

4 Related Work
Several optimizations have been proposed in the past

to take advantage of shared memory to design collec-
tives. Husbands et al. [7] first proposed hierarchical tree
based MPIBcast algorithm to minimize the use of net-
work on the Sun SMP system. Sistare et al. [17] propose
a hierarchical scheme but do not use a tree-based point
to point communication within the SMP node. They de-
velop shared memory based schemes to optimize broad-
cast, reduce, allreduce and barrier within the SMP node.
Tipparaju et al. [20] also propose hierarchical tree based
collective operations using shared and remote memory
access protocols. In our earlier work [11], we proposed a

hierarchical multicast based design for broadcast. Most
of the work to optimize collectives for shared memory
based systems have proposed hierarchical leader based
schemes. In this paper we propose a non-leader based
scheme to optimize alltoall collective for multi-core sys-
tems.

5 The Proposed Design

In the leader based scheme, at the sender, all data
of a node is aggregated to the leader of the node fol-
lowed by inter-node communication and then distribu-
tion to all the processes of the node at the receiver. The
leader based scheme proposed for SMP based clusters
cannot be naively used for all multi-core systems. It has
the following disadvantages which are addressed by the
proposed design:

1. Significant shared memory overhead (assuming all
the intra-node communication is done using shared
memory communication). This is because the inter-
node alltoall can begin only after all processes of
the node have written data to the shared memory
location.

2. Utilizes a single core to perform the inter-node
communication and therefore does not take advan-
tage of the increase in bi-directional bandwidth
available with the increase in number of cores used
to send the data.

3. Does not distinguish between shared memory ag-
gregation of data at the sender and shared memory
distribution at the receiver.

One can also design a leader-based scheme with two
leaders per node. This scheme would achieve better
bandwidth as it utilizes more cores to send the data to
other nodes. However, this also increases the number of
network sends by two times and hence increases start-up
costs. Instead, a scheme in which more cores of the node
participate in inter-node communication without an in-
crease in number of sends issued by each core will ben-
efit significantly. This can be achieved if each core of
a node communicates with one and only one core of all
other nodes. This does not increase the number of net-
work sends issued by each process and network start-up
costs are almost the same with better network utilization.
In our implementation of the above scheme, we opted to
use all cores of a node to participate in inter-node com-
munication. However, a subset of the cores can also be
used. We explain the design keeping in mind that all of
the cores are being used. However, it can be extended to
address the situation wherein only a subset of the cores
are utilized.

4



(a) 3X4 System (b) Step 1 (c) Step 2

Figure 6. Communication steps of the proposed design

Since a core/process communicates with a single core
of the other nodes, intra-node communication must be
used to send the respective data to the other cores of
the node. There are two ways in which this can be
performed: 1. Before sending the data to other nodes,
perform an intra-node communication. In this, a core
receives all data that has to be received by cores with
which it will communicate. We call this send-side ag-
gregation. OR 2. Perform the inter-node communication
first. In the inter-node communication, a core sends all
of its data destined for a node to the core with which it
communicates. It then performs an intra-node commu-
nication in which a core sends the data to the respective
cores for which it was destined. We call this receive-side
distribution.

We chose the first option for our implementation be-
cause we observed that send-side aggregation is less
costly for network interfaces which use PIO to perform
the data transfer to NIC. This is shown in Fig. 5.

The proposed algorithm for alltoall completes in two
steps:

1. Step 1: Intra-node exchange - This step takes place
simultaneously within all nodes. Each core/process
sends all the data that has to go to shared memory
rank x (rank of the process in its node) of all nodes
to process with shared memory rank x on its node.

2. Step 2: Inter-node exchange - Each core/process
performs an inter-node alltoall communication
with processes having the same shared memory
rank. The message size of this alltoall is more than
that of the intended alltoall communication.

Figure 6 shows the communication that takes place in
each of the above steps for a system of size 3X4 i.e. three
nodes and each node has four cores as shown in Fig.6(a).
Each small ellipse represents a core and the surrounding
bigger ellipse represents a node. The numbers ‘a’ and
‘b’ on the core represent ‘a’ as MPIRank and ‘b’ as the
shared memory rank. Figure 6(b) shows the communi-
cation of step 1. In this step, only intra-node communi-
cation takes place. After step 1, all processes having the

same shared memory rank are part of one communicator
as shown in figure 6(c). Each of the core/process partici-
pates in alltoall communication within the new commu-
nicator.

The above scheme has the following advantages:

1. Lower shared memory overhead. Each process
waits for other processes to write only a subset of
their data not their whole data.

2. Uses more than one core to send out the data, al-
lowing for better bandwidth.

3. Takes advantage of low aggregation at the sender
and eliminates the need for more costly distribution
at the receiver. This is only applicable for some
NICs.

For systems which do not use PIO, send-side aggre-
gation and receive-side distribution have similar perfor-
mance.

6 Experimental Results

The following two test-beds were used to conduct the
experiments:

First is a 512-core InfiniBand Linux cluster. Each of
the 64 nodes have dual 2.33 GHz Intel Xeon “Clover-
town” quad-core processors for a total of 8 cores per
node. Each node has two network interface cards. First
is a host-based SDR network interface QLE7140 by
Qlogic and the second is offload DDR network inter-
face card MT25208 dual-port Memfree HCA by Mel-
lanox. InfiniBand software support is provided through
InfiniPath software stack 2.1 on Qlogic HCA and Open-
Fabrics/Gen2 stack [13], OFED 1.2 release for Mellanox
HCA. The Mellanox HCA is built using the Infinihost III
architecture.

Second is a 4 node dual 2.33 GHz Intel Xeon
“Clovertown” quad-core processors for a total of 8 cores
per node. Each node is connected with Mellanox Con-
nectX cards which operate at DDR speed (20Gbps).
The ConnectX card (MT25408) has firmware version

5



2.0.139 and operates with new Open-Fabrics drivers
which are based on OFED 1.2 distribution.

We have used MVAPICH-PSM and MVAPICH-
Gen2 [12] to test our collective schemes on the two de-
vices. MVAPICH is a popular open-source MPI imple-
mentation over InfiniBand. It is based on MPICH [6]
and MVICH [10] and is used by over 610 organizations
worldwide.

6.1 Alltoall Performance

In this section, we evaluate and compare the per-
formance of the proposed scheme using OSU Alltoall
Benchmark. The benchmark calls MPIAlltoall back-
to-back and reports an average over a large number of
iterations (typically 1000).

6.1.1 Performance on InfiniPath

Figure 7 shows the MPIAlltoall collective performance
on 64X8 configuration where AXB implies ‘A’ nodes
and ‘B’ cores per node. The legend ‘orig’ refers to the
current algorithms employed in MVAPICH tuned for the
testbed for appropriate message sizes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

orig
L-orig

SA-orig

Figure 7. InfiniPath: Alltoall time on 64X8
system

MVAPICH-PSM currently uses Bruck’s algorithm
for up to 256 Bytes, direct ‘irecv-isend’ from 256Bytes
to 32KB and pairwise exchange for messages larger than
32KB for the Qlogic HCA. We have found that the di-
rect ‘irecv-isend’ algorithm performs poorly on Mel-
lanox HCA; therefore MVAPICH-GEN2 uses Bruck’s
algorithm for up to 8KB and pairwise exchange for mes-
sages larger than 8KB. The ‘L-orig’ scheme refers to
leader based scheme and uses the original tuned alltoall
to perform the inter-node alltoall communication among
the leaders. The ‘SA-orig’ scheme refers to the new pro-
posed scheme explained in section 5. It uses the tuned
alltoall explained above to perform step 2 of the pro-
posed scheme.

The leader based scheme performs well for very
small messages. However, due to high shared mem-
ory overhead, the benefits fade with increasing message

size. The proposed scheme outperforms the current al-
gorithm and leader-based algorithm up to 2KB message
size. This is primarily due to better utilization of net-
work bandwidth by using multiple cores. As the system
size increases, higher performance gains are obtained
and up to a greater message size.

Figure 8 compares the MPIAlltoall time for send-
aggregation and receive-distribution scheme. The ‘orig-
RD’ scheme refers to inter-node alltoall followed by dis-
tribution at the receive-side. InfiniPath HCA uses PIO
to copy data from the host to the NIC. Therefore, we see
the performance difference between the two schemes.
For a detailed explanation, refer to section 3. At each
point on the graph beyond 256Bytes, the send aggrega-
tion scheme is better by at least 10 percent. The ben-
efits are seen only after 256 Bytes. For messages less
than 256 Bytes, Bruck’s algorithm is used which touches
(copies) the data after receiving it from the network [19].

 0

 5000

 10000

 15000

 20000

 25000

1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

orig-RD
SA-orig

Figure 8. InfiniPath: Send Aggregation
vs Recv Distribution alltoall time on 64X8
system

Figure 9 shows the MPIAlltoall time for 512Byte
message on varying system sizes. The results show that
the performance gains in alltoall time increase with in-
creasing system sizes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

64X832X816X88X84X82X8

L
a

te
n

c
y
 (

u
s
e

c
)

System Size

orig
L-orig

SA-orig

Figure 9. InfiniPath: Alltoall time of
512Byte message

6



6.1.2 Performance on Infinihost III
On Infinihost NIC, simultaneously using multiple cores
deteriorates the performance of communication la-
tency [18]; therefore, multi-pair bi-directional band-
width shows deterioration in performance with increas-
ing number of cores as can be seen in Fig.4. There-
fore, leader-based scheme performs best here because
it is able to eliminate the effects of congestion. This can
be seen from the results in Fig. 10.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

4K1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

orig
L-orig

SA-orig

Figure 10. Infinihost III: Performance of dif-
ferent schemes on 64X8 system

On offload NIC, send-side aggregation scheme and
receive-side distribution scheme show similar perfor-
mance as seen in Fig. 11.

 0

 5000

 10000

 15000

 20000

 25000

 30000

1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

orig-RD
SA-orig

Figure 11. Infinihost III: Send Aggregation
vs Recv Distribution alltoall time on 64X8
system

6.1.3 Performance on ConnectX
From Fig.3 we see that on ConnectX architecture, multi-
pair bi-directional bandwidth increases with more cores.
Therefore, single leader-based scheme does not per-
form as well as send-aggregation and recv-distribution
schemes. The alltoall time for different schemes can be
seen in Fig.12.

6.2 Application Performance

The CPMD application was used to evaluate the per-
formance impact of the proposed scheme on applica-
tions. The InfiniPath network interface testbed was used

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4K1K256641641

L
a

te
n

c
y
 (

u
s
e

c
)

Message Size (bytes)

orig
L-orig

SA-orig
orig-RD

Figure 12. ConnectX: Performance of dif-
ferent schemes on 4X8 system

for the evaluation. Figure 13(a) shows the performance
improvement over the current algorithms for different
input files on 16X8 system. Figure 13(b) shows the per-
formance improvement for si63 atoms with 120ryd cut-
off for different system sizes. As we saw earlier, the per-
formance improvement for MPIAlltoall increases with
increasing system sizes, this is also reflected in the appli-
cation performance improvement. Fig.13(b) shows that
the ‘L-orig’ scheme begins to perform well at 64X8 sys-
tem size. At 64X8 system size, the message size of all-
toall collective decreases as the problem size remains the
same. Therefore, leader-based collective performs com-
parable to the proposed scheme.

7 Conclusion and Future Work
The results of this paper show that various network

interfaces implemented for the same interconnect, ex-
hibit different network characteristics. A single collec-
tive algorithm does not perform optimally for all net-
work interfaces due to differing network characteristics.
The paper proposes an optimized alltoall collective al-
gorithm for multi-core systems connected using mod-
ern InfiniBand network interfaces. However, we believe
that the work can be applied to onload implementation
of other networks as well, like the ethernet-based JNIC
architecture [5]. We plan to evaluate our designs on such
systems in the future, as well as , extend the proposed
framework to all other collectives.

References

[1] http://www.cpmd.org/.

[2] http://www.mellanox.com/products/infinihostiii ex cards.php.

[3] http://www.mellanox.com/products/connectxarchitecture.php.

[4] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Ef-
ficient Algorithms for All-to-All Communications in Multiport
Message-Passing Systems.IEEE Transactions in Parallel and
Distributed Systems, 8(11):1143–1156, November 1997.

[5] Mike Schlansker et. al. High-performance Ethernet-based Com-
munications for future Multi-core Processors. InSC ’07: Pro-

7



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

32-w
at

si63-10ryd

si63-70ryd

si63-120ryd

CPMD Benchmark

orig
L-orig
SA-orig

(a) Different Input Files

 0

 100

 200

 300

 400

 500

 600

64X832X816X88X8

T
im

e
 (

s
e

c
)

System Size

orig
L-orig

SA-orig

(b) Varying System Sizes

Figure 13. CPMD Application Benchmark Performance on Infini Path

ceedings of the 2007 ACM/IEEE conference on Supercomputing,
pages 49–59, 2007.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Message
Passing Interface Standard. Technical report, Argonne National
Laboratory and Mississippi State University.

[7] P. Husbands and J.C. Hoe. MPI-StarT: Delivering NetworkPer-
formance to Numerical Applications.Supercomputing, 1998.
SC98. IEEE/ACM Conference on, pages 17–17, 07-13 Nov.
1998.

[8] J. Hutter and A. Curioni. Dual-level Parallelism for Ab Initio
Molecular Dynamics: Reaching Teraflop Performance with the
CPMD Code. InParallel Computing, pages 1–17, 2005.

[9] Sameer Kumar and Laxmikant V. Kale. Scaling All-to-All Mul-
ticast on Fat-tree Networks.icpads, 00:205, 2004.

[10] Lawrence Berkeley National Laboratory.
MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/ index.html,August
2001.

[11] A.R. Mamidala, Lei Chai, Hyun-Wook Jin, and D.K. Panda.Ef-
ficient SMP-aware MPI-level Broadcast over InfiniBand’s Hard-
ware Multicast.Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 8 pp.–, 25-29 April
2006.

[12] Network-Based Computing Laboratory. MVAPICH: MPI over
InfiniBand and iWARP. http://mvapich.cse.ohio-state.edu.

[13] OpenFabrics Alliance. OpenFabrics.
http://www.openfabrics.org/.

[14] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD:
Biomolecular Simulation on Thousands of Processors. InSuper-
computing, 2002.

[15] Qlogic. InfiniPath. http://www.pathscale.com/infinipath.php.

[16] D. Roweth and A. Moody. Performance of All-to-
All on QsNetII, quadrics white paper, available at
http://www.quadrics.com/. 2005.

[17] S. Sistare, R.v. Vaart, and E. Loh. Optimization of MPI Col-
lectives on Clusters of Large-Scale SMPs.Supercomputing,
ACM/IEEE 1999 Conference, pages 23–23, 13-18 Nov. 1999.

[18] S. Sur, M. Koop, L. Chai, and D. K. Panda. Performance Analy-
sis and Evaluation of Mellanox ConnectX InfiniBand Architec-
ture with Multi-Core Platforms. In15th IEEE Int’l Symposium
on Hot Interconnects (HotI15), August 2007.

[19] R. Thakur, R. Rabenseifner, and W. Gropp. Optimizationof
Collective communication operations in MPICH.Int’l Jour-
nal of High Performance Computing Applications, 19(1):49–66,
Spring 2005.

[20] V. Tipparaju, J. Nieplocha, and D.K. Panda. Fast Collective Op-
erations Using Shared and Remote Memory Access Protocols on
Clusters.Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 10 pp.–, 22-26 April 2003.

8


