
TupleQ: Fully-Asynchronous and Zero-Copy MPI over InfiniBand *

Matthew J. Koop, Jaidev K. Sridhar and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University
{koop, sridharj, panda}@cse.ohio-state.edu

Abstract

The Message Passing Interface (MPI) is the defacto stan-
dard for parallel programming. As system scales increase,
application writers often try to increase the overlap of
communication and computation. Unfortunately, even on
offloaded hardware such as InfiniBand, performance is not
improved since the underlying protocols within MPI im-
plementation require control messages that prevent overlap
without expensive threads.

In this work we propose a fully-asynchronous and zero-
copy design to allow full overlap of communication and
computation. We design TupleQ with novel use of InfiniBand
eXtended Reliable Connection (XRC) receive queues to
allow zero-copy and asynchronous transfers for all mes-
sage sizes. Our evaluation on 64 tasks reveals significant
performance gains. By leveraging the network hardware we
are able to provide fully-asynchronous progress. We show
overlap of nearly 100% for all message sizes, compared to
0% for the traditional RPUT and RGET protocols. We also
show a 27% improvement for NAS SP using our design over
the existing designs.

1. Introduction

Commodity cluster computing has been growing at a
furious speed over the last decade as the need for additional
computational cycles continues to exceed availability. One
of the most popular interconnects used on these clusters is
InfiniBand [1], an open-standard with one-way latencies ap-
proaching 1µsec and bandwidth near 1.5GB/sec. Introduced
in 2000, InfiniBand was developed as a general system I/O
fabric, however, it has found particularly wide acceptance in
High Performance Computing (HPC). The latest list of the
Top500 [2] list shows over 28% of systems are now using
InfiniBand as the compute node interconnect.

The Message Passing Interface (MPI) [3] is the dominant
parallel programming model on these clusters. Given the

* This research is supported in part by U.S. Department of Energy grants
#DE-FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-
0403342, #CCF-0702675 and #CCF-0833169; grant from Wright Center
for Innovation #WCI04-010-OSU-0; grants from Mellanox, Intel, Cisco,
QLogic and Sun Microsystems; Equipment donations from Intel, Mellanox,
AMD, Advanced Clustering, Appro, QLogic and Sun Microsystems.

role of the MPI library as the communication substrate for
application communication, the library must take care to
provide scalability both in performance as well as resource
usage.

MPI provides synchronous and asynchronous data trans-
fer methods, the most basic examples of these being the
MPI_Send and MPI_Isend functions. An MPI_Isend does
not need to complete when the function returns, instead it
can wait for completion at some time in the future. This type
of functionality allows for the MPI library to send the data in
the background while computation performed. When using
an interconnect that provides off-loading of data transfer,
meaning the sending and receiving of data can be done
without processor involvement it is even more important
that this progress be able to be done in the background.
InfiniBand is one such interconnect.

Due to this capability of data transfer offload in many
high-performance interconnects, application writers have of-
ten tried to restructure their code to use asynchronous MPI
calls. Unfortunately for application performance, many MPI
libraries do not take advantage of this hardware capability.

In this paper we explore this problem in depth with
InfiniBand and propose TupleQ, a novel approach to provid-
ing communication and computation overlap in InfiniBand
without using threads and instead relying on the network
architecture. Instead of using the traditional protocols with
RDMA Put and Get operations, we propose using the
network hardware to directly place the data into the receive
buffers without any control messages or intermediate copies.
We show that our solution is able to provide full overlap with
minimal overhead and is able to achieve performance gains
of 27% on the SP kernel in the NAS Parallel Benchmarks
for 64 processes.

The rest of the paper is organized as follows: In Section
2, we give an overview of the related work to this topic. In
Section 3 we provide the requisite background information
on InfiniBand. Following in Section 4, we describe the
current implementations of MPI over InfiniBand. In Section
5 we motivate our work by describing the problems with
current MPI design for overlap of communication and com-
putation. TupleQ, our fully-asynchronous design is presented
in Section 6. We evaluate our prototype on both an overlap
test and the NAS Parallel Benchmarks in Section 7. We

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

conclude and discuss future work in Section 8.

2. Related Work

Achieving good overlap between computation and com-
munication in MPI libraries has been a hot topic of research.
Brightwell et al. [4] have demonstrated the application
benefit from good overlap. Eicken et al. [5] have proposed
hardware mechanisms to provide better overlap between
computation and communication.

In terms of InfiniBand, Surs et al. [6] proposed a RDMA
read based rendezvous protocol with a separate commu-
nication thread to achieve overlap. Kumar et al. [7] have
proposed a lock free variant of the RDMA based design
based on signals and a thread.

Our work is different as we do not use any threads to
perform progress, as both of the previous designs have
done. As a result we do not require any locking, signals, or
other library interaction. Additionally, we do not use RDMA
operations, which all other MPI libraries over InfiniBand use
to implement large message transfer.

3. InfiniBand Architecture

InfiniBand is a processor and I/O interconnect based
on open standards [1]. It was conceived as a high-speed,
general-purpose I/O interconnect, and in recent years it
has become a popular interconnect for high-performance
computing to connect commodity machines in large clusters.

3.1. Communication Model

Communication in InfiniBand is accomplished using a
queue based model. Sending and receiving end-points have
to establish a Queue Pair (QP) which consists of Send
Queue (SQ) and Receive Queue (RQ). Send and receive
work requests (WR) are then placed onto these queues
for processing by InfiniBand network stack. Completion of
these operations is indicated by InfiniBand lower layers by
placing completed requests in the Completion Queue (CQ).
To receive a message on a QP, a receive buffer must be
posted to that QP. Buffers are consumed in a FIFO ordering.

There are two types of communication semantics in Infini-
Band: channel and memory semantics. Channel semantics
are send and receive operations that are common in tradi-
tional interfaces, such as sockets, where both sides must be
aware of communication. Memory semantics are one-sided
operations where one host can access memory from a remote
node without a posted receive; such operations are referred
to as Remote Direct Memory Access (RDMA). Remote
write and read are both supported in InfiniBand. Both
communication semantics require communication memory
to be registered with InfiniBand hardware and pinned in
memory.

3.2. Transports

There are four transport modes defined by the InfiniBand
specification, and one additional transport that is available in
the new HCAs from Mellanox: Reliable Connection (RC),
Reliable Datagram (RD), Unreliable Connection (UC), Un-
reliable Datagram (UD), and eXtended Reliable Connection.
Of these, RC and UD are required to be supported by Host
Channel Adapters (HCAs) in the InfiniBand specification.
RD is not required and is not available with current hard-
ware. All transports provide a checksum verification.

For our work we are most interested in the Reliable
Connection and eXtended Reliable Connection transports:

• Reliable Connection (RC): This is the most popular
transport service for implementing MPI over Infini-
Band. The RC transport is feature-rich and provides
RDMA operations, atomic operations, and reliable
channel semantics. As a connection-oriented transport,
each connected process requires a dedicated QP.

• eXtended Reliable Connection (XRC): XRC is a new
transport introduced with the Mellanox ConnectX HCA
to address scalability problems with the RC transport.
It addresses the scalability problem by connecting pro-
cesses to nodes rather than processes to processes. It
also provides a unique addressing mechanism that will
be discussed in Section 3.4 that will enable our work.

3.3. Shared Receive Queues

Introduced in the InfiniBand 1.2 specification, Shared Re-
ceive Queues (SRQs) were added to help address scalability
issues with InfiniBand memory usage. As noted earlier, in
order to receive a message on a QP, a receive buffer must
be posted in the Receive Queue (RQ) of that QP. To achieve
high-performance, MPI implementations pre-post buffers to
the RQ to accommodate unexpected messages.

When using the RC transport of InfiniBand, one QP is
required per communicating peer. To prepost receives on
each QP, however, can have very high memory requirements
for communication buffers. To give an example, consider a
fully-connected MPI job of 1K processes. Each process in
the job will require 1K - 1 QPs, each with n buffers of
size s posted to it. Given a conservative setting of n = 5
and s = 8KB, over 40MB of memory per process would
be required simply for communication buffers that may not
be used. Given that current InfiniBand clusters now reach
60K processes, maximum memory usage would potentially
be over 2GB per process in that configuration.

Recognizing that such buffers could be pooled, SRQ
support was added so instead of connecting a QP to a
dedicated RQ, buffers could be shared across QPs. In this
method, a smaller pool can be allocated and then refilled as
needed instead of pre-posting on each connection.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

Note that a QP can only be associated with one SRQ for
RC. So any channel traffic on a QP will consume a receive
buffer from the attached SRQ. If another SRQ is desired
instead, a second QP must be created.

3.4. SRQ Addressing in XRC

With the addition of the XRC transport, a QP is no longer
connected to a single SRQ. The sender can now specify the
SRQ to which a message should be sent. Each message is
sent with the SRQ number of the SRQ that it should be sent
into. This is a key difference that will be the basis for our
design.

4. Existing Designs of MPI over InfiniBand

MPI has been implemented over InfiniBand by many im-
plementors and organizations, however, all of them generally
follow the same set of protocols and design:

• Eager Protocol: In the eager protocol, the sender task
sends the entire message to the receiver without any
knowledge of the receiver state. In order to achieve
this, the receiver must provide sufficient buffers to
handle incoming unexpected messages. This protocol
has minimal startup overhead and is used to implement
low latency message passing for smaller messages.

• Rendezvous Protocol: The rendezvous protocol negoti-
ates buffer availability at the receiver side before the
message is sent. This protocol is used for transferring
large messages, when the sender wishes to verify the
receiver has the buffer space to hold the entire message.
Using this protocol also easily facilitates zero-copy
transfers when the underlying network transport allows
for RDMA operations.

4.1. Eager Protocol

This mode is generally used for small messages and
is designed for low-latency and overhead. In this mode
the sender pushes the data over to the receiver without
contacting the receiver. In this case the sender has no
knowledge of the receiver state. This is important for two
reasons:

• Unknown Receive Address: The address of the applica-
tion receive buffer is not known. Since the address is
not known the RDMA capability of InfiniBand cannot
be used for a zero-copy transfer.

• Unknown Availability: The sender also has no idea if
the receiver has posted a receive for this send operation
yet.

As a result of this, the eager protocol for InfiniBand-based
MPI libraries is done using copies on both the sending and
receiving sides:

• Sender Side: Take a pre-allocated buffer (send buffer
and place header information (tag, context, and local
source rank) at the beginning. Next the application send
buffer is copied into the send buffer.

• Receiver Side: The message is received into a receive
buffer by the network hardware. On reception the re-
ceiver reads the header and checks the receive queue for
a matching receive. If it is found then the data is copied
into the corresponding application receive buffer. If it is
not available the message is buffered and will be copied
when the receive is posted.

This process is shown in Figure 1(a). This shows there
are two copies as well as the network transfer.

4.2. Rendezvous Protocol

The rendezvous protocol is generally implemented with
one of the RDMA operations of InfiniBand, RDMA Write
or RDMA Read.

In each case the sender sends a “Request to Send (RTS)”
message to the receiver. Upon receipt of the RTS message
the queue of posted receives is searched. Then depending
on the protocol different steps are taken:

• RDMA Write (RPUT): If the receive for this send
has already been posted the address of the application
receive buffer is sent back to the sending process. If the
receive has not been posted the address is sent whenever
the receive is posted. Upon receipt of the receiver
buffer, the sender directly RDMA writes the data from
the sender application buffer to the receiver application
buffer on the remote node. A finish message (FIN) is
also sent to the receiver to notify the completion of the
send operation.

• RDMA Read (RGET): If the receive has already been
posted, the receiver directly reads the data from the
senders application buffer and places it into the receive
buffer with an RDMA Read operation. If the receive
has not been posted then the operation will occur after
the receive has been posted. After completion of the
RDMA Read the receiver sends a FIN to the sender to
indicate that the send can be marked complete.

In both of these cases the application buffer undergoes no
intermediate copies, “zero-copy transfer,” but does require at
least two control messages to be sent. This data movement
path is shown in Figure 1(a). As we will show in the next
section, these control messages often prevent communication
and computation overlap.

5. Semantic Differences Between MPI and In-
finiBand

In this section we discuss the matching semantic differ-
ences MPI and InfiniBand matching.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

Copy
Copy

Network

Application
Buffer

MPI Library
Buffer

MPI Library
Buffer

Application
Buffer

(a) Eager Protocol

Application
Buffer

Application
BufferNetwork

Control Messages

(b) Rendezvous Protocol

Figure 1. Data Movement of Protocols

5.1. MPI Matching

Matching in MPI is based on the communicator, tag and
the rank that sent the message:

• Communicator: A communication context, such that
any message in one context does not interact with each
other. This allows different “groups” to be created that
do not interfere.

• Rank: Within each communicator, each process is or-
dered and given an integer rank from 0 to n-1. Using
this rank information, messages can be send to the
appropriate process.

• Tag: An MPI tag is a message identifier to allow
different ordering.

Each message is matched on these characteristics. Gener-
ally, this matching is implemented by giving a unique integer
ID to a communicator Then each message is matched on
the tuple of the communicator ID, rank, and tag. Ordering
is based in order on this matching information and not just
the order that messages arrive.

5.2. InfiniBand Matching

As noted in Section 3, InfiniBand has multiple transports.
The RC and XRC transports are those most used in imple-
menting MPI. The semantics for RC and XRC are such that
messages on a single QP are ordered.

Receive buffers in InfiniBand are consumed in a FIFO
manner. The only matching done is based on the QP that it
is sent to and no other identifier. When using XRC messages
can be routed by SRQ number, but there is no other form
of matching. Buffers are otherwise always consumed in the
order they are posted.

Thus, there is a significant semantic gap between Infini-
Band message matching and MPI message matching. Due
to this, message matching for MPI over InfiniBand has
typically been entirely in software.

6. Motivation

As noted earlier, MPI allows the application writer to
use non-blocking communication with MPI_Isend to overlap
communication and computation. Unfortunately, the method

of implementing large message transfer, is often done with
control messages and an RDMA operation.

Since MPI libraries generally poll for incoming messages,
an incoming control message cannot be discovered unless
it is in the progress engine (within an MPI call). If the
application is trying to achieve overlap of communication
with computation, the application will by definition not be
in the MPI library. As a result, the control messages can be
delayed, leading to no overlap in many cases.

Figure 2 shows the overlap that can be achieved with
the current designs. The RDMA Write-based design has 3
control messages and leads to poor sender and receiver side
overlap. If the sends immediately goes into a computation
loop after sending the message there will be no overlap.
Similarly, the receiver has no overlap as well. For RDMA
Read, the sender has good overlap, however the receiver
will have very poor overlap if the receiver has gone into
a computational loop. Neither of these existing designs
provides good performance.

Others have proposed using threads, however, this in-
creases the overhead since signaled completion in InfiniBand
is quite a bit slower than that of polling. This also can
decrease performance due to locking required. Signaling has
also been suggested to avoid locks, however, many calls
within the MPI progress engine are not signal-safe.

7. Proposed Design

In this section we describe our design that allows full
overlap of communication and computation for all message
sizes. We first describe the mechanism that we use to provide
zero-copy transfers without needing to exchange control
messages, then we discuss the option to use sender-side
copies, creation of receive queues, and discuss handling of
the MPI wildcards.

7.1. Providing Full Overlap and Zero-Copy

As noted in Section 3, InfiniBand offers two sets of
semantics to transfer data, channel and memory. Tradition-
ally memory semantics (RDMA) has been seen as the only
efficient method by which to transfer large messages without
copies for MPI. Our design shows that this is not the case.

In channel semantics the receive buffers are consumed
in order from a receive queue. In contrast, MPI semantics

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

DataData

Poor Sender
Overlap

Poor Receiver
Overlap

(a) RDMA Write Protocol

Data

Good Sender
Overlap

Poor Receiver
OverlapData

(b) RDMA Read Protocol

Figure 2. Overlap of Existing RDMA Protocols

Data

Good Sender
Overlap

Data

 Good Receiver
Overlap

Figure 3. TupleQ Overlap

require messages to be matched in order, not necessarily in
the same order that they are posted. This semantic gap has
been seen as a need for exchanging control messages.

After studying various applications and patterns we have
found that relatively few tags and communicators are used in
MPI libraries. As such, we propose to have separate queues
for each matching tuple. This design we term TupleQ. The
matching tuple contains the tag, communicator ID and rank.
If each matching tuple has a separate queue, MPI semantics
can match those of InfiniBand as long as only messages with
that tuple are sent to that receive queue. In this way we are
able to provide full overlap as seen in Figure 3.

In addition to being zero-copy without control messages,
this is fully asynchronous and receives are now “matched”
by the hardware. If a receive buffer is not posted to a queue
and a send operation is sent to that queue, the sender HCA
will block until the receive buffer is posted. In this case is
HCA is handling all operations and neither the sender or
receiver CPU has any involvement with these retries.

7.2. Creating Receive Queues

As noted in Section 3.3, with the RC transport of In-
finiBand a Queue Pair (QP) can only be connected to a
single receive queue. As a result, a new connection would

be required for each new queue. This approach would not be
scalable. In contrast, the XRC transport allows addressing
of receive queues, so multiple QPs are not required. Instead
we just create a new SRQ for each matching tuple. When
sending a message, the sender simply sends to the previously
agreed upon SRQ number of the matching tuple.

Given the very large space of possible matching tuples,
the receive queues are created “on demand.” Only when the
sender needs to send a message of a given tuple is an out-
of-band message sent to the receiver to setup a queue for
that tuple. The receiver responds with the SRQ number for
the tuple. This value is then cached on the sender, so all
future sends of that tuple will use that queue. Similarly, the
receiver will post all application receive buffers directly to
the receive queue for that tuple. If the tuple has not been
created when the receive queue will be created for that tuple.

7.3. Sender-Side Copy

In MPI buffer availability determines when a blocking
send call (MPI_Send) call can complete. So as long as
the send buffer is available to be overwritten, the call can
complete. As a result, as described earlier, since many MPI
implementations already copy the send buffer to another
buffer the send can be marked complete directly after the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

buffer has been copied. This option is also possible in
TupleQ as well since there may be benefits to allowing
the sender to go on even if the receiver has not posted the
receive. We evaluate this option in Section 8.

7.4. MPI Wildcards

MPI specifies two wildcards that may be used when
posting a receive. MPI_ANY_SOURCE and MPI_ANY_TAG. The
first, MPI_ANY_SOURCE, means that the source of the mes-
sage is unknown and can match any source. The second,
MPI_ANY_TAG, allows a receive operation to match any tag.
Both can be used together to match any incoming send
operation.

These wildcards are a challenge for a number of reasons:
• There is no “wildcard” receive that can be placed in

many receive queues at a time and then removed from
all when it is consumed.

• A sender will try to always send to the designated tuple
queue and the hardware will not complete the message
until a receive is posted. The receiver will not know
what buffer to post the receive to since it has been
given a wildcard.

To address this issue we introduce a wildcard fallback
mechanism. When a wildcard receive is posted all con-
nections to the receiver are shutdown. This prevents any
messages from being retried by the HCA and all will end up
connecting back to the receiver with a traditional mechanism
described in Section 4. After the wildcard has been matched
the receiver will notify the senders and the tuple queues can
be used again.

This fallback can be quite expensive if it occurs too often,
so TupleQ will fall back to a traditional implementation
model if it occurs too frequently. Alternatively, it can be
disabled for applications that are known to contain wild-
cards. Further, the MPI-3 standard that is under discussion
may contain support for “asserts”, in which the application
could inform the MPI library that it will or will not be using
wildcards [8].

To provide full functionality we would like to see a
hardware matching mechanism that allows a single receive
descriptor to be posted to multiple queues simultaneously
and be removed from all queues once it is consumed.

7.5. InfiniBand Matching Details

As noted earlier, there is no explicit “matching” in In-
finiBand. When a message arrives, it is received into the
QP or SRQ that it is addressed. This is done with strictly
first-in-first-out semantics. Figure 4 shows the difference
between a traditional design and the new TupleQ design.
In the first design a message is received into a temporary
buffer, matched, and then copied into the end user buffer.

This design requires a copy. The TupleQ design by contrast
allows a message to be directly placed into the receive buffer.
Only the small receive descriptor that points to the end buffer
is in the MPI library.

8. Evaluation

In this section we evaluate the design described in the
previous section. We first measure the overlap potential of
our design as well as the overhead incurred as compared to
the traditional implementation. We also evaluate our design
with the SP kernel of the NAS Parallel Benchmarks.

8.1. Experimental Platform

Our experimental platform is a 128-core InfiniBand Linux
cluster. Each of the 8 compute nodes has 4 sockets each with
a Quad-Core AMD Opteron 8350 2GHz Processor with 512
KB L2 cache and 2 MB L3 cache per core. Each node has
a Mellanox MT25418 dual-port ConnectX HCA. InfiniBand
software support is provided through the OpenFabrics/Gen2
stack [9], OFED 1.3 release.

8.2. Experimental Combinations

We evaluate four different combinations to observe their
effect on overlap and performance. For the MPI library,
we use MVAPICH [10], a popular open-source MPI imple-
mentation over InfiniBand. It is based on MPICH [11] and
MVICH [12] and is used by over 840 organizations world-
wide. We implement our TupleQ design into MVAPICH as
well.

The combinations we evaluate are:
• TupleQ: This is the design described in Section 7 with

no data copies.
• TupleQ-copy: This is the design described in Section 7

with sender-side copies for messages under 8KB.
• RPUT: This is the RDMA Write based design from

MVAPICH.
• RGET: This is the RDMA Get based design from

MVAPICH.

8.3. Overlap

We use the Sandia Benchmark [13] to evaluate the overlap
performance of our design. Figure 5(a) shows the Applica-
tion Availability that the protocol allows. Due to the control
messages, the RGET and RPUT designs have poor overlap.
8KB is the threshold where the rendezvous protocol is used
for RPUT and RGET and thus the steep drop in overlap.
Since the TupleQ design is fully asynchronous nearly full
overlap is obtained for all message sizes, including small
ones. Figure 5(b) shows the overhead incurred with each

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

Application

MPI LibraryQP

Copy

Intermediate Buffers

SRQ Application Buffer

(a) Traditional Copy-based

QP

Zero-Copy

Zero Copy Copy

(b) TupleQ Zero-Copy

Figure 4. Transfer Mechanism Comparison

 0

 50

 100

 150

 200

sp.B sp.C

Ti
m

e
(s

)

NAS Benchmark.Class

TupleQ
TupleQ-copy

RPUT
RGET

Figure 6. NAS SP Benchmark

send operation – what is not overlapped. Since the TupleQ
design does full overlap there is minimal overhead, whereas
the RGET and RPUT designs have high overhead since none
of the message transfer can be overlapped.

8.4. NAS Parallel Benchmarks (NPB) - SP

The NAS Parallel Benchmarks [14] (NPB) are a set of
programs that are designed to be typical of several MPI
applications, and thus, help in evaluating the performance
of parallel machines.

Of these kernels, the SP kernel attempts to provide overlap
of communication and computation overlap with MPI_Isend
operations. As such, this is the kernel that we evaluate for
the performance of our new design.

We evaluate this benchmark using 64 processes. Further,
we disable shared memory for all combinations since the
shared memory implementation is not overlapping (future
designs have been proposed that do allow overlap) and will
negate some of the benefit seen.

As shown in Figure 6, the new TupleQ design does very
well for both Class B and Class C. For Class B, the TupleQ

design gives 27.38 seconds and the copy design gives 28.74
seconds. The RGET and RPUT designs do similar with
36.78s and 36.69, respectively. The same pattern is shown
for Class C. The TupleQ design is able to give 27% higher
performance. Again the RPUT and RGET designs perform
similarly. There is very little difference between the TupleQ
and TupleQ-copy modes. There are smaller messages being
transfered, but the majority of the transfers are large with
these datasets. Given that the TupleQ design requires no
buffering it is the better option.

9. Conclusion and Future Work

MPI is the current standard for parallel programming. As
system scales increase, application writers try to increase
the overlap of communication and computation overlap.
Unfortunately, even on offloaded hardware, like InfiniBand,
performance is not improved since the underlying protocols
within MPI require control messages that prevent overlap
without expensive threads.

In this work we propose a fully-asynchronous design to
allow full overlap of communication and computation. We
design TupleQ with novel use of XRC receive queues to
allow zero-copy transfers for all message sizes

Our evaluation on 64 tasks reveals significant performance
gains. By leveraging the network hardware we are able to
provide fully-asynchronous progress. We show overlap of
nearly 100% for all message sizes, compared to 0% for the
traditional RPUT and RGET protocols. We also show a 27%
improvement for NAS SP using our design over the existing
designs.

In the future we wish to explore a wider range of
applications at increased scale to see the effect of the zero-
copy and asynchronous protocols. We also wish to further
study applications to see how they can be modified to take
care of this additional overlap capabilities. We would also
like to look into the hardware modifications necessary to
provide better support for the MPI wildcards.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

1 4 16 64 256

1K 4K 16K

64K

256K

1M

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

(%
)

Message Size

TupleQ
TupleQ-copy

RPUT
RGET

(a) Application Availability

-100

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256

1K 4K 16K

64K

256K

1M

O
ve

rh
ea

d
(u

se
c)

Message Size

TupleQ
TupleQ-copy

RPUT
RGET

(b) Communication Overhead

Figure 5. Sandia Overlap Benchmark

Acknowledgements

We would like to thank Pasha Shamis and Gil Bloch from
Mellanox Technologies for various technical discussions on
this topic with us.

References

[1] InfiniBand Trade Association, “InfiniBand Architecture Spec-
ification,” http://www.infinibandta.com.

[2] “TOP 500 Supercomputer Sites,” http://www.top500.org.

[3] MPI: A Message-Passing Interface Standard, Message Pass-
ing Interface Forum, Mar 1994.

[4] R. Brightwell and K. D. Underwood, “An Analysis of the
Impact of MPI Overlap and Independent Progress,” in ICS
’04: Proceedings of the 18th Annual International Conference
on Supercomputing. New York, NY, USA: ACM, 2004, pp.
298–305.

[5] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active Messages: A Mechanism for Integrated
Communication and Computation,” in ISCA ’92: Proceedings
of the 19th Annual International Symposium on Computer
Architecture. New York, NY, USA: ACM, 1992, pp. 256–
266.

[6] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA Read
Based Rendezvous Protocol for MPI over InfiniBand: design
alternatives and benefits,” in PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. New York, NY, USA:
ACM, 2006, pp. 32–39.

[7] R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman, and
D. K. Panda, “Lock-free Asynchronous Rendezvous Design
for MPI Point-to-point communication,” in EuroPVM/MPI
2008, September 2008.

[8] MPI Forum, “MPI-3 Discussions,” http://www.mpi-
forum.org/.

[9] OpenFabrics Alliance, “OpenFabrics,”
http://www.openfabrics.org/.

[10] Network-Based Computing Laboratory, “MVAPICH: MPI
over InfiniBand and iWARP,” http://mvapich.cse.ohio-
state.edu.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI, Message
Passing Interface Standard,” Argonne National Laboratory
and Mississippi State University, Tech. Rep.

[12] Lawrence Berkeley National Laboratory, “MVICH:
MPI for Virtual Interface Architecture,”
http://www.nersc.gov/research/FTG/mvich/ index.html,
August 2001.

[13] Sandia National Laboratories, “Sandia MPI Micro-
Benchmark Suite,” http://www.cs.sandia.gov/smb/.

[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks,”
vol. 5, no. 3, Fall 1991, pp. 63–73.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

