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Abstract

The need for computational cycles continues to ex-
ceed availability, driving commodity clusters to increas-
ing scales. With upcoming clusters containing tens-of-
thousands of cores, InfiniBand is a popular interconnect
on these clusters, due to its low latency (1.5µsec) and
high bandwidth (1.5 GB/sec). Since most scientific ap-
plications running on these clusters are written using
the Message Passing Interface (MPI) as the parallel pro-
gramming model, the MPI library plays a key role in the
performance and scalability of the system. Nearly all
MPIs implemented over InfiniBand currently use the Re-
liable Connection (RC) transport of InfiniBand to imple-
ment message passing. Using this transport exclusively,
however, has been shown to potentially reach a memory
footprint of over 200MB/task at 16K tasks for the MPI
library. The Unreliable Datagram (UD) transport, how-
ever, offers higher scalability, but at the cost of medium
and large message performance.

In this paper we present a multi-transport MPI de-
sign, MVAPICH-Aptus, that uses both the RC and UD
transports of InfiniBand to deliver scalability and per-
formance higher than that of a single-transport MPI
design. Evaluation of our hybrid design on 512 cores
shows a 12% improvement over an RC-based design and
4% better than a UD-based design for the SMG2000 ap-
plication benchmark. In addition, for the molecular dy-
namics application NAMD we show a 10% improvement
over an RC-only design. To the best of our knowledge,
this is the first such analysis and design of optimized MPI
using both UD and RC.
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supported in part by U.S. Department of Energy grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; National Science Founda-
tion grants #CNS-0403342 and #CCF-0702675; grant from Wright
Center for Innovation #WCI04-010-OSU-0.

1. Introduction

Commodity cluster computing has been growing at a
furious speed over the last decade as the need for ad-
ditional computational cycles continues to exceed avail-
ability. One of the most popular interconnects used on
these clusters is InfiniBand [8], an open-standard with
one-way latencies approaching 1µsec and bandwidth of
1.5GB/sec. Introduced in 2000, InfiniBand was devel-
oped as a general system I/O fabric. Since then, how-
ever, it has found particularly wide acceptance in High
Performance Computing (HPC).

As InfiniBand clusters continue to expand to ever in-
creasing scales, the need for scalability and performance
at these scales remains paramount. As an example,
the upcoming “Ranger” system at the Texas Advanced
Computing Center (TACC) includes over 60,000 cores
with nearly 4000 InfiniBand ports [26]. By compari-
son, the first year an InfiniBand system appeared in the
Top500 list of fastest supercomputers was in 2003 with
a 128 node system at NCSA [2]. The latest list shows
over 25% of systems are now using InfiniBand as the
compute node interconnect.

Its popularity growing, InfiniBand-based MPI benefits
from ongoing research and improved performance and
stability.

The Message Passing Interface (MPI) [15] is the dom-
inant parallel programming model on these clusters.
Given the role of the MPI library as the communica-
tion substrate for application communication, the library
must take care to provide scalability both in performance
and in resource usage. As InfiniBand has gained in pop-
ularity, research has continued on improving the perfor-
mance and scalability of MPI over it. Various optimiza-
tions and techniques have been proposed to optimize
for performance and scalability, however, as InfiniBand
reaches unprecedented sizes for commodity clusters it is
necessary to revisit these earlier works and take the best



aspects of each.
As an example, recent studies have shown that the

memory footprint for InfiniBand communication con-
texts can be significant at such large scales [9, 10], im-
peding the ability to increase problem resolution due
to memory constraints. A significant reason for this is
the Reliable Connection (RC) transport used in most
MPIs over InfiniBand, which requires a few KB of dedi-
cated memory for each communicating peer. Our earlier
proposed solution [10] to this issue uses the Unreliable
Datagram (UD) transport exclusively. Even this method
has limitations, however, since the performance of UD
is below that of RC in many situations, particularly for
medium and large messages.

In this paper we seek to address two main questions:

• What are the current message channels developed
over InfiniBand and how do they perform with
scale?

• Given this knowledge, can an MPI be designed to
dynamically select suitable transports and message
channels for the various types of communication to
improve performance and scalability for the current
and next-generation InfiniBand clusters?

As part of this work we develop a multi-transport
MPI for InfiniBand, MVAPICH-Aptus1, which dynami-
cally selects the underlying transport protocol, Unreli-
able Datagram (UD) or Reliable Connection (RC), as
well as the message protocol over the selected trans-
port on a per message basis to increase performance over
MPIs that only use a single InfiniBand transport. We de-
sign flexible methods to enable the MPI library to adapt
to different network and applications.

Our results on a variety of application benchmarks are
very promising. On 512 cores, MVAPICH-Aptus shows
a 12% improvement over an RC-based design and 4%
better than a UD-based design for the SMG2000 [5]
application benchmark. In addition, for the molecular
dynamics application NAMD [18] we show a 10% im-
provement over an RC-only design.

The rest of the paper is organized as follows: In Section
2, we provide the requisite background information on
InfiniBand. Following in Section 3, we examine existing
message passing channels over InfiniBand and evaluate
their characteristics in Section 4. Our multi-transport de-
sign, Aptus, is presented in Section 5. We evaluate our
prototype on various application benchmarks in Section
6. Related work is noted in Section 7; we conclude and
discuss future work in Section 8.

1‘Aptus’ is Latin for “appropriate or fitting”

2. Background

InfiniBand is a processor and I/O interconnect based
on open standards [8]. It was conceived as a high-speed,
general-purpose I/O interconnect, and in recent years it
has become a popular interconnect for high-performance
computing to connect commodity machines in large
clusters.

2.1. Communication Model

Communication in InfiniBand is accomplished using a
queue based model. Sending and receiving end-points
have to establish a Queue Pair (QP) that consists of Send
Queue (SQ) and Receive Queue (RQ). Send and receive
work requests (WR) are then placed onto these queues
for processing by InfiniBand network stack. Comple-
tion of these operations is indicated by InfiniBand lower
layers by placing completed requests in the Completion
Queue (CQ). To receive a message on a QP, a receive
buffer must be posted to that QP. Buffers are consumed
in a FIFO ordering.

There are two types of communication semantics in In-
finiBand: channel and memory semantics. Channel se-
mantics are send and receive operations that are com-
mon in traditional interfaces, such as sockets, where both
sides must be aware of communication. Memory seman-
tics are one-sided operations where one host can access
memory from a remote node without a posted receive;
such operations are referred to as Remote Direct Mem-
ory Access (RDMA). Remote write and read are both
supported in InfiniBand. Both communication semantics
require communication memory to be registered with In-
finiBand hardware and pinned in memory.

2.2. Transport Services

There are four transport modes defined by the Infini-
Band specification: Reliable Connection (RC), Reliable
Datagram (RD), Unreliable Connection (UC) and Un-
reliable Datagram (UD). Of these, RC, UC, and UD
are required to be supported by Host Channel Adapters
(HCAs) in the InfiniBand specification. RD is not re-
quired and is not available with current hardware. All
transports provide a checksum verification.

Reliable Connection (RC) is the most popular trans-
port service for implementing MPI over InfiniBand. As
a connection-oriented service, a QP with RC transport
must be dedicated to communicating with only one other
QP. A process that communicates with N other peers
must have at least N QPs created. The RC transport
provides almost all the features available in InfiniBand,
most notably reliable send/receive, RDMA and atomic
operations. Unreliable Connection (UC) is similar to RC
but has no guarantees on ordering or reliability.



Unreliable Datagram (UD) is a connection-less and un-
reliable transport, the most basic transport specified for
InfiniBand. As a connection-less transport, a single UD
QP can communicate with any number of other UD QPs.
However, the UD transport does have a number of lim-
itations. All outgoing packets must be limited to MTU
size (maximum 2KB on Mellanox [1] hardware). Given
this restriction, the application or upper-level communi-
cation layer, such as MPI, must manage fragmentation
and re-assembly of messages. The UD transport does
not provide any reliability: lost packets are not reported
and the arrival order is not guaranteed. The UD trans-
port additionally does not enable RDMA. All communi-
cation must be performed using channel semantics, i.e.
send/receive.

3. Message Channels

In this section we describe each of the communication
channels that are available for message transfer in an
InfiniBand-based cluster. MPI libraries in general im-
plement all communication between tasks using meth-
ods that can be categorized under two basic protocols:

• Eager Protocol: In the eager protocol, the sender
task sends the entire message to the receiver with-
out any knowledge of the receiver state. In order
to achieve this, the receiver must provide sufficient
buffers to handle incoming unexpected messages.
This protocol has minimal startup overhead and is
used to implement low latency message passing for
smaller messages.

• Rendezvous Protocol: The rendezvous protocol ne-
gotiates buffer availability at the receiver side be-
fore the message is sent. This protocol is used
for transferring large messages, when the sender
wishes to verify the receiver has the buffer space
to hold the entire message. Using this protocol also
easily facilitates zero-copy transfers when the un-
derlying network transport allows for RDMA oper-
ations.

3.1. Eager Protocol Channels

Reliable Connection Send/Receive (RC-SR): We refer to
RC-SR as the channel built directly on the channel se-
mantics of InfiniBand. It is the primary form of com-
munication for small messages on nearly all MPI imple-
mentations over InfiniBand. Two designs have been pro-
posed, one with per-peer credit-based flow control and
the other using the Shared Receive Queue (SRQ) sup-
port of InfiniBand. In this paper we use only the SRQ-
based design since it has superior scalability (detailed

and shown in earlier work [22, 19]), and since it allows
receive buffers to be pooled across QPs (connections)
instead of posted on a per-peer basis.

Reliable Connection Fast-Path (RC-FP): Current Infini-
Band adapters only reach their lowest latency when us-
ing RDMA write operations, with channel semantics
having a 2µsec additional overhead (e.g. 5µsec vs.
3µsec) on our evaluation hardware. The newest Mel-
lanox adapter, ConnectX [14], reduces this gap to less
than a microsecond, however RDMA write operations
still achieve the lowest latency [24].

To leverage this capability, small message transfer has
been designed over the RDMA write mechanism to fa-
cilitate the lowest latency path of communication [13].
Dedicated buffers are required for each communicating
peer – the default MVAPICH configuration requires over
300KB of memory per RC-FP channel created. To limit
memory usage, channels are currently setup adaptively
and limited to a configurable number of channels in cur-
rent MPIs over InfiniBand. In addition, each RC-FP
channel requires polling an additional memory location
for detection of message arrival. For example, commu-
nication with n peers using the RC-FP channel requires
polling n memory locations for message arrival.

Unreliable Datagram Send/Receive (UD-SR): As de-
signed and described in our earlier work [10], the UD-
SR message passing channel is message transfer im-
plemented over the channel semantics of the UD trans-
port of InfiniBand. Message segmentation and reliabil-
ity must be handled within the MPI library to provide
the guarantees made by the MPI specification to applica-
tions. Advantages of using this channel include superior
memory utilization since a single UD QP can communi-
cate with any other UD QPs; each QP is not dedicated to
a specific peer as with the RC transport.

3.2. Rendezvous Protocol Channels

Reliable Connection RDMA (RC-RDMA): The RC-
RDMA channel is the mechanism for sending large mes-
sages. Using this method, the sender can use an RDMA
write operation to directly write into the application
buffer of the receiver without intermediate copies. Addi-
tional modes have also been suggested based on RDMA
read [23] and a pipelined RDMA write [21]; however, in
this paper we consider only RDMA write.

Unreliable Datagram Zero-Copy (UD-ZCopy): In [11],
a zero-copy protocol for transferring large messages over
the UD transport of InfiniBand was proposed. Band-
width for large messages is significantly increased due
to the lack of copies on both sides of communication.
The primary motivation for this channel is to provide



high bandwidth and to avoid scalability problems with
RC QPs.

Copy-Based Send: If neither of the previously noted ren-
dezvous channels are available, large messages can be
segmented within the MPI library into many small sends
and sent using an eager protocol channel (after negoti-
ating buffer availability). This method, however, intro-
duces intermediate copies and degrades performance.

3.3. Shared Memory
Clusters with multiple tasks running per node often use

shared memory communication to communicate within
a single node. This reduces contention on the network
device and can provide lower latency and higher perfor-
mance. In this paper we will consider the design de-
scribed in [6], which is included in current versions of
MVAPICH [16]. This provides both an eager and ren-
dezvous protocol design for intra-node communication.

4. Channel Evaluation

Our experimental test bed is 560-core InfiniBand Linux
cluster. Each of the 70 compute nodes has dual 2.33
GHz Intel Xeon “Clovertown” quad-core processors for
a total of 8 cores per node. Each node has a Mellanox
MT25208 dual-port Memfree HCA. InfiniBand soft-
ware support is provided through the OpenFabrics/Gen2
stack [17], OFED 1.2 release.

The RC-based message channels we evaluate follow
the design of MVAPICH [16], a popular open-source
MPI implementation over InfiniBand. It is based on
MPICH [7] and MVICH [12] and is used by over 610
organizations worldwide. The UD-based message chan-
nels are based on the design included in MVAPICH-
UD [10, 11].

We evaluate the basic performance of latency and band-
width of the channels, followed by an investigation into
the scalability of each channel.

4.1. Basic Performance Microbench-
marks

In this section we investigate the basic characteristics
of each message passing channel that is available.

Ping-Pong Latency: Figure 1 shows the latency of each
of the eager message channels. RC-FP shows the lowest
latency, with a minimum of slightly less than 3µsec. RC-
SR and UD-SR have very similar latency results up to
2KB; at this point UD-SR is sending 2KB of data as well
as the required MPI header information – resulting in a
message size of over 2KB, which is the MTU on our
evaluation HCA. This requires segmentation within the
MPI library due to limits of the UD transport; this cost
is clearly visible.
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Figure 1. Channel Latency Comparison

Uni-directional Bandwidth: To measure the uni-
directional bandwidth, we use the osu bw mr bench-
mark [16], which sends a window of sends from one
task to another and measures the time until an ac-
knowledgment from the receiver is received. In addi-
tion, the benchmark measures the aggregate bandwidth
achieved by multiple pairs of communicating tasks be-
tween nodes.

Figure 2 shows the results for each of the eager mes-
sage channels, paired with the rendezvous channel of
the same transport. For small message sizes we see that
UD-SR demonstrates high bandwidth and there is no de-
crease in performance with additional pairs of tasks. By
contrast, RC-FP and RC-SR show performance degra-
dation from 4 to 8 pairs of concurrent communication.
The UD transport requires less HCA overhead since
hardware-level ACKs are not sent for UD messages and
state information does not need to be retained on the
HCA. As in the latency evaluation, we note a decrease in
performance for UD-SR after 1KB due to segmentation
overhead.

For large message bandwidth we note that UD-ZCopy
achieves significant throughput but is slightly lower than
RC-RDMA for a single pair. Additional overheads, such
as posting in 2KB chunks, are required in the UD-ZCopy
protocol that lower the performance below the fabric
limits that RC-RDMA achieves.

4.2. Evaluation of Channel Scalability
In this section we evaluate several other characteristics

of each message channel, in particular those that have
scalability aspects.

Memory Footprint: While a channel may provide high-
performance it may come only at the cost of host mem-
ory usage. Figure 3(a) shows our measurement of chan-
nel memory usage per task. From the graph we imme-
diately note that RC-FP consumes significant amounts
of memory, making a large number of RC-FP chan-
nels infeasible. RC-SR/RC-RDMA also have a signif-
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Figure 2. Multi-Pair Uni-Directional Bandwidth Comparison

icant memory footprint as the number of connections
increases since RC-SR/RC-RMDA are built on the RC
transport. Recall from Section 2 that each RC QP must
be dedicated to another RC QP in the peer task. Mem-
ory usage for UD-based transports is negligible since a
single UD QP can communicate with any other UD QP
in any task, leading to superior memory scalability.

Performance with Increasing Channel Count: Another
important aspect to evaluate is the effect of multiple
channels on performance. In the earlier subsection we
evaluated only two tasks, which does not show scalabil-
ity related effects.

As described earlier, RC-FP requires dedicated receive
buffers for each communicating peer. As a result, a byte
for each RC-FP channel must be polled to detect mes-
sage arrival. To explore the cost of this polling we mod-
ify the RC-FP channel to poll on a configurable numbers
of buffers. Figure 3(b) shows the 4-byte latency with in-
creasing poll counts. We also plot the line for RC-SR
latency, since polling RC-FP buffers also delays the de-
tection of messages arriving on any other channel. Based
on this result it becomes clear that more than 100 RC-
FP channels will lead to performance degradation over a
RC-SR only design.

By contrast, RC-SR and UD-SR maintain the same la-
tency as the number of allocated channels increases. All
completions are placed in a single CQ, where the library
can poll for message arrival.

Impact of HCA Architecture: Although RC-SR shows
similar performance to UD-SR with increasing numbers
of allocated channels, performance differs from UD-SR
when each of the channels is used instead of simply al-
located.

InfiniBand HCAs cache QP information using on-card
memory, called the InfiniBand Context Memory (ICM)
cache. The ICM cache has a limited size and cannot
hold more than a limited number of QP entries at any
one time; context information outside of the cache must
be fetched from host memory.

We replicate the evaluation from [25] to measure the
cache size for our newer-generation HCAs by evaluating
the 4-byte latency at the lowest software layer, the Infini-
Band “verbs.” Figure 3(c) shows that the ICM cache of
the HCA is still limited in size with large increases in la-
tency when multiple QPs are accessed in a round-robin
order. All protocols based on the RC transport have this
issue. Furthermore, this problem is exacerbated by the
increase in core counts which lead to larger number of
tasks sharing the same HCA (and ICM cache). UD-SR
does not have this issue since a single UD QP can com-
municate with any other number of UD QPs – thus re-
maining in the HCA cache.

5. Proposed Design

In this section we describe our multi-transport design
that incorporates all available communication channels.
Since neither the RC or UD transport provides all of the
desired features – scalability and best performance – a
hybrid of the two transports is required. In this section
we propose our design, MVAPICH-Aptus, that encom-
passes all of the available channels into a unified design
that allows flexibility in channel selection. Based on the
results from the previous section, a summary of channel
characteristics is provided in Table 1. Figure 4 shows the
general overview of the design.

We first describe the initial state of Aptus at startup, fol-
lowed by a discussion of how Aptus multiplexes chan-
nels and provides reliability. Next we explain the chan-
nel selection algorithm of Aptus and the channel alloca-
tion strategies used.

5.1. Initial Channel Allocation

At job startup, MPI Init, Aptus only creates UD QPs
and exchanges their information to the other tasks in the
job. At this point all tasks in the job are able to com-
municate with any other task using the UD-SR and UD-
ZCopy channels. If tasks are sharing the same physical
host, the SMP channel is also automatically allocated.
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Figure 3. Channel Scalability Evaluation

Table 1. Channel Characteristics Summary

Type Channel Transport Latency Throughput Scalability

Eager

RC Send/Receive (RC-SR) RC Good Fair Fair
RC Fast-Path (RC-FP) RC Best Good Poor

UD Send/Receive (UD-SR) UD
< 2KB, Good < 2KB, Best

Best
≥ 2KB, Poor ≥ 2KB, Poor

Rendezvous
RC-RDMA RC - Best Fair
UD Zero-Copy (UD-ZCopy) UD - Good Best
Copy-Based UD or RC - Poor -

After communication begins, Aptus tracks communi-
cation characteristics to determine the peers that each
task communicates most frequently with as well as the
message sizes. Using these statistics Aptus dynamically
allocates more resource intensive channels, such as RC-
SR or RC-FP, to reduce the communication overhead be-
tween sets of peers. The interpretation of these statis-
tics must be done in consideration with the architecture
and characteristics of each channel. Details are provided
later in Section 5.4.

In addition, since performance characteristics for dif-
ferent message sizes vary with the channel, multiple
channels between tasks may be required to obtain the
best performance. For this reason Aptus allows for mul-
tiple channels to be active between tasks.

5.2. Channel Multiplexing and Reliabil-
ity

As mentioned earlier, Aptus allows for multiple com-
munication channels to be active simultaneously. As
part of the support for UD-SR, Aptus must contain a re-
liability and re-ordering engine since the UD transport
that underlies UD-SR is unreliable and subject to mes-
sage drops and reordering. To support this, we design
a generalized framework to re-order messages from all
message channels since depending on the channel there

may be out-of-order receives. In addition, each message
channel can be independently configured to use the mes-
sage reliability support. For example, is is not necessary
for reliability to be enabled for RC-SR or RC-FP, so we
can disable reliability. This elegant integration also al-
lows other features such as an end-to-end CRC check to
be done across all channels very simply if reliability is
turned on for all channels and a CRC is computed on
send and receive.

5.3. Channel Selection

Given the framework described, one area left unre-
solved is how to determine which message channel
should be used of those allocated. The factors that moti-
vate this selection are almost entirely from the architec-
ture characteristics. Factors such as the different over-
heads between RC-SR and RC-FP may change with the
HCA model and should be reflected in the way messages
are sent. Our main observation is that factors that drive
message channel selection are fluid – they may change
based on cluster architecture or the number of ranks in
the MPI job.

To support a flexible model we design a send rule
chain method of determining how messages should be
sent. A single send rule is in the form of {COND,
MESG CHANNEL}, e.g. {MSG SIZE <= 1024, UD-SR }.
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If COND evaluates to true and MESG CHANNEL is already
allocated, then MESG CHANNEL will be used for this mes-
sage. Multiple of these send rules can be chained to-
gether, with earlier rules taking priority over later rules
in the chain. The last rule in the chain must have a con-
ditional of TRUE with UD-based channel to be valid.

Based on our evaluation in Section 4, we found that
RC-FP has superior latency and should be used if avail-
able. In addition, RC-SR and UD-SR perform simi-
larly in latency for small messages, however UD-SR
has better throughput for messages under 2KB. Larger
messages always gain performance using RC-RDMA if
available. In keeping with these findings, we develop the
following default send rule chain for our system:

{ MSG_SIZE <= 2048, RC-FP },
{ MSG_SIZE <= 2008, UD-SR },
{ MSG_SIZE <= 8192, RC-SR },
{ MSG_SIZE <= 8192, UD-SR },
{ TRUE, RC-RDMA }, { TRUE, UD-ZCOPY }

[Note that these rules do not take into ac-
count whether a channel should be created,
just whether to use it if it has already been
allocated.]

Using this flexible framework, send rules can be
changed on a per-system or job level to meet applica-
tion and hardware needs without changing code within
the MPI library and re-compiling.

Although our current prototype does not support any
other variables besides MSG SIZE and NUM RANKS in the
conditional, other rules could potentially be designed to
allow for additional flexibility.

5.4. Channel Allocation
The previous section explored how messages can be

sent over different channels using a configurable send

rule chain. In this section we discuss how each of those
channels is allocated initially.

As discovered earlier in our channel evaluation, it is
detrimental to performance as well as the memory foot-
print to create certain channels after a number of them
have already been created. For example RC-FP adds la-
tency to all other channels as well as itself as more peers
are communicated with over RC-FP. Similarly, too many
RC connections uses a significant amount of memory
and can overflow the HCA ICM cache, leading to sig-
nificant latency.

It is important to use the minimal number of these chan-
nels while allocating high performance channels only to
those peers that will benefit most from them. In our cur-
rent prototype we use a variation of the send rules de-
scribed in the previous section to increment counters to
determine which peers would benefit most from a new
connection. After the counter for a rule has reached its
configured limit, the channel of that type is created pro-
vided per-task limits have not been passed.

Based on our evaluation, in our configuration we limit
the number of RC-SR/RC-RDMA channels to 16 per
task, meaning a task can only use the RC transport to
a maximum of 16 of its peers. Similarly we limit RC-FP
to 8 channels per task. These limits represent a tradeoff
between the performance provided by each channel and
the performance degradation that occurs with too many
channels of these types. These limits are run-time tun-
able to allow flexibility based on HCA type and architec-
ture. Limiting the RC QPs limits the potential for HCA
cache thrashing.

6. Application Benchmark Evaluation

In this section we evaluate a prototype of our Aptus
design on the NAS Parallel Benchmarks, NAMD, and



SMG2000. Our evaluation platform is the same as de-
scribed in Section 4. To explore performance changes
based on the hybrid model of Aptus, we evaluate four
different configurations:
• RC: In this configuration we evaluate using MVA-

PICH 0.9.9, in the default configuration, aside from
additional receive buffers posted to the SRQ. This is
the baseline performance expected for an RC-based
MPI. Includes RC-SR, RC-FP, and RC-RDMA.

• UD: Our design using only UD-SR and UD-ZCopy
(MVAPICH-UD)

• UD-copy: Our design using only UD-SR
• Aptus: The prototype of our design presented in

this work with the parameters mentioned in Sec-
tion 5.3 using UD-SR, UD-ZCopy, RC-SR, RC-FP,
and RC-RDMA.

In addition, each of the configurations uses the same
shared memory channel for all communication to peers
on the same node.

In terms of channel designs, our Aptus prototype is
based on MVAPICH-UD and MVAPICH, however, the
codebase itself is almost entirely new. It is implemented
as a device layer for MPICH.

For our evaluation we collect message statistics for
each message channel. We track both the number of
messages sent and the data volume sent over each chan-
nel. In addition, we track this on a per-peer basis to de-
termine how many message channels are allocated and to
what peers. We also determine the message distribution
of the application from within the MPI library, includ-
ing control messages. Figure 7 shows these distributions
with darker blocks denoting larger messages. For exam-
ple, 95% of messages for LU are greater than 512 bytes,
however, very few are greater than 4KB.

6.1. NAS Parallel Benchmarks
The NAS Parallel Benchmarks [4] (NPB) are a set

of programs that are designed to be typical of several
MPI applications, and thus, help in evaluating the per-
formance of parallel machines. We evaluate using the
largest of the problem datasets, Class ’D’. We run CG,
EP, FT, LU, and MG with 512 tasks and both BT and SP
with 529 tasks.

Figure 6 shows execution time normalized to RC of the
NAS Benchmarks. In each case the Aptus prototype
maintains equal or better performance than the other
configurations. We note that in general UD-Copy per-
forms the worst since large messages incur intermediate
copy overheads.

For both CG and LU the RC configuration outperforms
that of UD. Figure 7(b) shows the percentage of mes-
sages sent over each message channel. We observe that
over 40% of messages are able to be transferred over

the low-latency RC-FP channel, which is not available
in a UD-only implementation. For CG, we note from
Figure 7 that over 30% of messages are over 256KB,
where RC-RDMA can provide a significant benefit. Ap-
tus takes the benefits of both RC-FP for small messages
and RC-RDMA for large messages, while using UD-SR
for less frequently communicating peers. As a result, for
both LU and CG, Aptus performs 2% better than RC and
4% better than UD.

In other benchmarks, FT in particular, we note that UD
outperforms the RC configuration. From Table 2 we note
that FT performs communication with all peers and in
the RC case will require 504 RC QPs, leading to QP
thrashing as the HCA ICM cache is exceeded. By com-
parison, the UD QPs in the UD configuration will remain
in the ICM cache and lead to increased performance, 9%
in this case. Aptus shows a small improvement over UD
since a few large messages can be sent using RC, reduc-
ing the load on the host.

6.2. NAMD
NAMD is a fully-featured, production molecular dy-

namics program for high performance simulation of
large biomolecular systems [18]. NAMD is based on
Charm++ parallel objects, which is a machine inde-
pendent parallel programming system. Of the various
data sets available with NAMD, we use the one called
f1atpase. We evaluate with 512 tasks.

From Figure 6 we observe that NAMD performs much
better (10%) using the UD transport than the RC trans-
port. From Table 2 we observe that each NAMD task
communicates with a large number of peers (120.8) on
average. With so many communicating peers RC will
overflow the ICM cache. In addition, many of the mes-
sages are below the 2KB segmentation threshold for UD-
SR where performance exceeds that of RC-SR. Aptus
performs similarly to UD with a 10% improvement over
RC, which can be explained by Figure 7(b), which shows
nearly 80% of messages are sent over UD-SR, meaning
Aptus receives little benefit from RC-RDMA or RC-FP.

Note that although we have set the threshold for the
number of RC-SR/RC-RDMA channels to 16, both
NAMD and SMG2000 have an average above 16. This
is due to the handshake involved in connection setup and
the fact that both sides must create the connection. This
is a benign race condition that can lead to at maximum
two additional connections.

6.3. SMG2000
SMG2000 [5] is a parallel semi-coarsening multigrid

solver, which is part of the ASC Purple Benchmarks. We
run SMG2000 for 512 tasks and report the solve time
produced by the benchmark.

Figure 6 shows the execution time of SMG2000 nor-
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malized to RC, where we observe clear differences be-
tween each of our configurations. Aptus delivers the
highest performance, a full 12% over RC and 4% over
UD. As with NAMD, from Table 2, SMG2000 commu-
nicates on average with over 120 peers of the 512 in the
job. Such a large number of peers favors the UD trans-
port, which we observe in the increased performance of
UD over RC. Aptus, however, further improves on the
performance of UD by using RC-SR and RC-RDMA for
larger messages. From Figure 7(a) we observe Aptus is
able to send 50% of data volume over one of the RC-
based message channels, which have better bandwidth
than UD-SR for messages over 2KB.

7. Related Work

Scalability of MPI libraries over InfiniBand has been a
topic of much recent research. Many of these research
works focus on reducing communication buffer require-
ments by utilizing SRQ [22, 19, 20]. In addition, the Re-
liable Connection memory utilization has been tackled
in [9]. Yu, et al. proposed a connection setup method
where UD was used for the first sixteen messages be-
fore an RC connection was setup [27]; in this case RC
was the primary transport and no tradeoffs were eval-
uated. Further, connection-less UD MPI designs have
been proposed in [10]. The zero-copy protocol over UD
was introduced in [11]. Each of these works has been
either on RC or UD; to the best of our knowledge, our
work is the first to show the combination of both RC and
UD.

MPIs that dynamically use all available interconnects
have been designed in the past, including Intel MPI,
Open MPI, Scali MPI, and others. Research work has
been done with Mad-MPI [3] from the Madeleine project
that seeks to incorporate multiple interconnects and pro-
vides scheduling across them. Our work is different in

that we are targeting different transports on the same net-
work device, and optimizing for the memory footprint
and performance.

Current MPI designs over InfiniBand such as MVA-
PICH, Open MPI, and Intel MPI offer dynamic creation
of RC QPs as needed; however, none of them include
support for both the UD and RC transports simultane-
ously and cannot limit the number of RC QPs that are
created. If a peer communicates with all others in the
job a QP will be created to each one. Our design by
contrast allows the amount of allocated resources to be
limited.

The next-generation Mellanox HCA, ConnectX, pro-
vides a new transport, eXtended Reliable Connection
(XRC) [24, 14]. XRC allows a single QP to be shared
among tasks on the same node to potentially reduce
memory usage. Driver support for XRC is still being
tested and we hope to evaluate it in the future.

8. Conclusion and Future Work

As high-performance systems continue to scale, the
need for the MPI library to maintain scalable in resource
usage as well as performance is essential. For large-scale
clusters an MPI that uses the RC transport exclusively
can use up to 200 MB/task at 16K tasks, limiting the
scalability and available memory. By contrast an MPI
design has been proposed that uses the UD transport ex-
clusively and has near-constant memory usage; however,
performance is reduced compared to that of RC-based
MPIs for some applications.

In this work we bridge this gap between RC and UD de-
signs of MPI over InfiniBand. We first examine all avail-
able message passing channels available over InfiniBand
and evaluate the performance as well as various scalabil-
ity limitations for each. Based on the results from this
evaluation we form a hybrid design, MVAPICH-Aptus,
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Table 2. Average Number of Channels Used/Allocated Per Task (Aptus)

App. Message Channels
SMP UD-{SR,ZCopy} RC-{SR,RDMA} RC-FP

NPB.BT 4.11 20.17 10.60 7.88
NPB.CG 3.00 6.94 2.94 2.94
NPB.EP 3.00 6.00 0.00 0.00
NPB.FT 7.00 504.00 16.00 8.00
NPB.MG 4.31 9.00 5.63 5.63
NPB.LU 3.75 7.06 2.23 2.23
NPB.SP 4.11 20.17 10.62 7.88
NAMD 6.30 120.80 16.47 8.00

SMG2000 4.25 120.19 16.34 8.00
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to utilize each of these message channels. We introduce
send rule chains to efficiently use each channel.

As part of our work we develop and evaluate a pro-
totype of our design. Our evaluation on 512 tasks re-
veals significant performance gains. By using each mes-
sage channel within its optimal range we outperform
both MPIs that are limited to only one transport of In-
finiBand. We observe a 12% improvement over an RC-
based design and 4% better than a UD-based design for
the SMG2000 application benchmark. In addition, for
NAMD we show a 10% improvement over an RC-only
design. Since only a handful of RC-based resources are
allocated, memory usage remains within a few MB of
that of an exclusively UD-based MPI.

In the future we seek to explore more dynamic man-
agement of message channels. Some application codes
use adaptive methods and change communicating peers,
and we plan to explore methods to tear down and re-
allocate channels for these types of applications. We also
plan to evaluate our design at larger scales. In addition,
we plan to compare performance and scalability with the
proposed XRC transport of InfiniBand.
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