
Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University
{kandalla, subramon, santhana, koop, panda}@cse.ohio-state.edu

Abstract

The increasing demand for computational cycles is being
met by the use of multi-core processors. Having large
number of cores per node necessitates multi-core aware
designs to extract the best performance. The Message Pass-
ing Interface (MPI) is the dominant parallel programming
model on modern high performance computing clusters. The
MPI collective operations take a significant portion of the
communication time for an application. The existing opti-
mizations for collectives exploit shared memory for intra-
node communication to improve performance. However, it
still would not scale well as the number of cores per node in-
crease. In this work, we propose a novel and scalable multi-
leader-based hierarchical Allgather design. This design al-
lows better cache sharing for Non-Uniform Memory Access
(NUMA) machines and makes better use of the network
speed available with high performance interconnects such
as InfiniBand. The new multi-leader-based scheme achieves
a performance improvement of up to 58% for small messages
and 70% for medium sized messages.

1. Introduction

The use of high performance computing has been growing
continuously over the last decade as the need for addi-
tional computational cycles continues to exceed availability.
Though modern high performance interconnects such as
InfiniBand [?] address the growing bandwidth requirements
of current day high performance computing clusters, much
of the additional computing power for these systems has
been achieved through the use of multi-core processors.
These additional cores per compute node add more choices
into software design for high performance computing.

The Message Passing Interface (MPI) [?] is the dominant
parallel programming model on current generation high
performance computing clusters. Given the role of the MPI

* This research is supported in part by U.S. Department of Energy grants
#DE-FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-
0403342, #CCF-0702675 and #CCF-0833169; grant from Wright Center
for Innovation #WCI04-010-OSU-0; grants from Mellanox, Intel, Cisco,
QLogic and Sun Microsystems; Equipment donations from Intel, Mellanox,
AMD, Advanced Clustering, Appro, QLogic and Sun Microsystems.

library as the communication substrate for applications, the
library must be designed to be multi-core aware to achieve
the highest performance. The MPI standard defines two
main types of communication: point-to-point and collective.
The collective operations involve multiple processes in the
job. These operations commonly take a large portion of the
communication time for an application. If these collective
operations can be designed to be multi-core aware, the
overall performance of an application can improve [?].

Currently, optimized collectives for multi-core machines
[?], [?] use shared memory on each node to aggregate
messages and have a single leader per node responsible for
inter-node exchanges. This increases the degree of commu-
nication that takes place on the node and reduces network
traffic. While our studies have shown that this can increase
performance, it still ignores the multi-core aspect of the
machines and will not scale as the number of cores per node
increases.

In this paper we propose a novel multi-leader-based
approach for collective communication. We consider
MPI Allgather, an important collective used in applications
like matrix multiplication kernels [?] and video compression
[?], and show how it can be transformed into a multi-leader-
based approach. We design the multi-leader-based hierar-
chical model of communication by considering both point-
to-point-based as well as shared-memory-based schemes.
We incorporate our design into MVAPICH2 [?], a popular
MPI library over InfiniBand and evaluate them on high
performance computing clusters. Our evaluations show a
latency improvement of up to 70% for a range of message
sizes.

The rest of the paper is organized as follows. Section 2
gives the background needed for this paper. Existing designs
for MPI Allgather and their limitations are presented in
Section 3. In Section 4, we present our new multi-leader-
based collective design for MPI Allgather. Section 5 details
the performance evaluation results of the various design
options against the existing single-leader-based designs and
the conventional MPI Allgather algorithms. Research work
related to ours is presented in Section 6. Our conclusions
and thoughts for future work are presented in Section 7.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

2. Background

In this section we briefly describe the required background
for our work.

Multi-Core Architecture: In multi-core processors, we
have two or more independent cores combined into a single
die. The cores may share a single coherent cache as in the
case of Intel machines or have separate caches like the AMD
multi-core processors [?]. In this work, we use the AMD
multi-core platform for evaluating our proposed designs.
AMD multi-core Opterons [?] are based on NUMA [?]
architecture, with sockets providing the necessary electrical
interface between the motherboard and the processing cores.
Each of the sockets share independent memory units. The
latest Barcelona systems have four cores per socket. All
of the cores have independent L2 caches. Point-to-point
HyperTransport [?] links provide the required bandwidth
scalability between the cores. Further, these links are con-
nected by a 2-D mesh topology providing for scalable
and less congestion-prone on-chip interconnection network.
Also, the future Intel designs are expected to be NUMA
based to allow for increased memory bandwidth. These
designs will use the Intel Quick Path Interconnect (QPI) [?]
as the interconnect between the sockets.

InfiniBand: The InfiniBand Architecture (IBA) [?] de-
fines a switched network fabric for interconnecting pro-
cessing nodes and I/O nodes. It provides a communication
and management infrastructure for inter-processor commu-
nication and I/O. In an InfiniBand network, processing
nodes and I/O nodes are connected to the fabric by the
Channel Adapters (CA). In recent years, several large scale
InfiniBand clusters have been deployed with many featuring
in Top 500 list of supercomputers.

MPI Allgather Collective: The Allgather collective op-
eration is also known as the Alltoall-Broadcast and it in-
volves each process broadcasting a vector data to every other
process in the group. If there are N processes involved, the
MPI Allgather operation can be visualized as N concurrent
broadcast operations with each process acting as the root.
This kind of operation is heavily used in matrix multiplica-
tion kernels.

MVAPICH2: MVAPICH2 is a high performance imple-
mentation of MPI-2 over InfiniBand. MVAPICH2 is avail-
able as an open source distribution and is currently being
used by more than 840 organizations worldwide including
several several high end computing platforms including the
TACC Ranger system [?] which is currently ranked the sixth
fastest supercomputer.

3. Existing Approaches for MPI Allgather

In this section, we describe the existing schemes for
MPI Allgather.

3.1. Conventional MPI Allgather Designs

The most popular algorithms for MPI Allgather are the
recursive doubling scheme for short messages and the ring
algorithm for large messages [?]. The recursive doubling
algorithm is based on the hypercube scheme and requires
log(p) steps to complete, where p is the number of processes
involved. In each step, the distance between the peers
exchanging data increases by a factor proportional to power
of 2 and the size of messages exchanged also doubles. If
we consider ts to be the start-up cost for communication
between two processes and tw to be the time required to
exchange a word of data between the two processes in
a single ported model with bi-directional links, the cost
of communication for the recursive doubling scheme is
(ts ∗ logp + tw ∗ (p− 1) ∗m). The ring algorithm requires
p steps of communication to complete, with a process
exchanging data with its left and right neighbor in every
iteration with the amount of data exchanged being the same
across all the iterations. The cost of communication for the
ring scheme is known to be (ts + tw ∗m) ∗ (p− 1). Since
the recursive doubling algorithm requires lesser number of
communication steps, the start-up costs are lower and it is
optimal for small and medium messages. However, it has
been observed that the ring scheme performs better for larger
messages and this has been attributed to its near-neighbor
communication pattern. These algorithms were designed and
optimized for single process per node systems over Ethernet
networks. All of these algorithms are currently employed in
MPICH2 [?].

In MVAPICH2, all the collective algorithms including
the MPI Allgather operations described above have default
implementations over point-to-point operations. These are
derived from MPICH2 implementation.

3.2. Single-Leader-Based Collective Design

Single-leader-based hierarchical approaches have been
proposed for multi-core clusters [?], [?] to address this
issue and optimize the performance of collectives. In [?],
[?], authors propose similar schemes for Symmetric Multi-
Processor (SMP) based systems. In [?], authors propose
approaches that choose one process per node as a leader
and the other processes that reside on the same node are
referred to as the children. One simple way to select the
leader process would be to choose the lowest ranking process
on each node. The entire algorithm could be broken up into
three phases:

1) Aggregation of messages at the leader processes
2) Data exchange between leaders
3) Distribution of data from the leaders to children
Phases (1) and (3) are necessarily intra-node operations

and phase (2) will entail inter-node exchanges.
The inter-node exchanges boil down to one process in

one node exchanging data with only one process in other

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

Collective Designs

Point−to−Point Point−to−Point Shared−Memory

Conventional Collectives Single−Leader−Based Collectives

Point−to−Point Shared−Memory

Multi−Leader−Based Collectives

Figure 1. Collective Design Alternatives (White - Existing, Gray - Proposed)

nodes, which is identical to the traditional clusters with
single process per node. As explained above, for such
cases, recursive doubling scheme performs better for smaller
messages and the ring scheme is more optimal for larger
messages. For intra-node exchanges there are potentially two
approaches: (i) point-to-point-based and (ii) shared-memory-
based.

In point-to-point-based approaches, the data transfers in
phase (1) and phase (3) are implemented on top of point-to-
point MPI Send and MPI Recv operations. In MVAPICH2,
these calls are optimized to use the SMP channel for intra-
node exchanges. However, despite using the non-blocking
versions of these calls, the entire communication operation
is still serialized. In the shared-memory-based approach, the
leader sets up a shared memory buffer and all the other pro-
cesses read/write their contribution into this shared memory
space concurrently and could lead to better performance.

3.3. Limitations of Existing Schemes

The conventional schemes have severe limitations when
used on modern multi-core systems. They do not take into
account the hierarchy introduced by the advent of multi-
core architectures. They also fail to take advantage of shared
memory for communication across cores residing on the
same node. In the worst case scenario, where a cyclic
distribution [?] is used, the ring communication could lead to
very high network traffic since every data-transfer could go
across the network. This could lead to severe performance
degradation. This condition can be partially alleviated using
a block distribution of processes [?].

The issues related to the conventional schemes have been
addressed in the single-leader-based hierarchical approaches.
These studies have shown the potential for higher perfor-
mance by using the hierarchical approaches. However, with
the number of cores per node constantly increasing, there
is a need to investigate the single-leader-based hierarchical
schemes further. While its obvious that intra-node communi-
cation can be improved by using shared memory buffers, it is
also important to consider the differences in communication
characteristics between inter-node and intra-node exchanges.

In hierarchical schemes, due to aggregation and distribution
of the individual messages, the number of exchanges that
occur between nodes is lower than the conventional schemes
and help in lowering the communication start-up costs.
However, the size of each message sent over the network
is higher, which increases the bandwidth component of
the communication cost. It is necessary to design schemes
that minimize or eliminate network contention as it could
severely degrade the performance of hierarchical schemes.
It is important to note that these schemes entail making
multiple copies of messages and this could be play a role
in limiting the performance as the message size increases.
With the number of cores per node constantly increasing, it
is important to consider the contention that is bound to occur
within a compute node and it is necessary to design schemes
to mitigate these issues. It is necessary to be cautious when
working with schemes that use shared caches due to issues
like cache thrashing and page alignment as they can severely
degrade the performance of schemes that try to exploit
shared memory to optimize the intra-node communication
steps [?]. The existing hierarchical schemes have addressed
the issues related to contention free inter-node exchange and
careful cache-aware usage of the shared memory buffers
[?]. However, they still do not address the issues related to
optimizing as intra-node exchanges. As the number of cores
per node increases, the contention within each node leads to
lower scalability and poor performance of the single-leader-
based approach and it is necessary to design schemes to be
address this issue.

4. Design of Multi-Leader-Based
MPI Allgather Algorithms

In this section we explain the design and motivation for
the multi-leader-based MPI Allgather algorithms for multi-
core architectures.

Earlier works [?], [?], [?] have shown that leader-based
schemes could increase performance of the MPI Allgather
collective. From our analysis, however, we found that this
method can have very high contention as the number of

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

functional cores per node increases. As noted in Section 3,
the hierarchical schemes can be implemented using either
point-to-point calls or shared memory. In the point-to-point-
based design we suspect the leader being a bottleneck in
processing messages. In the shared-memory-based design,
we suspect that the memory contention between processes
became significant.

As a result, we propose a multi-leader-based design to
reduce the contention on memory and at the leader process.
Figure 1 shows the overall framework that is being designed.
The un-shaded sections of the figure are the conventional
designs and the existing single-leader-based hierarchical
designs. The shaded sections of the figure correspond to
the new multi-leader-based hierarchical designs that we are
proposing.

4.1. Number of Leaders

The first major choice when designing a multi-leader-
based collective is the number of leaders that each node
should have. Existing designs have used only a single-
leader-based approach. In Section 3, we described the issues
faced with such designs. Increasing the number of leaders
per node is a way to alleviate such problems. In particular,
as more architectures become NUMA based, sharing buffers
across sockets in the system can lead to lower than expected
performance. We propose using one leader per socket to
alleviate these problems. Since the time required to complete
the inter-leader exchange phase is dependent on the number
of leaders across all the nodes, it is not optimal to further
increase the number of leaders per node.

4.2. Leader Selection

Once the number of leaders has been decided, the next
design choice is to select the leaders. Memory contention
is the key performance issue being addressed in the multi-
leader-based approach. We opt to place leaders such that
there is at most one per socket. In this manner, the memory
for each subgroup of tasks on a node can reside connected
to the same socket as they are executing on. Please note that
the selection of a core to act as a leader is not a dedicated
arrangement. This core also performs the standard compu-
tation and communication phases of the application that
is calling MPI Allgather. During a call to MPI Allgather,
this process does a few dedicated operations to improve the
performance.

4.3. Inter-Process Communication

There are multiple design alternatives for the data transfer
within each subgroup and between the leader processes.

4.3.1. Subgroup Data Aggregation. During the aggrega-
tion step, a child process is involved in data exchange with
the group of processes which share the same leader or only

with its leader. As design options, we propose the following
two schemes to aggregate messages at the leaders.

• Point-to-Point: We explore various ways to design the
intra-node exchange phase by using point-to-point calls.
As design options, we consider using the recursive
doubling and the ring algorithms among the processes
that share the same leader process. We also carry
out experiments that use MPI Gather for aggregating
messages.

• Shared Memory: Each leader allocates a shared memory
region and all the children in the subgroup directly
write their contributions to the buffer. In the current
design, we have considered the shared-memory-based
approach only for small and medium sized messages.
Any attempt to design shared memory collectives for
larger messages will have a significant impact on the
memory foot-print of the MPI implementation.

4.3.2. Inter-Leader Data Exchange. In this phase, all the
leaders exchange data bundles which comprise of their own
contributions and the messages received from their children.
As design options, we propose using recursive doubling for
small messages and ring algorithm for larger messages.

4.3.3. Subgroup Data Distribution. In this phase, the
leaders distribute the data they received from other leaders
to their children. If we have used ring or recursive doubling
approaches for the aggregation phase, all the children partic-
ipate in the exchange. So, at the end of the step, the children
have the contributions of their leader process and the other
non-leaders that belong to the same sub-group. So, we can
efficiently implement the distribution phase by ensuring that
the leader only sends the new data that it received from
the other leader processes. On the contrary, if we have used
the gather method during the aggregation step, we need to
have the leader processes broadcast all of the data that it
has at the end of the leader-exchange phase. In the shared-
memory-based design, the leaders write the data they have
received at the end of the inter-leader exchange phase into
the shared memory buffer and each child can simply read
from the buffer.

In Figure 2, we show the mapping of the processes
within the nodes. We assign one process per socket as the
leader and we show the aggregation and the distribution
phases. In the figure, the leader processes have been shaded.
We also have an ellipse that encapsulates all the leader
processes, to symbolize the inter-leader exchange phase.
In the figure, the leader process is shown to be distinct
from the other processes in the same socket. This is done
purely to highlight the difference in the roles between
leaders and non-leaders from the perspective of the proposed
designs for MPI Allgather. As explained in Section 4.2, the
leader process also performs standard communication and
computation phases of the application.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Process Group

Socket

Node 3 Node 4

Node 1 Node 2

Figure 2. Process Communication Pattern

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

p2p-rd-1-ldr
p2p-ring-1-ldr
Conventional

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16K8K4K2K1K

La
te

nc
y

(u
s)

Message Size (Bytes)

p2p-rd-1-ldr
p2p-ring-1-ldr
Conventional

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

1M256K64K16K

La
te

nc
y

(u
s)

Message Size (Bytes)

p2p-rd-1-ldr
p2p-ring-1-ldr
Conventional

Figure 3. Performance of Single-Leader-Based Point-to-Point Hierarchical Model for: (a) Small messages, (b)
Medium messages and, (c) Large messages

5. Performance Evaluation

In this section we evaluate the performance of our pro-
posed designs.

5.1. Experimental Testbed

Each node of our testbed has 16 AMD Opteron 1.95
Ghz processors with 512 KB L2 cache. We ran our exper-
iments on 4 such nodes with 64 processes. Each node also
has 16 Gigabyte memory and PCI-Express bus. They are
equipped with MT25418 HCAs with PCI-Ex interfaces. A
24-port Mellanox switch is used to connect all the nodes.
The operating system used was RedHat Enterprise Linux
Server 5. We have used a simple benchmarking tool to
evaluate the performance of the various schemes proposed.
The benchmark computes the average time required for a
call to MPI Allgather to complete for a set of message
sizes. In the following set of graphs, we have used a set
of acronyms in the legends to conveniently highlight the
various schemes. We use the label Conventional to refer
to the current schemes used in MVAPICH2. We use p2p to
refer to the schemes that use point-to-point calls for the intra-
node exchange phase and shmem for the schemes that use
a shared memory buffer. To indicate the number of leaders

used for a given scheme, we use ldr which is preceded by
a number.

5.2. Evaluation of Single-Leader-Based scheme

We first compare the base version of MVAPICH2 with
the different single-leader-based point-to-point hierarchical
model that we described in Section 3. We will henceforth
refer to this base version as the Conventional scheme, as it
is not multi-core aware. We had proposed a set of schemes
for the aggregation and the distribution phases for the hier-
archical approach. However, on running the experiments, we
could infer that those schemes had little variations between
them. For the purpose of evaluation, we consider the best of
those schemes along with the ring and recursive doubling
schemes for inter-leader exchanges. In Figures 3 (a), (b)
and (c), we present the comparison of the single-leader-
based point-to-point schemes and the existing schemes. For
small and medium message sizes, we observe that there is
potential for good performance with hierarchical approaches.
Also, for these message sizes, it is more beneficial to use
recursive doubling for inter-leader communication than the
ring scheme. However, beyond a point, the existing ring
scheme starts out-performing the single-leader-based point-
to-point hierarchical model. We believe that this could be
because of the bottleneck at the leader processes at each

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

shmem-1-ldr
Conventional

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8K4K2K1K

La
te

nc
y

(u
s)

Message Size (Bytes)

shmem-1-ldr
Conventional

Figure 4. Performance of Single-Leader-Based Shared Memory Hierarchical Model for: (a) Small messages and,
(b) Medium messages

node.
In Figures 4 (a) and (b), we show the performance of

the single-leader-based shared memory hierarchical model.
Since we are considering only small and medium sized
messages for the shared memory scheme, we have used
recursive doubling for inter-leader exchanges. We can see
that there are considerable advantages of using the shared
memory approach for medium sized messages. However, for
very small messages the existing recursive doubling scheme
performs better. As explained earlier, this could be attributed
to the memory contention within each node.

By analyzing the performance patterns in these figures,
we could see some benefits of using the single-leader-based
hierarchical approach. But, we have also identified the issues
that were causing this approach to perform sub-optimally
under certain conditions in Section 3.3.

5.3. Evaluation of Multi-Leader-Based Scheme

In the following set of graphs, we present the performance
of the multi-leader-based schemes that were discussed in
Section 4.

Figures 5 (a), (b) and (c), compare the performance of
the existing schemes used in MVAPICH2 with the multi-
leader-based point-to-point hierarchical schemes. We can see
that having multiple leaders within a node alleviates the
bottleneck condition and it leads to better performance. On
our hardware, since we have four sockets per node, it is
optimal to assign four leader processes per node. We notice
significant performance gains by using the 4-leader scheme
in comparison with the single-leader-based scheme for small
and medium sized messages. As explained in Section 4.1,
we can see that the 8-leader scheme performs slightly worse
than the 4-leader scheme. In the trivial case, the scheme with
16-leaders per node showed poor results.

In Figures 6 (a) and (b), we present the performance of
the multi-leader-based shared memory approach. In both
the graphs, we can clearly discern the advantage of using
multiple leaders for the shared memory approach. As with
the point-to-point-based scheme, we can observe the perfor-
mance degradation by using 8-leaders per node.

In Section 4.2, we explained the significance of leader
selection and the role it plays in the performance of our
designs. To delineate this behavior, we consider two extreme
cases. In one scenario, we will have all the leaders residing
on one socket. In the other case, we allocate one leader
per socket. Figure 7 compares the performance of these two
CPU mapping schemes against the existing scheme. We can
see that we begin to lose the advantages offered by the multi-
leader-based designs if we choose the wrong CPU mapping
scheme. This graph brings out the important issue of cache
sharing that was addressed in [?].

5.4. Overall Comparison

In Figures 8 (a) and (b), we make a high level comparison
by consolidating all the schemes that we have presented so
far. For the multi-leader-based scheme, we only consider the
scheme with 4-leaders as we know that the 4-leader scheme
does better.

From Figure 8 (a), we can conclude that there is a
58% performance improvement with the 4-leader shared
memory approach in comparison with the existing schemes
in MVAPICH2 for small messages. In Figure 8 (b), we can
see that this trend continues as the multi-leader-based shared
memory scheme does about 70% better than the existing
scheme used in MVAPICH2 at 4K data size. For larger
messages, we noticed that the proposed multi-leader-based
scheme does marginally worse(about 5%) than the existing
schemes. We expect this to be the case as the hierarchical
scheme involves making additional copies of the messages
and this adds an undesirable overhead as the message size
increases which counter-balances the benefits of the using
multiple leaders. In Table 1, we summarize the different
schemes that our integrated design uses. For small and
medium sized messages, we make use of the proposed multi-
leader-based hierarchical approaches. For large messages,
we fall back to the conventional ring algorithm.

6. Related Work

Previously, several hierarchical approaches have been
proposed for MPI Allgather. In [?], [?], a single-leader-

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
p2p-1-ldr
p2p-2-ldr
p2p-4-ldr
p2p-8-ldr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

8K4K2K1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
p2p-1-ldr
p2p-2-ldr
p2p-4-ldr
p2p-8-ldr

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

1M256K64K16K8K

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
p2p-1-ldr
p2p-2-ldr
p2p-4-ldr
p2p-8-ldr

Figure 5. Performance of Multi-Leader-Based Point-to-Point Hierarchical Model for: (a) Small messages, (b) Medium
messages and, (c) Large messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
shmem-1-ldr
shmem-2-ldr
shmem-4-ldr
shmem-8-ldr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

4K1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
shmem-1-ldr
shmem-2-ldr
shmem-4-ldr
shmem-8-ldr

Figure 6. Performance of Multi-Leader-Based Shared Memory Hierarchical Model for: (a) Small messages and, (b)
Medium messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

Proposed-design
Conventional

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8K4K2K1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Proposed-design
Conventional

Figure 8. Overall Performance Comparison for: (a) Small messages and, (b) Medium messages

Table 1. Design Choice for Inter-Leader Exchange for Varying Message Sizes

Message Size Intra-node exchange Mechanism Inter-leader exchange algorithm Design
Small Point-to-Point Recursive Doubling Hierarchical
Medium Shared Memory Recursive Doubling Hierarchical
Large Point-to-Point Ring Conventional

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8K4K2K1K 256 64 16 4

La
te

nc
y

(u
s)

Message Size (Bytes)

Conventional
All-leaders-in-one-socket

1-leader-per-socket

Figure 7. Impact on Performance with Various Leader
Mapping Schemes

based hierarchical scheme has been proposed for SMP
machines and the potential advantages of using an explicit
shared memory buffer for intra-node exchanges have been
described. In [?], the authors describe the role played by
various parameters like affinity and cache behavior, in the
context of multi-core architectures. They also present a clear
picture regarding the manner in which the shared memory
buffer needs to be used to achieve optimal performance
for a few collectives on multi-cores. In [?], hierarchical
approaches that utilize shared memory for intra-node ex-
changes have been proposed to improve the performance of
collective operations. The authors also describe the impact
of the block and cyclic distribution scheme of mapping

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

processes to cores on the performance of MPI Allgather.
This idea might appear to be trivial, but it has a strong impact
on the behavior of the ring algorithm. Schemes have also
been proposed to optimize the inter-node communication for
Allgather, on InfiniBand clusters by using the RDMA tech-
niques, in [?]. In our work, we highlight the limitations of
these schemes and propose a novel multi-leader-based design
to further improve the performance of the MPI Allgather
collective on multi-core systems.

7. Conclusion and Future Work

In this paper, we have addressed the need to have multi-
core aware designs for the the MPI Allgather routine to
deliver high performance to applications that run on modern
multi-core systems. We highlighted the specific factors that
were leading to poor performance with the conventional
schemes. We reviewed the existing hierarchical designs
and pointed out the possible bottlenecks in those schemes.
We proposed a novel multi-leader-based design to address
these issues. With our new multi-leader-based schemes, we
observe a performance improvement of about 60% for small
messages and 70% for medium sized messages. As part
of future work we are coming up with a framework for
collective operations for choosing the optimal number of
leaders for increasing core counts. We are also exploring
alternatives to eliminate the multiple copies of messages that
our current multi-leader-based hierarchical scheme uses.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 9, 2009 at 15:16 from IEEE Xplore. Restrictions apply.

