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Abstract
An efficient barrier implementation is desirable on par-

allel systems to obtain good parallel speedup and to sup-
port finer-grained computation. Some modern Network In-
terface Cards (NICs) have programmable processors which
can be used to provide support for collective communica-
tions such as barrier. In this paper, we utilize such a pro-
grammable NIC to provide an efficient barrier synchroniza-
tion operation. This paper describes the design, implemen-
tation and evaluation of a NIC-based barrier operation as
an addition to Myricom’s GM message passing system. Our
NIC-based barrier implementation achieved a barrier la-
tency of 102.14 � s for 16 nodes which is a 1.78 factor of
improvement over the host-based barrier using the same al-
gorithm for LANai 4.3 NIC cards. Using LANai 7.2 cards,
which has a faster processor, we achieved a 1.83 factor of
improvement for eight nodes. Our NIC-based barrier oper-
ation promises scalable fine-grained parallel computation
over clusters of workstations. To the best of our knowledge,
this is the first NIC-level barrier implementation on a clus-
ter with Myrinet/GM.

1. Introduction

Barrier synchronization is a common operation in paral-
lel and distributed systems. An efficient implementation is
important because while processors are waiting on a barrier,
generally, no computation can be performed, which impacts
parallel speedup. The efficiency of barrier operations also
affects the granularity of a parallel computation. If the bar-
rier latency is high, then the granularity must also be high.
With a lower latency barrier operation finer-grained compu-
tation can be supported. So it is important to minimize the
amount of time spent waiting on the barrier. Some modern
Network Interface Cards (NICs) have programmable pro-
cessors which can be used to provide support for collective
communications, such as barrier. We utilize such a pro-
grammable NIC to provide an efficient barrier synchroniza-
tion operation.

Earlier generation SMP systems and MPP systems, such
as the Cray T3E and CM-5, had special hardware to per-
form barriers. Today, parallel systems are moving into clus-
ters built from commodity workstations and networks, so
it is difficult to provide barrier synchronization hardware.
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Dietz[5] had proposed providing hardware barrier over a
separate network for clusters of workstations. Such ap-
proach requires two networks and may not be cost effective.

Most current clusters use software barriers based on
host-based point-to-point communication. With host-based
communication, each message is initiated by the host,
passed to the NIC, then to the NIC on the receiving node and
finally to the receiving host. The one way latency of such
a host-based message may be as high as 30 � s. Depend-
ing on the algorithm a software barrier would take ���	��
�
(e.g., a pairwise-exchange algorithm as used in MPICH[6])
to �����	� 
 � (e.g., a gather-and-broadcast algorithm as de-
scribed in [9]) steps, where � is the number of participat-
ing processors. So a barrier across 16 processors would take
120 to 240 � s per barrier. This provides high overhead for a
barrier and does not lead to scalable or fine grained parallel
implementations.

Networks for modern clusters use programmable NICs
to improve the communication performance. In a barrier
operation, often the reception of one message triggers the
sending of another message. By not requiring the message
to be transferred to the host, only to then have another mes-
sage transferred back to the NIC again, we can improve the
responsiveness of the barrier. This raises the challenge of
whether these programmable processors can be used to sup-
port firmware-level, or NIC-level, barrier and increase the
performance of barrier operations at the higher layers.

In this paper, we take on this challenge. This paper inves-
tigates the design issues of such an implementation, such as
being able to handle multiple concurrent barriers with dif-
ferent processes which use the same NIC, being able to han-
dle multiple consecutive barriers, assuring reliable, in-order
delivery of the barrier messages, and initialization of bar-
rier state at the NIC. The implementation of a NIC-based
barrier as an addition to Myricom’s GM message passing
subsystem is also described. Our NIC-based barrier imple-
mentation achieved a barrier latency of 102.14 � s for 16 pro-
cesses which is a 1.78 factor of improvement over the host-
based barrier for the same algorithm using LANai 4.3 cards.
This factor of improvement is expected to increase with the
size of the system and with the speed of the NIC processor.
Using LANai 7.2 cards, which has a faster processor, we
achieved a 1.83 factor of improvement for just eight pro-
cesses. We expect that the factor of improvement will also
increase if an additional programming layer, such as MPI,
is added over GM because of the additional overhead the
layer adds to each message sent or received. Another fea-



ture of our NIC-based barrier implementation is better uti-
lization of the host processor. Because the barrier algorithm
is performed at the NIC, the processor is free to perform
computation while polling for the barrier to complete. This
is known as a fuzzy barrier[7]. Our NIC-based barrier op-
eration promises scalable fine-grained parallel computation
over clusters of workstations.

Section 2 describes the basic idea of NIC-based barri-
ers. We describe the design issues involved in implement-
ing NIC-based barrier in Section 3. The implementation
details are discussed in Section 4. The details of the bar-
rier algorithms used are described in Section 5 followed by
an evaluation of our implementation in Section 6. Related
work is discussed in Section 7. Finally, we conclude and
discuss our work in Section 8.

2. NIC-based barrier and performance
benefits

2.1. Basic idea

The basic idea of the NIC-based barrier is to have the
host tell the NIC to initiate a barrier operation and have the
NIC notify the host when it has completed the barrier. Fig-
ure 1 shows block diagrams comparing host-based barrier to
NIC-based barrier. The diagrams show barrier operations,
where processes at nodes 0 and 1 exchange messages at the
same time as processes at nodes 2 and 3 exchange messages,
after which the processes at nodes 0 and 3 exchange mes-
sages at the same time as the processes at nodes 1 and 2
exchange messages. The diagram on the left in Figure 1
shows a host-based barrier. In the host-based barrier, in or-
der for a message to be sent the host transfers the message to
the NIC which transmits it on the network to the receiving
NIC. The receiving NIC receives the message and transfers
it to the host. Once the host receives the message, it can
initiate sending a message to the next host.

NIC

Host
Node 0

Node 2 Node 3 Node 2 Node 3

Node 1Node 0Node 1

Figure 1. Host-based barrier (left) and NIC-
based barrier (right)
By basing the barrier operation at the NIC, rather than at

the host, the intermediate messages need not be transferred
between the host and the NIC. The diagram on the right in
Figure 1 shows a NIC-based barrier. In the NIC-based bar-
rier model, the host sends a message to the NIC to initiate
the barrier operation and waits for notification from the NIC
that the barrier has completed. The barrier messages are
then exchanged between NICs and need not be transferred
to the host. As soon as a NIC receives a barrier message,
the message to the next process can be sent directly.

2.2. Estimated performance improvement

In this section we estimate the performance improve-
ment of using a NIC-based barrier over using a host-based
barrier. This estimate is based on a pairwise-exchange al-
gorithm similar to the one used in MPICH[6]. To perform

a barrier with � processes using this algorithm, each pro-
cess exchanges messages with

����� 
 � other processes (This
algorithm is described in more detail in Section 5.). Figure
2 compares the latency of a host-based barrier with a NIC-
based barrier for eight processes. In these diagrams it takes
three message exchanges per process to complete the bar-
rier. Each timing diagram shows the breakdown of a barrier
operation at a single node. For simplicity, we assume that
each node has only one process and that all processes start
the barrier at the same time, so the timing diagrams for all
eight nodes would look the same. We also assume that the
NICs have separate receive and transmit channels1 to the
network, so that one message can be received while another
is being transmitted. In these diagrams, �����
	 corresponds
to the time from when the host initiates the send until the
NIC detects it. ������ is the time it takes for the NIC to
transfer the data for the message from the host memory to
the NIC transmit buffer. ������� corresponds to the time for
the NIC to transmit the message on the network. We assume
that the network is wormhole routed. Thus the time between
when the transmit starts at the sender and when the receive
starts at the receiver is small. This time is represented as������� ����� in the diagrams. �����! represents the time for a
message to be received by the NIC. The time to transfer a
message from the NIC to the host is represented as ������ .
Finally, "������! corresponds to the time it takes the host to
process the message once it has been transferred from the
NIC.

Figure 2a shows the barrier latency for a host-based bar-
rier. After the host transfers the message for the first desti-
nation to the NIC, the NIC starts transmitting it. The NIC
will start receiving a message after a delay of ������� �����
once the message has started being transmitted. Since we
assume that the barriers started at the same time on all
nodes, the NIC will receive a message sent to it after a de-
lay of ������� ����� after it has started transmitting its message.
The diagram shows these transmit and receive events oc-
curring concurrently. Once the message has been received,
the NIC transfers the message to the host which processes
it. The host then initiates sending a message to the second
destination and the process is repeated. After the process
is repeated again for the third destination, the barrier has
completed.

Figure 2b shows the latency for a NIC-based barrier.
Here, the host transfers a message to the NIC to initiate the
barrier operation. The NIC starts transmitting the message
to the first destination. As before, the NIC starts receiv-
ing a message from the corresponding node after a delay of������� ����� . After the message has been received by the NIC,
the NIC starts transmitting the message for the second des-
tination. Again the message from the corresponding node
is received while the second message is being transmitted
and, similarly, for the third message. After the third mes-
sage has been received, the NIC transfers a notification to
the host. Once the host processes the notification, the bar-
rier has completed.

From these diagrams, we can see that the latency for an
eight node host-based barrier is #�$&%'�����
	)(��������*(
������� ����� (+�,���! -(.������/(.".�,���! 10 , while the latency
for a NIC-based barrier is only �����
	2(&#�$3% �.�4��� ���5� (
�����6 708(9������:(:"������6 . More generally, for an �
process system, the host-based barrier latency would be:

1Current Myrinet NICs support this feature.
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���������	�
����������� � � � 
 � $ %'�����
	 ( � ����3( ������� �����
( �,���! �( ������ ( "������! 70

(1)
And for the NIC-based barrier it would be:
�������	�
����������� �����
	 ( ���	� 
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(2)
The factor of improvement of the NIC-based barrier over

the host-based barrier is given by:

Factor of Improvement �
� �������	�
���������
� �����	�
���������

�
� ����� ��� %������
	 (3������ ( ������� �����
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(3)
From Equation 3 we can predict that as the host send

overhead increases, say from the addition of another pro-
gramming layer such as MPI, the factor of improvement
will increase. The factor of improvement will also increase
as the number of nodes increases and as the network perfor-
mance increases.

3. Design issues

There are several major issues in designing a NIC-based
barrier operation. One issue is how to handle unexpected
barrier messages that are received by a node which hasn’t
initiated a barrier. Another issue is initializing barrier data
structures at the NIC when a process opens an endpoint,
and similarly cleaning up data structures after an endpoint is
closed. Reliability and in-order delivery of barrier messages
must also be addressed. The last issue is to handle multiple
concurrent barriers at the same NIC.

In this section we first describe our system model and
then identify these design issues and present some solutions.
In the next section, we identify the solutions we have imple-
mented.

System model: A system consists of a collection of
nodes. Each node consists of one or more programmable
NICs and one or more host processors. The nodes are con-
nected, through the NICs, by a communication network.
Processes run on a host processor and can communicate
with each using the NICs by using an abstraction called
a communication endpoint. A process can allocate one or
more such endpoints. An endpoint is associated with a par-
ticular NIC at the node, so that messages sent or received by
the process are handled by that NIC. Messages are sent from

one endpoint to another. Similarly, a barrier operation is as-
sociated with endpoints. A barrier operation synchronizes
the processes which are attached to the specified endpoints.

3.1. Handling unexpected barrier messages

If all processes start the barrier operation at the same
time, then keeping track of which messages were received
would be easy, because the barrier messages would be re-
ceived in the same order as they are expected. In prac-
tice, however, processes may initiate barrier operations in
an asynchronous manner. Thus, a NIC may receive bar-
rier messages before the NIC is ready for them and possi-
bly even before the host has initiated the barrier. To make
matters worse, there may be multiple consecutive barriers
with different subsets of processes, so the NIC may receive
barrier messages from future barriers. In the worst case,
a process might perform multiple consecutive two-process
barriers, one with every other process in the system. Then,
if that process is slower than the others and the other pro-
cesses reach their barriers first, the associated NIC would
receive �! #" unexpected barrier messages, where � is the
number of processes in the system. So the NIC must be pre-
pared to receive a barrier message from any process on any
node in any order at any time. However, once a process ini-
tiates a barrier operation and is waiting for it to complete, it
will not initiate another one until that barrier completes. So
the NIC can receive at most one unexpected message from
every other process on every node.

One method of handling unexpected barrier messages is
to accept and record the reception of every unexpected bar-
rier message in a unexpected barrier message record. For
instance, a flag could be allocated for every possible com-
munication endpoint on every possible node. When a bar-
rier message is received, the flag corresponding to the end-
point that sent the message would be set. Then, when the
NIC is ready to receive a barrier message from a particular
endpoint, the NIC would simply have to check the corre-
sponding flag to see if that message has already been re-
ceived. The flags are then reset after they are read to allow
another unexpected message to be recorded from that same
endpoint. Representing the flags as a bit array is the most
space efficient representation and also setting, resetting or
checking the flags would take constant time. Because GM
allows only eight endpoints per NIC, this overhead is only
one byte per connection.

3.2. Initialization and cleanup

Another problem is how to initialize the data structures
recording these messages, and how to clean them up after
a partially completed barrier is aborted. For example, let’s
say process � on node $ initiates a barrier with process %



on node " , and that process % dies before a barrier message
is received. When the NIC at node " receives the message it
will record it as an unexpected message, possibly destined
to a process that hasn’t started yet. Now, say, process �
is killed, and two new processes � �

and % �
are started on

nodes $ and " respectively, and reuse the same endpoints
as the previous processes. If process % �

initiates a barrier,
the NIC will see that it has received a message from node
0 from the same endpoint that process � �

is using and will
assume that it has received a barrier message from � �

even
though that message was sent by � . It is possible now for
% �

to complete the barrier before � �
starts the barrier.

Before we discuss possible solutions, we need to make
certain assumptions about the state of the system when a
process is started. Processes that will communicate may
not all start at the same time. Because of this, it is possi-
ble that when a node sends a message to a remote endpoint
the remote process to which the message was sent may not
have started yet. This may be unavoidable, but is usually
benign. In the worst case this message would have to be
retransmitted. It is also possible that a different process is
still using that endpoint. This has more serious implica-
tions. Messages may be sent between the nodes, each one
thinking that the message has been sent or received by a
different process. To avoid this possibility, it is sufficient to
require that if a process � will communicate with a process �
through a remote endpoint � , then when process � is started
the endpoint � cannot be owned by a process other than � .
Furthermore, no old messages can be in the communica-
tion channels between � and � . While this may seem like
a rather strict requirement, this usually happens in practice.
For instance when a parallel program is started on several
machines, if a resource, such as an endpoint, is not available
to one process, the whole program is aborted and restarted
once the resource is available. A way around this require-
ment is to include a mechanism to distinguish messages of
one parallel program from another.

One naive solution is to simply clear the unexpected bar-
rier message record of all messages destined for a particular
endpoint when that endpoint is opened. This may solve the
problem mentioned above, but that does not allow barrier
messages to be received for a process that hasn’t started, or
opened an endpoint. This may happen, if, for instance, the
first action of a program is to do a barrier in order to make
sure all its peers have started.

A better solution is to have the NIC reject any barrier
messages for a closed endpoint. Then, the sender of the
barrier message will resend the message, but only if the
endpoint that initiated the barrier has not closed since the
message was sent. Then, with the above requirement about
the state of the system when a process starts, we know that
once a process opens an endpoint, and starts accepting bar-
rier messages, no old messages will be received. While this
method may increase the latency of the barrier, this will
only be the case if a participating endpoint has not been
opened yet.

Another solution is to record received barrier messages
for a closed port, but then reject those messages once the
endpoint is opened. Then, the NICs which sent those mes-
sages will then resend them, but only if the endpoints which
initiated the barriers have not closed since the original mes-
sage was sent. This has the same drawbacks as the previous
solution, except, it would require only one retransmission,
rather than an unbounded number. Thus we adopt this ap-

proach in our implementation.

3.3. Reliability and in-order delivery

A lost barrier message could hang processes indefinitely.
Therefore it is important to provide a mechanism to deliver
barrier messages reliably. Related to this issue is the guar-
antee of the order in which the messages will be delivered.
There are two design options with regard to the delivery
order of barrier messages relative to non-barrier messages.
If barrier messages are guaranteed to be delivered in-order
with regard to non-barrier messages, then messages sent
before a barrier is initiated by the sending process will be
received before the barrier completes at the receiving pro-
cess. Similarly messages sent after a barrier completes on
the sending process, will not be delivered before the bar-
rier completes on the receiving process. This will not be
true if the relative order of barrier messages and non-barrier
messages is not preserved. Instead, the order of messages
will be maintained separately among barrier messages and
among non-barrier messages.

One method of preserving the relative order between bar-
rier messages and non-barrier messages is to use the same
mechanism to provide in-order and reliable delivery for
both types of messages. This is the approach we adopt in
our implementation.

3.4. Multiple concurrent barriers

Because barriers using message passing do not depend
on holding shared resources, independent barriers on sepa-
rate nodes can occur concurrently. However, if a NIC can be
used by more than one process, then the NIC-based barrier
mechanism must be designed to allow multiple processes
to initiate barrier operations concurrently. If two processes
using the same NIC are participating in the same barrier, it
may be possible to provide an optimization, where a bar-
rier message need not actually be sent, but rather just have
a flag set to indicate that it has been received. Our initial
implementation allows multiple instances of barriers to ex-
ist concurrently on the same NIC. We intend to incorporate
the above optimization in our final implementation.

4. Implementation

In this section we describe our implementation of a NIC-
based barrier as an addition to Myricom’s message passing
system, GM[10], version 1.2.3. First, we describe GM, then
identify our design choices and describe the implementation
details of each.

4.1. Overview of GM

GM consists of a driver, a library and a Myrinet control
program (MCP). The driver loads the MCP on to the NIC
when it is loaded. During the execution of a program the
driver is used mainly for opening ports, pinning and unpin-
ning memory, and to put a process to sleep or to wake a
process for blocking functions. A port is a data structure
through which a process can communicate with the NIC
while bypassing the operating system. A port also serves
as a communication endpoint. Once a port is opened, the
process can communicate with the NIC, bypassing the OS
and avoiding system call overhead. In GM version 1.2.3,
each NIC can support a maximum of eight ports, some of
which are reserved.
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At the host level GM is connectionless, but provides re-
liability by maintaining reliable connections between NICs
of different nodes. Flow control is used between the NIC
and the host to avoid buffer overflows. To provide this re-
liability GM uses the concept of tokens. When a process
opens a port, it has a certain number of send tokens and re-
ceive tokens. Each send token corresponds to a send event.
For sending a message the process fills-in a send token de-
scribing the send event and queues it on the send queue.
Once the NIC has completed the event, and has freed the
resources corresponding to that event, the send token is re-
turned to the process.

In order to receive a message, the process must allocate
a buffer into which the message will be received and pass
a receive token describing the buffer to the NIC. Once the
NIC has DMAed the data into the buffer, the receive token is
returned to the process. The process must poll to detect re-
turned receive tokens. Messages may only be sent from and
received into buffers which are pinned in memory. Memory
is pinned using special functions supplied by GM.

Figure 3 is a block diagram of GM where a process has
two ports through which send tokens and receive tokens are
transferred to and from the MCP without going through the
driver. The figure also shows DMA operations which trans-
fer data directly to and from the process’ memory.

The NIC has a data structure for each local port, which
contains the send and receive queues. The NIC also has data
structures each corresponding to a connection to one node in
the system. The connection structure contains information
about the state of the connection and the port from which to
send next.

Figure 4 shows a block diagram of the MCP. The
MCP consists of four state machines called SDMA, SEND,
RECV and RDMA. The SDMA state machine polls for new
send tokens and queues them on the queue for the appropri-
ate connection. The SDMA state machine is also respon-
sible for initiating a DMA to transfer data from the host
memory to the transmit buffers in the NIC and to prepare
the packet for transmission. Once the packet is ready to be

transmitted, the send token is moved to the sent list. The
SEND state machine is responsible for transmitting pack-
ets which were prepared by the SDMA state machine and
any acknowledgment packets which may be pending. The
RECV state machine receives incoming packets into receive
buffers and handles acknowledgment and negative acknowl-
edgment packets. When the RECV state machine receives
an acknowledgment it removes the token associated with
that send from the sent list and passes it back to the host.
The RDMA state machine prepares acknowledgment and
negative acknowledgment packets and DMAs the data to
the host buffer corresponding to an appropriate receive to-
ken. The RDMA state machine also adds receive tokens in
the receive queue to notify the process that the receive has
completed.

4.2. Multiple concurrent barriers

In order for our implementation to support multiple con-
current barriers, we must allow multiple barriers to exist on
the same NIC. Since each port may participate in a barrier
independently, the NIC must keep the state of each barrier
separate. We do this by putting the state information in the
send token and keeping a pointer in the port data structure to
this send token. This way, when a barrier packet is received,
the RDMA state machine can access the state of the barrier
by simply dereferencing the pointer. The token will store a
list of the port ids and node ids with which barrier messages
will be exchanged, as well as an index, node index, into this
list to indicate which is the next node to receive from or to
send to.

4.3. Handling unexpected barrier messages

To handle unexpected barrier messages, we used an un-
expected barrier message record. Because there is already
a data structure per connection, and each connection has at
most eight ports, the record was implemented as a bit ar-
ray for each connection. When an unexpected barrier mes-
sage is received, the bit corresponding to the source port and
connection is set. The NIC can then check for received mes-
sages by checking the appropriate bit. After a bit is checked,
the bit is cleared.

4.4. Reliability and in-order delivery, and
initialization and cleanup

The difficulty in providing reliability is that in GM, when
a reliable packet is transmitted, the send token is added to
the sent token list. Only once the packet is acknowledged
is the send token de-queued and returned to the process. If
a packet is negatively acknowledged, all packets sent after
that packet must be resent. This is done by pushing the
contents of the sent list back on the send queue.

In our current implementation, which uses unreliable
barrier packets, once a barrier packet has been transmitted,
it is de-queued then re-queued in the queue for the next des-
tination. Now, since our barrier scheme uses only one send
token, and the token can potentially be used to send to mul-
tiple destinations, if two or more barrier packets need to
be retransmitted, the same token would have to be queued
twice.

One solution is to have the barrier event use one token
for every destination. Then the NIC will queue a send to-
ken separately for each packet sent. Another solution is to
provide a separate retransmission mechanism just for bar-
rier messages. Under this solution, the barrier messages



will be acknowledged separately and will have separate se-
quence numbers. This will require separate acknowledg-
ment packet types and structures to keep track of sequence
numbers, as well as routines to resend the barrier mes-
sages. As discussed in Section 3.3, barrier messages and
non-barrier messages will not necessarily be received in the
same order that they were sent.

We have implemented some of the components neces-
sary to provide reliability. We intend to complete the imple-
mentation soon. As described in Section 3.2, a barrier mes-
sage retransmission mechanism is necessary for handling
barrier messages which are sent to ports which are closed.
Since we have not finished implementing this mechanism,
when performing our benchmark programs, we must ensure
that any barrier that is initiated completes normally (i.e., no
participating port is closed during a barrier operation).

5. Barrier algorithm
In this section we describe two algorithms for perform-

ing barriers and how we implemented them on the NIC. The
first is a gather-and-broadcast algorithm (GB) [9], and the
second is a pairwise exchange algorithm (PE) that is used
in MPICH [6].

5.1. Algorithm descriptions

The GB algorithm constructs a fixed dimensional tree of
the nodes participating in the barrier. The algorithm then
proceeds in two phases: gather and broadcast. In the gather
phase, each node, except the root, waits to receive a gather
message from each child, then sends a gather message to its
parent. The root waits for a gather message from all its chil-
dren, then sends a broadcast message to each of them and
exits the barrier. As each other node receives the broadcast
message, it sends the broadcast to each child then also exits
the barrier. We would expect that the dimension of the tree
would impact the performance of the barrier. Thus, depend-
ing on the parameters of the communication subsystem and
the size of the barrier one could use a different dimension
tree to get the best performance.

The PE algorithm works recursively. The nodes are
paired up and each node does a send followed by a receive
with its partner. These nodes now form a group. Next, each
group is paired with another group, and every node in one
group performs a send followed by a receive with one node
from the other group, then those groups are then merged.
This pairing, exchanging messages and merging is repeated
until only one group is left. The barrier is then finished.
Each node will perform

� ��� 
 � sends and receives, where� is the number of nodes performing barrier.
NIC processors are typically much slower than the host

processors (e.g., Myrinet NIC processor speeds range from
33MHz to 132MHz while processor speeds for a typical
host processor might range from 300MHz to 1GHz). For
this reason it may be more efficient to have the host proces-
sor perform some parts of the algorithm.

An issue here is the construction of the tree for the GB
algorithm. One alternative is to pass the list of participat-
ing nodes to the NIC and have the NIC construct the tree.
However, the tree construction is a relatively computation-
ally intensive task which can easily be computed at the host.
The host at a particular node needs to inform the NIC only
of the children and parent of the node, rather than all the
nodes in the barrier. This also reduces the amount of data
that has to be transferred to the NIC. Similarly, for the PE

algorithm, the task of determining the pairings can be done
either at the NIC, or at the host. Again, this can be done
much quicker at the host and also the whole list of nodes
need not be transferred to the NIC.

5.2. Algorithm implementation

Both algorithms were implemented on the NIC. We will
first describe the changes to the GM API, then describe the
implementation details at the NIC.

We added two new functions to the GM API to support
NIC-based barriers: gm provide barrier buffer()
and gm barrier send with callback(). Before
initiating a barrier the host calls gm provide barrier
buffer() to provide the NIC with a receive token.
To perform a barrier, the host must compute the barrier
tree (for the GB algorithm), or the list of processes with
which to exchange messages with (for the PE algorithm).
Then, the process then calls gm barrier send with
callback(). For the GB algorithm, the process speci-
fies, in the function call, the parent node id and port id, and
the node and port ids of each of the children. For the PE
algorithm, the process specifies the list of nodes and port
numbers with which to exchange messages. Next, the host
polls gm receive() until it receives a GM BARRIER
COMPLETED EVENT. The reception of this event indicates
the completion of the barrier. Because we separate the bar-
rier initiation from the polling of the barrier completion, a
fuzzy barrier [7] can be performed, where some bounded
computation can be done while polling for the barrier com-
pletion.

In the GB algorithm, the gm barrier send with
callback() function creates a send token with the node
list and passes it to the token queue on the NIC. There is a
separate packet type for each phase. When the SDMA state
machine receives the barrier send token from the process,
it first sets the send token pointer in the port structure to
this send token, then it checks if it received a barrier gather
packet from each of its children. If so, it clears the bits for
the received packets, and queues the send token for the par-
ent node. If it has not received a gather packet from each
child, then it must wait until all have been received.

When a barrier gather packet is received, the packet is
recorded, then, if the send token pointer in the port data
structure is non-zero, the RDMA state machine checks to
see if gather packets have been received from all the chil-
dren, and, if so, the send token is prepared to send a barrier
gather packet with the parent’s port id and is queued in the
send queue for the parent’s node id.

When the root node receives gather messages from each
child, or when a child receives a barrier broadcast packet,
the RDMA state machine sends a receive token to the host
indicating that the barrier has completed, and sets the send
token pointer in the port data structure to zero. Then the
send token is prepared to send a barrier broadcast packet to
the first child, and is enqueued on the connection to the node
of the first child. Once the SDMA state machine has pre-
pared the packet to be transmitted, the send token is updated
to be sent to the next child, and it is re-queued. This con-
tinues until a broadcast packet has been sent to each child.
Then the send token is returned to the port.

In the PE algorithm, the gm barrier send with
callback() function creates a send token with the node
list and passes it to the token queue on the NIC. When the
SDMA state machine receives the barrier send token from



the host, it sets the node index to point to the first node in
the node list, sets the destination node id and port id of the
send token to this first node and port, then sets the send to-
ken pointer in the port data structure to point to the send
token to indicate that a barrier has been initiated. Then, af-
ter the SDMA state machine prepares the packet to be sent,
it checks to see if a barrier packet has been received from
that same destination. If it has, it 1) clears the bit for that
message, 2) increments the index in the send token to point
to the next destination, 3) writes the next destination’s port
number in the send token, 4) removes the send token from
the current queue and 5) queues the send token in the queue
for the connection for the next destination. If the expected
barrier packet was not yet received, then the send token is
simply removed from the queue.

When a barrier packet is received, the RDMA state ma-
chine checks if the port that the message is addressed to has
received a barrier send token from the host by checking if
the pointer to the send token is non-zero. If so, and if this is
the expected barrier message, then the send token is updated
and enqueued for the next destination. In all other cases, the
reception of the message is simply recorded.

Once the packet to the last destination has been sent and
the corresponding packet has been received, the barrier is
complete. The NIC DMAs a receive token to the host, re-
turns the send token, and sets the send token pointer in the
port data structure to zero.

6. Experimental results

We evaluated our implementation on a cluster of 16
dual 300MHz Pentium II machines, each with 128MB of
RAM, running RedHat 6.0 with kernel version 2.2.5. The
machines are connected by a Myrinet LAN network with
LANai 4.3 cards, with 33MHz NIC processors, via a 16 port
switch. Eight of these nodes also have LANai 7.2 cards,
with 66MHz NIC processors, connected to a Myrinet LAN
network via an 8 port switch.

We tested the latency of our NIC-based barrier imple-
mentation and compared it to a host-based barrier imple-
mentation on GM. We compared the performance for both
the GB and PE algorithms. To test the barrier latency, we
ran 100,000 barriers consecutively and took the average la-
tency. Tests were performed for 2, 4 and 8 nodes using
LANai 4.3 and the LANai 7.2 NICs, and for 16 nodes using
LANai 4.3 NICs.

The performance of the GB algorithm on a given system
for a given size depends on the dimension of the gather and
broadcast tree. In order to find the optimal dimension for the
tree, we ran the test for every dimension from " to �  " ,
where � is the number of nodes participating in the bar-
rier. The latencies reported in the graphs are the minimum
latencies over all dimensions.

Figure 5(a) shows the barrier latencies of NIC-based and
host-based barriers for each algorithm using the LANai 4.3
cards. Notice that the NIC-based PE barrier performed bet-
ter than all other barriers, with a 16-node barrier latency of
102.14 � s. Also, the NIC-based GB barrier performed bet-
ter than either host-based barrier except for the two node
barrier. The NIC-based GB barrier performed worse for the
two node barrier than the host-based GB barrier because of
the overhead of processing the barrier algorithm at the NIC.
The 16 node barrier latency of the NIC-based GB barrier is
152.27 � s. The host-based PE barrier performed better than
the host-based GB barrier.

Figure 5(b) shows the factor of improvement of the NIC-
based barrier over the host-based barrier for both algorithms
using the LANai 4.3 cards. For a barrier with 16 nodes, the
NIC-based PE barrier gave a 1.78 factor of improvement
over the host-based PE barrier, while the NIC-based GB
barrier gave a 1.46 factor of improvement over the host-
based GB barrier.

One possible reason why the factor of improvement for
the GB algorithm is not as large as that for the PE algorithm
is that in the broadcast phase of the host-based barrier, the
messages sent by the host are pipelined through the NIC,
i.e., after the host transfers a send event to the NIC, it is free
to transfer the next send event while the NIC is processing
the first one. So part of the overall send time of one message
is overlapped with that of the subsequent message. There is
no such overlapping in the PE algorithm because the host
must wait to receive a message before sending the next one.

We also ran similar tests using the LANai 7.2 cards. Be-
cause we only have eight of these cards, we show the results
for up to only eight nodes. Figure 5(c) shows the barrier la-
tencies for NIC-based and host-based barriers for each algo-
rithm using these cards. Notice that the faster NIC processor
improved the performance of all implementations. With the
faster NICs the NIC-based barrier using the PE algorithm
performed a barrier in 49.25 � s compared to 90.24 � s for the
host-based PE barrier for eight nodes.

Figure 5(d) shows the factor of improvement of the NIC-
based barrier over the host-based barrier for both algorithms
using the LANai 7.2 cards. This shows a 1.83 factor of
improvement of the NIC-based barrier over the host-based
barrier using the PE algorithm for eight-nodes. This is a
greater factor of improvement than we saw for the LANai
4.3 cards for eight nodes which was 1.66.

A more extensive evaluation of our NIC-assisted barrier
implementation using MPICH over GM is presented in [4]
an [3].

7. Related work

NIC-level support for collective communication has
been studied previously. Bhoedjang[1], Verstoep[13]
and Buntinas[2] have implemented NIC-supported multi-
cast/broadcast. Kesavan[8] and Sivaram[11] have evalu-
ated different aspects of NIC-supported multicasting. These
papers discussed adding functionality to the programmable
NIC to support broadcasting/multicasting. However, we are
not aware of any work done on providing NIC-based sup-
port for barrier synchronization.

Sivaram[12] proposed enhancements to a network
switch architecture to support reliable barriers. Dietz[5]
has implemented hardware barrier support for workstation
clusters through the parallel ports of the workstations of the
cluster. However, this scheme requires a separate network.

8. Conclusions and future work

We proposed using a programmable NIC to support a
barrier synchronization operation. We then identified issues
in implementing the barrier synchronization operation on
the NIC, and described our implementation over GM 1.2.3
using two barrier algorithms.

We evaluated our implementation and compared them to
host-based barrier operations. When using the pairwise ex-
change barrier algorithm for both the NIC-based and host-
based barriers, we found the NIC-based barrier gave a 1.78
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Figure 5. Comparison of NIC-based barrier and host-based barrier for two algorithms (PE and GB)
using the LANai 7.2 and LANai 4.3 NICs

factor of improvement. Using the gather and broadcast al-
gorithm in both the NIC-based and host-based, the NIC-
based barrier gave us a 1.46 factor of improvement. Be-
cause the barrier performance has been poor for clusters in
the past, the granularity of parallel computation had to be
coarse. Now, with lower latency barrier operations, finer
grained computation is feasible.

We intend to study the effects of our NIC-based barrier
operation on higher communication layers, such as MPI or
Get/Put, and also at the application level. We expect that
our NIC-based barrier would show an even greater improve-
ment over host-based barrier with these layers because of
the additional latency to individual messages which is added
by them.

On a more general level, we intend to investigate whether
other collective communication operations, such as reduc-
tions or all-to-all broadcast could benefit from similar NIC-
level implementations.

Additional information: Additional papers related to this re-
search can be obtained from the following Web pages: Network-
Based Computing Laboratory (http://nowlab.cis.ohio-state.edu)
and Parallel Architecture and Communication Group (http://www.
cis.ohio-state.edu/ � panda/pac.html). If you are interested in us-
ing this software, please contact Dr. D. K. Panda at panda@cis.
ohio-state.edu.
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