
To appear in the Proceedings of the 27th International Conference on Parallel Processing (ICPP ’98), August 1998, Minneapolis, MN

Where to Provide Support for Efficient Multicasting in Irregular Networks:
Network Interface or Switch?

�

Rajeev Sivaram
�

Ram Kesavan
�

Dhabaleswar K. Panda
�

Craig B. Stunkel �
�
Dept. of Computer and Information Science � IBM T. J. Watson Research Center

The Ohio State University P. O. Box 218
Columbus, OH 43210 Yorktown Heights, NY 10598

Email: � sivaram,kesavan,panda � @cis.ohio-state.edu Email: stunkel@watson.ibm.com

Abstract
Recent research has proposed methods for enhancing the

performance of multicast in networks with irregular topolo-
gies. These methods fall into two broad categories: (a) net-
work interface (NI) based schemes that make use of enhanced
functionality of the software/firmware running at the NI pro-
cessor, and (b) switch-based methods that use enhancements
to the switch architecture to support hardware multicast. How-
ever, it is not clear how these methods compare to each other
and when it makes sense to use one over the other. In order
to answer such questions, we perform a number of simula-
tion experiments to compare the performance of three efficient
multicasting schemes: an NI-based multicasting scheme that
uses a � -binomial tree [5], a switch-based multicasting scheme
that uses path-based multidestination worms [4], and a switch-
based multicasting scheme that uses a single tree-based mul-
tidestination worm [14]. We first study the performance of
the three schemes for single multicast traffic while changing
a number of system parameters one at a time to isolate their
impact. We then study the performance of these schemes under
increasing multicast load. Our results show that the switch-
based multicasting scheme using a single tree-based multi-
destination worm performs the best among the three schemes.
However, the NI-based multicasting scheme is capable of de-
livering high performance compared to the switch-based mul-
ticast using path-based worms especially when the software
overhead at the network interface is less than half of the over-
head at the host. We therefore conclude that support for multi-
cast at the NI is an important first step to improving multicast
performance. However, there is still considerable gain that
can be achieved by supporting hardware multicast in switches.
Finally, while supporting such hardware multicast, it is better
to support schemes that can achieve multicast in one phase.

1 Introduction
In a world where computing needs are increasing by

the day, there is a constant search for cost-effective high-
performance computing solutions. Using a network of com-
modity workstations as a parallel computing environment has
the potential to provide such a cost-effective high-performance
computing environment. Much recent research has therefore
focussed on extending parallel processing solutions to such
networks of commodity workstations (NOWs).

However, networks of workstations environments have typ-
ically evolved from computing environments where communi-
cation requirements are less stringent (both in terms of latency
and bandwidth). In such an environment, the workstations

�
This research is supported in part by NSF Career Award MIP-

9502294, NSF Grant CCR-9704512, an IBM Cooperative Fellowship,
and an Ohio State University Presidential Fellowship.

that form the processing nodes are typically interconnected in
arbitrary, irregular topologies. Using such topologies allows
easy addition and deletion of nodes to the computing environ-
ment making the overall environment more amenable to net-
work reconfigurations and resistant to faults. However, these
topologies do not possess many of the attractive mathematical
properties of the regular topologies. A lot of the problems re-
lating to inter-processor/inter-node communication that have
been solved for regular topologies are therefore being revis-
ited for such irregular topologies. One such problem is that of
collective communication.

Collective communication plays an important role in par-
allel systems, and involves communication among groups of
(2 or more) processes [9]. Examples of collective operations
include multicast [8], barrier synchronization, reduction, etc.
The importance of such operations is underlined by the in-
clusion of several primitives for collective communication in
the Message Passing Interface (MPI) standard [7]. Such col-
lective operations are also used for system level operations in
distributed shared memory systems, such as for cache invali-
dations, acknowledgment collection, and synchronization [2].

Of these collective operations, multicast is most funda-
mental and important and is used for implementing several
of the other collective operations. Traditionally, multicast has
been implemented using the underlying support for point-to-
point (unicast) communication. The best of these schemes re-
duces the impact of the high overhead associated with send-
ing/receiving point-to-point messages by allowing multiple
nodes to simultaneously transmit/receive messages in a given
phase. Such multicasting schemes require at least 	�
�������������
communication steps, and are the best achievable using unicast
communication primitives.

A number of schemes have been recently proposed to fur-
ther improve multicast performance. These schemes can be
classified into two main categories. The first category of
schemes is referred to as switch-based multicasting schemes.
These schemes use enhancements at the routers/switches of
the network to allow an incoming packet to be forwarded to
multiple output ports of the router/switch [15]. Such a method
allows messages (christened multidestination messages) to be
communicated to multiple destinations incurring a single soft-
ware overhead for sending the message. There are two sub-
classes of switch-based multicasting schemes: tree-based [14]
and path-based [4]. In the best tree-based multicasting scheme,
multicast can be performed in a single phase using one multi-
destination worm from the source node to all the destinations
[14, 15]. The path-based multicasting schemes typically re-
quire multiple multidestination worms to perform multicast

1

to arbitrary destination sets. These worms are transmitted in
multiple phases with the destinations in a phase acting as sec-
ondary sources in succeeding phases of the multicast [4].

The second category of multicasting schemes is referred to
as network interface-based or NI-based multicasting schemes.
Typically, communication between two nodes incurs software
overhead at both the host and at the network interface for both
sending and receiving a message. The NI-based schemes use
enhancements at the network interface so that multicast mes-
sages are forwarded to the next destination as soon as they are
received at the network interface of an intermediate destina-
tion (and the message has begun to be transferred to the mem-
ory of the local host) [16]. This hides the significant software
overhead for receiving a message at an intermediate destina-
tion host, and eliminates the overhead at the host for sending
the message to other destinations in the succeeding phases of
the multicast.

It is obvious that a multicasting scheme with enhanced sup-
port at the network interface and the switches will perform
better than a scheme that makes use of support at either the
network interface or at the switches. However, it is necessary
to first compare the effect of improved support for multicast at
the switches to support for multicast at the network interface
to decide which of these schemes results in better performance
and when. While making such a comparison, we must there-
fore assume no network interface support for the switch-based
multicasting schemes, i.e., every communication phase under
the tree-based and path-based schemes should incur software
overhead at the host and network interface of the source and
(intermediate) destinations. Such a comparison is needed for
an architect to evaluate the relative merits of these two cate-
gories of multicasting schemes and to decide which scheme
to support and when. In order to make such a decision, a
number of questions need to be answered: how quickly can
multicast be performed with support at the network interfaces
and low overhead messaging layer support? How does multi-
cast with switch/router support (alone) compare with multicast
implemented with network interface support? For what range
of system parameters does it make sense to use one over the
other?

The goal of this paper is to provide answers to these ques-
tions by comparing the performance of the single phase tree-
based multicasting scheme to the best path-based multicasting
scheme and to an optimal NI-based multicasting scheme. We
perform extensive simulations to evaluate the impact of various
system parameters on the performance of the three schemes by
considering the performance of single multicasts and by vary-
ing each of the parameters one at a time. These parameters
include message length, number of switches, and the ratio of
the overhead at the host to the overhead at the network inter-
face. Finally, we study the latency of these schemes under
increasing multicast load with a variation of a few selected pa-
rameters.

Our analysis and simulations show that the single phase
tree-based multicasting scheme studied in this paper is the
most powerful multicasting scheme. However, the NI-based
scheme can deliver extremely high performance, especially
when the software overhead for absorbing and retransmitting
messages at the interface is considerably lower than the corre-
sponding overheads at the host. The path-based multicasting
scheme’s performance varies with variation in a number of net-
work parameters and it can perform worse than the NI-based
scheme in a number of cases. We therefore conclude that sup-
port for multicast at the NI is an important first step to improv-

ing multicast performance. However, there is still considerable
gain that can be achieved by supporting hardware multicast in
switches. Finally, while supporting such hardware multicast, it
is better to support schemes that can achieve multicast in one
phase.

The remaining part of the paper is organized as follows. In
Sec. 2 we present our network model and the underlying rout-
ing algorithm assumed in this paper. We then present in Sec. 3
an overview of the multicasting schemes used for our compar-
ison in this paper. An exhaustive simulation based comparison
of the three schemes is then presented in Sec. 4. Finally, we
present our conclusions in Sec. 5.

2 System Model
In this section, we present the network model assumed in

this paper. The related deadlock-free routing issues for such a
network are also discussed.

2.1 Network Model
Figure 1(a) shows a typical parallel system using a switch-

based interconnect with irregular topology. Such a network
consists of a set of switches where each switch has a set of
ports. The system in the figure consists of eight switches with
eight ports per switch. Some of the ports in each switch are
connected to processors, some ports are connected to ports of
other switches to provide connectivity between the processors,
and some ports are left open for further connections. Such
connectivity is typically irregular and the only thing that is
guaranteed is that the network is connected. Thus, the inter-
connection topology of the network can be denoted by a graph
G = (V,E) where V is the set of switches, and E is the set of
bidirectional links between the switches [1, 12]. Figure 1(b)
shows the interconnection graph for the irregular network in
Fig. 1(a). It is to be noted that all links are bidirectional and
multiple links between two switches are possible.

Processing
Element

Switch

Bidirectional Link

5

3

6

4

7

2

1

0

(a)

6

3 0

5 1

4 2

7

(b)

6

5 1 4

3 7 2

0 up direction

root

(c)

Figure 1. (a) An example system with switch-based in-
terconnect and irregular topology; (b) corresponding in-
terconnection graph G; (c) corresponding BFS spanning
tree rooted at node 6.

2.2 Routing Issues
Several deadlock-free routing schemes have been proposed

in the literature for irregular networks [1, 12]. Without loss
of generality, in this paper we assume the routing scheme for
our irregular network to be similar to that used in Autonet [12]
due to its simplicity and its commercial implementation. Such
routing allows adaptivity, and is deadlock-free.

In this routing scheme, a breadth-first spanning tree (BFS)
is first computed on the graph G using a distributed algorithm.
The algorithm has the property that all nodes will eventually
agree on a unique spanning tree. Deadlock-free routing is
based on a loop-free assignment of direction to the operational
links. In particular, the “up” end of each link is defined as: 1)
the end whose switch is closer to the root in the spanning tree;
or 2) the end whose switch has the lower ID, if both ends are at

2

switches at the same tree level. The result of this assignment is
that the directed links do not form loops. Figure 1(c) shows the
BFS spanning tree corresponding to the interconnection graph
shown in Fig. 1(b), and the assignment of the “up” direction to
the links. To eliminate deadlocks while still allowing all links
to be used, this routing uses the following up/down rule: a legal
route must traverse zero or more links in the “up” direction fol-
lowed by zero or more links in the “down” direction. Putting
it in the negative, a packet may never traverse a link along the
“up” direction after having traversed one in the “down” direc-
tion. Details of this routing scheme can be found in [12].

3 Multicasting Approaches
We now present an overview of the three multicasting

schemes that we compare in this paper. We first describe the
traditional approach to multicasting using multiple phases of
unicast messages. We then present the two categories of tech-
niques for providing enhanced support for efficient multicast
and present the three schemes studied in this paper.

3.1 Multi-phase Software Approaches to Mul-
ticast

Efficient multicast algorithms are typically hierarchical in
nature. This means that some destinations serve as interme-
diate sources, i.e., when they receive a message, they forward
copies of it to other destinations. Many such hierarchical al-
gorithms have been proposed in the literature [3] to implement
multicast. Figure 2 shows an example of a multicast from a
source node to seven other destinations. In the figure, the num-
bers in brackets indicate the step numbers.

[1]

[2]

[3]

[2]

[3] [3]

[3]
source

Figure 2. Example of a hierarchical multicast algorithm
on a destination set size of 7.

It can be easily observed that ��	
�� ����� � � ��� communication
steps are required for such a binomial tree based hierarchical
multicast to be completed [3]. A communication step is the
time required for a message to be sent from one host node to
another. Even with lightweight messaging layers, the latency
of such a multicast operation is still dominated by the com-
munication software overhead. Recent research to reduce the
effect of this overhead on multicast performance has been in
two main directions.

3.2 Enhanced Multicasting Schemes
The two major directions in which enhancements have

been proposed for reducing the effect of the communication
overhead are: (a) increasing the functionality of the soft-
ware/firmware running at the NI processor, and (b) supporting
hardware multicast at the switch. We describe these concepts
in greater detail in the following subsections.

3.2.1 Multicasting using Network Interface Support
Let us consider the multicast of a message that spans mul-

tiple packets. Figure 3(a) shows the forwarding of a 2-packet
multicast message at an intermediate node of a multicast tree.
Each of the packets of the message is received at the network
interface and copied to host memory using DMA. The host

processor at the intermediate node receives the complete mes-
sage and then initiates send operations to each of its children
in the multicast tree. For each of the send operations, a copy of
the message is sent to the network interface, from where it is
sent into the network. Therefore, an intermediate node incurs
the message send overhead for every copy of the message that
it forwards to other destinations. This overhead includes the
software start-up overhead and the overhead at the NI for each
packet transmission.

Smart NI support can reduce this overhead for multicast,
especially for multi-packet messages. Current lean messaging
layers allow modification of part of the software running on
the NI processor. This part of the software can be modified to
allow it to identify a multicast packet [5, 16]. If the next outgo-
ing packet in the send queue of the source node is a multicast
packet, the NI processor forwards replicas of the packet to the
nodes adjacent to the root of the multicast tree. When a mul-
ticast packet is received at the NI of an intermediate node, the
NI processor starts copying (using DMA) the packet to host
memory. Simultaneously, it forwards replicas of the packet to
its children in the multicast tree. Thus, the overhead at the in-
termediate node’s host to receive a packet is hidden, and the
overhead at the host to send the packet to its children in the
multicast tree is eliminated. Figure 3(b) shows such forward-
ing with smart network interface support. An implementation
of such a smart network interface has been described in [16].

packet #1
packet #2

packet #1

packet #2

applicationsource

network
interface

intermediate
destination destination

DMA

host
memory

(a)

packet #1
packet #2

packet #1
packet #2

applicationsource

network
interface

intermediate
destination destination

DMA

host
memory

(b)

Figure 3. Forwarding of a 2-packet long multicast mes-
sage by intermediate node using (a) conventional NI
support, and (b) smart NI support.

In this paper, we use the FPFS (First-Packet-First-Served)
implementation of the smart network interface support [5]. In
this implementation, the NI forwards the message on a per-
packet basis. The NI at the source node sends the first packet
to all the children of the source, then sends the second packet to
all the children of the source, and so on. When the first packet
of the multicast message arrives at the NI of an intermediate
node, it forwards the packet to each of the children of the in-
termediate node. Subsequently, when the second packet of the
multicast message arrives at the NI, it forwards the packet to
each of the children, and so on till the last packet is forwarded.

A � -binomial tree has been shown to be optimal for multi-
packet multicast on systems with such smart NI support [5]. A� -binomial tree is defined as a recursively doubling tree where
each vertex has at most � children. The value of � is a func-
tion of the size of the multicast set and the number of packets in
the multicast message. A method for constructing � -binomial
trees with minimized contention on irregular switch-based net-
works has been proposed in the literature [5]. In this paper we
therefore use the � -binomial tree for our multicasting scheme
using network interface support.

3.2.2 Multicasting using Switch Support
Another method for improving multicast performance is to

provide switches with support for replicating incoming mes-
sages to multiple output ports. The basic idea behind such a

3

scheme is to communicate a single message (called a multi-
destination message) from a source to multiple destinations in
almost the same time it takes to send a unicast message to one
node [6]. The number of destinations covered depends on the
type of encoding/decoding used for the message header.

Given support for replication at the switches, there are two
schemes that have been proposed for carrying out multicast
in switch based irregular networks: tree-based [14] and path-
based [4]. The two schemes differ in the restrictions placed
on worm replication, the number of worms required to per-
form multicast to an arbitrary destination set, the complexity of
multicast header formation, and the complexity of the header
decoding logic required at the switches. However, we assume
the multidestination worms under either scheme conform to
the base up*/down* routing algorithm, i.e., the path followed
by a multicast packet does not violate any of the rules for rout-
ing unicast packets in the system [11]. These schemes are dis-
cussed in greater detail in the following two subsections.

3.2.3 Tree-based Multicasting using Multidestination
Worms

Tree-based multicasting places no restriction on the repli-
cation of a worm at a given switch. The basic idea of tree
based replication is to have multiple copies of a packet prop-
agate down a tree which has switches as internal vertices and
destinations nodes as leaf vertices.

Two methods have been proposed for tree-based multicast
in irregular networks [14]. In this paper, we use the method
that uses a single multidestination worm with a bit-string en-
coded header to perform multicast [14, 15] as a representative
of the tree-based multicasting method. The basic idea is to en-
code the multidestination worm header using an � -bit string
where � is the number of nodes in the system. The destina-
tions of the multicast are identified by setting the � th bit of the
the bit string to ‘1’ if node � is a destination of the multicast
(all other bits are set to ‘0’). Every switch has a similar � -bit
string (called the reachability string) associated with every one
of its output ports that lead to links in the “down” direction.
The reachability string specifies the set of destination nodes
that are reachable through the given (“down”) output port (sub-
ject to the restrictions of the base routing algorithm). After
traveling adaptively to a least common ancestor switch using
links in the “up” direction, a multicast packet is forwarded to
those “down”-ward output ports whose reachability string has
one or more ‘1’ bits in the same position(s) as in the packet
header [14].

Figure 4 illustrates the tree-based multidestination scheme
using bit-string encoding for a sample multicast. Figure 4(a)
shows the BFS graph of a sample irregular network. Let us
assume that there is at least one destination node connected to
each of the switches that are highlighted, and that the source
node is connected to switch 10. Figure 4(b) shows the tree-
based multidestination worm that covers all the destinations of
the multicast. Finally, Fig. 4(c) shows an example of a bit-
string encoded header and the reachability strings in a 4-port
switch of an 8-node system. The worm with the header shown
in Fig. 4(c) must be replicated to all the output ports of the
switch.

3.2.4 Path-based Multicasting using Multidestination
Worms

Under the path-based multicasting scheme [4], multidesti-
nation worms use almost exactly the same path followed by a
unicast worm from a source to one of its destinations (as al-
lowed under the base routing algorithm). However, at every

root

(a)

6

4

8

1

7

5

3

9 2

10

root

(b)

10

6

5

3

9 2

1

7

4

8

11001110

10000001 01100000 00001010 00000100

11101111

Bit-string header

Total reachability
string

Reachability string per output port

(c)

Figure 4. Illustrating the single-phase tree-based mul-
ticasting scheme: (a) sample BFS graph of an irregu-
lar network with participating switches in the multicast
highlighted, (b) the tree-based multidestination worm,
and (c) an example of a bit-string encoded header and
the various reachability strings in a 4-port switch.

switch along its path, the multidestination worm is allowed to
replicate and cover all the destinations of the multicast that are
directly connected to that switch. At every switch, the worm is
allowed to replicate to multiple output ports that are connected
to destination nodes and (if needed) to exactly one other out-
put port that is connected to a switch. Such multidestination
worms are called multi-drop path-based worms. Figure 5(a)
shows an example of a multi-drop path-based multidestination
worm. Since there may be no single path from the source
which covers all of the destinations, path-based multicasting
requires multiple multidestination worms to cover an arbitrary
multicast destination set. Furthermore, to arrive at a relatively
small number of multidestination worms that cover a given
destination set, an algorithm is needed that chooses appropriate
paths so that as many destinations as possible are covered by
each of the worms. Multiple algorithms have been proposed
for this [4]. In addition, a multi-phase algorithm is required
to cover the destination set using the multidestination worms
so that contention is reduced and multicast can be performed
efficiently. In this paper, we use the Multi-Drop Path-based
Less Greedy (MDP-LG) algorithm that finds a small number
of multidestination worms to cover the destination set and de-
cides how to send these worms in multiple-phases so as to re-
duce contention and enhance performance. Details of this al-
gorithm can be found in [4], where this algorithm was shown
to perform best among the proposed algorithms.

source

destination

s
1

1
2
3
48

7
6
5

port numbering

s
2s

3
s

4

(a)
id(n(s)) 10110000 data flits

(b)

1 id(n(s))3 11011000 id(n(s))4 10100000ta
g

Figure 5. The Multi-drop mechanism: (a) example of a
multidestination worm and (b) the header encoding.

The encoding used for the header of each of the multidesti-
nation worms under the path-based scheme is as follows. The
header of a path-based multidestination worm consists of ���
fields, where � is the number of switches on the worm’s path

4

in which replication occurs. The header consists of alternat-
ing fields consisting of a node ID field followed by a � -bit
string field (where � is the number of input ports/output ports
in each switch). Figure 5(b) shows the header encoding of
the worm shown in Fig. 5(a). The expression ��� ��� ����� � � is the
ID of any arbitrary destination node which is connected to the
switch ��� . The node ID field is used to index into the tables for
unicast message routing and to route the message towards the
switch that connects to the specified node. When that switch
is reached, the node ID field is stripped and the � -bit string
field is examined. The � -bit string has ‘1’ bits corresponding
to the output ports to which the worm must be forwarded. As
mentioned above, at most one of these ports leads to another
switch. The other ports correspond to destination nodes where
the message is absorbed. The � -bit string field is stripped be-
fore the worm is forwarded to the next switch (if any) where
the procedure is repeated. When the message reaches the last
switch on its path, the node ID field is stripped away and the
message is forwarded to the output ports that correspond to the
‘1’ bits in the last (� -bit string) field of the header.

3.3 Comparison of Architectural Require-
ments

We now qualitatively compare the three enhanced multi-
casting schemes described above. The NI-based multicasting
scheme requires the computation of the entire � -binomial mul-
ticast tree. It may also require additional memory at the net-
work interfaces to buffer multicast packets. This is because
each packet is forwarded to multiple destinations, and has to be
buffered till the NI-processor has injected all required copies
into the network. However, the NI-based multicasting scheme
requires no additional support at the switches than what is re-
quired for traditional point-to-point message communication.

The tree-based multicasting scheme only requires a single
multidestination worm to perform multicast. Furthermore, en-
coding the multidestination worm header is fairly simple: start
with an � bit string and set the bits in the positions corre-
sponding to the destinations to ‘1’. However, decoding the
multidestination header is more complex. First, the switches
need to be equipped with reachability strings, which means
space is required at the switches for this. Second, there is a
one time cost of setting up the values in the strings (which
can be done at the time of network startup or reconfiguration).
Third, the � bit string has to be compared with the reachability
strings of each of the � output ports and the copy of the worm
forwarded through a given output port should carry a modi-
fied header. Depending on the size of the bit string (which in
turn depends on the system size), the cost of such logic may
be significant. Finally, support for deadlock-free replication is
required at the switches.

The path-based multicasting scheme also requires support
for replication at the switches. Furthermore, encoding the
worm header is relatively harder. The source needs to know
the network topology and needs to run an algorithm to decide
on paths that can cover the destination set using very few mul-
tidestination worms. Once the paths have been formed, the
header must be formed in the format described above. How-
ever, decoding the multidestination header may be relatively
easy. First, there is no necessity for maintaining reachability
strings at each of the switches. Second, the decoding operation
at the switches is relatively simple: it is the same table lookup
operation required for unicast messages or it is the simple pro-
cessing of a � -bit string. Finally, the cost of decoding logic
does not increase with increase in system size.

We have provided the various trade-offs relating to the cost

and complexity of each of three multicasting schemes above.
In the next section we compare the performance of the three
schemes using simulation experiments.

4 Simulation-based Evaluation
The relative performance of the three multicasting schemes

described in the previous sections may depend on a number of
parameters. To study the factors that may affect multicast per-
formance in the presence of network contention, we performed
simulation experiments varying a number of system param-
eters one at a time. In the following subsection we present
the experiments we performed and the parameters that we var-
ied. The results of our experiments with single multicast are
presented next, followed by the results for our experiments to
measure the impact of increasing applied load on multicast la-
tency.

4.1 Experiments and Performance Measures
We used a C++/CSIM based simulation testbed [10] for our

experiments. The simulation testbed models a large number of
topologies, and uses cut-through routing as the flow control
technique with an input buffer size of 640 flits.

For each of our experiments, we assume the following de-
fault parameters. We assume that the I/O Bus at every host
has a bandwidth of 266 MB/s. The current PCI Bus standard
calls for a bandwidth of 133 MB/s: our assumptions reflect
the belief that I/O bus bandwidths will increase in the future.
Let the communication software overhead per message at the
sending and receiving host processors be �
	�� and �	�� , respec-
tively, and let the corresponding overhead at the sending and
receiving NI processors be ��� � and ��� � , respectively. For all
our experiments, we assume �	�������	�� and � � � ��� � � . We use
the term � to denote the ratio of � 	�� to ��� � , and we assume a
default value of ��� � . This reflects our belief that messaging
layers will become thin and efficient, and that while most work
relating to initiating a message may still be done on the host
processor, the relatively low speed of the NI processor makes
the value of ��� � comparable to �	�� . We assume a default cycle
time of 5 ns, and a default value of 1000 cycles for �
	�� . This
value corresponds to the software overhead incurred at the host
using many of the current-day lightweight messaging layers.

In the network, we assume that links are 1 byte wide and
that this is equal to the flit size. The link propagation time for
a flit across a physical link is assumed to be 1 cycle, as is the
time to propagate through a switch crossbar from the input to
the output buffer of the switch. We assume a uniform routing
overhead of 1 cycle for all three schemes. This reflects our as-
sumption that while the cost of the logic involved for decoding
and routing a header under the different schemes may vary, the
approximate latency for doing these operations is likely to be
kept within a cycle in most switch implementations. We as-
sume a default packet size of 128 flits, and a default message
size of 1 packet. Finally, we assume a default system of 32
nodes that are interconnected by eight 8-port switches in an ir-
regular topology. Our method for generating different irregular
topologies is described in [13]. Using this method we gener-
ated 10 different topologies, and our results are averaged over
all these topologies.

We use two types of experiments to measure the perfor-
mance of the three multicasting schemes. In the first type
of experiments, we measure the latency of single multicasts
for each of the three schemes and study the effect of differ-
ent parameters on the relative latencies of the three schemes.
We assume that exactly one multicast occurs in the system at
any given time and that there is no other network traffic. This

5

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

R = 0.5

ni
path
tree

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Default Parameters

ni
path
tree

3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

R = 2

ni
path
tree

2500

3000

3500

4000

4500

5000

5500

6000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

R = 5

ni
path
tree

Figure 6. Effect of � on single multicast performance.

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Number of Switches = 6

ni
path
tree

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Default Parameters

ni
path
tree

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Number of Switches = 10

ni
path
tree

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Number of Switches = 12

ni
path
tree

Figure 7. Effect of Number of Switches

gives us an estimate of the best possible performance of each
of the three schemes in isolation. We use traffic consisting of
multiple concurrent multicasts for our second type of exper-
iments. We apply an increasing load consisting of multicast
traffic alone and examine the load at which the network sat-
urates with each of the three multicasting schemes under the
influence of the various parameters. As in [15], we use effec-
tive applied load as a measure of our stimulus. For a multicast
of degree � and a load of

�
, the effective applied load is � �

.

4.2 Single Multicast Performance
We now present our results for the effect of single multi-

casts on the three different multicasting schemes. One by one,
we examine the effect of each parameter on the performance
of the schemes. As mentioned in Sec. 1, it must be kept in
mind that the multi-phase path-based multicasting scheme can
also make use of support at the NI to further enhance multicast
performance. However, since we are evaluating the effect of
support at the NI versus support at the switches, we assume
that under the path-based scheme, every intermediate destina-
tion receives the incoming message completely at the host and
then retransmits the message to the NI and then onto the net-
work.

4.2.1 Effect of �
We first examine the effect of variation in the ratio

� (� 	���� ��� �) on the performance of the three multicasting
schemes. Given our default value of �
	�� � ������� cycles we
vary the value of � � � to take on the values 2000, 1000 (de-
fault), 500, and 200 cycles (to generate the following values of
� : 0.5, 1, 2, and 5, respectively). Figure 6 presents the results
of our experiments. We find here (as well as in the other single
multicast experiments to follow) that the tree-based multicast-
ing scheme performs extremely well, since it requires only one
message and therefore only one communication phase. The in-
terplay between the NI-based and path-based schemes is more
interesting. As the ratio increases (i.e. � � � shrinks relative to
�	��), the NI-based multicasting scheme begins to outperform
the path-based scheme. This is because although the NI-based
scheme involves more communication phases, every commu-
nication phase incurs a receive overhead of �� � and a send
overhead of � � � . On the other hand, the fewer phases of the
path-based scheme each incur a receive overhead of �� � � � 	��
and a sending overhead of �	�� � � � � .

4.2.2 Effect of Number of Switches
To see the effect of increase in number of switches on mul-

ticast performance we increased the number of switches used
while keeping the system size (i.e., the number of nodes) con-
stant. However, all switches had 8 ports.

As the number of switches for a given system size increase,
the average number of nodes per switch decreases as does the
average number of multicast destinations per switch. The re-
sults of Fig. 7 show that the number of multidestination worms,
the number of phases for multicast, and the multicast latency
for the path-based scheme increase with decrease in the aver-
age number of destinations per switch. The other two multi-
casting schemes remain largely unaffected by this increase in
the number of switches.

It is to be noted that for the NI-based scheme, the average
path length increases with larger number of switches. How-
ever, this affects only the propagation time of the worms. Fur-
thermore, since we are using cut-through routing (which is al-
most “distance independent”) this increase in propagation time
is negligible.

4.2.3 Effect of Message Length
Figure 8 shows the effect of increasing message length on

multicast performance. Here too the path-based scheme be-
gins to perform worse than the NI-based multicast beyond a
message length of 512 flits. However, the reason for this de-
crease in the relative performance of the path-based scheme
can be attributed to the increase in the latency of each of its
phases: the number of phases remains unchanged. We assume
a packet size of 128 flits. Messages larger than this size are
split into multiple packets. Under the path-based scheme, a
phase finishes only when all the packets of the message arrive
at an intermediate destination: only then can the node initiate
the path-based multidestination worm of the next phase. On
the other hand, under the NI-based scheme (and following the
FPFS discipline outlined earlier), a packet can be forwarded to
the each of the recipients of the next phase as soon as it arrives
at the network interface of an intermediate destination node.
The NI-based scheme therefore begins to gain in performance
as the number of packets in a message increases.

We also performed a number of experiments to study the
effect of startup overhead at the host, system size, and packet
length. However, due to lack of space, these results are not
presented. Interested readers may refer to [13] for details.

6

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Default Parameters

ni
path
tree

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Message Length = 256

ni
path
tree

6000
8000

10000
12000
14000
16000
18000
20000
22000
24000
26000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Message Length = 512

ni
path
tree

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Number of destinations

Message Length = 1024

ni
path
tree

Figure 8. Effect of Message Length

4.3 Latency versus Applied Load for Multicast
We now present our results for multicast latency under an

increasing multicast load for each of the three schemes. We
used two different multicast degrees in our experiments: 3-way
and 15-way multicasts (i.e., multicasts with 3 and 15 destina-
tions, respectively). For each of our experiments, our simula-
tions were run for at least one million cycles, with measure-
ments beginning after a cold-start time of 500,000 cycles. It is
worth keeping in mind that for each of the networks, the maxi-
mum unicast throughput (assuming no software overheads and
no contention for the I/O bus) was observed to be less than
0.18 using up*/down* routing. Also, each of the plots in this
section show multicast latency against effective applied load
as discussed in Sec. 4.1.

4.3.1 Effect of �

0

100000

200000

300000

400000

500000

600000

0.010.0150.020.0250.030.0350.040.0450.05

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

R = 0.5, 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

0.01 0.02 0.03 0.04 0.05 0.06 0.07

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

R = 0.5, 15-way

nic
path
tree

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

700000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 15-way

nic
path
tree

0

10000

20000

30000

40000

50000

60000

70000

0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

R = 5, 3-way

nic
path
tree

0

10000

20000

30000

40000

50000

60000

70000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

R = 5, 15-way

nic
path
tree

Figure 9. The effect of parameter � on the latency of
multicasts under increasing multicast load for 3-way
and 15-way multicasts.

Figure 9 shows the results of our experiments under vari-
ation of � . In general, for a value of � less than or equal
to 1.0, the NI-based scheme performs worst followed by the
path-based scheme. The tree-based scheme performs best for
such values of � . However, when � becomes greater than 1.0,
we note an interesting trend. Now the NI-based scheme per-
forms comparably to the tree-based scheme and much better
than the path-based scheme. A possible reason for this is that

the tree-based scheme causes an almost simultaneous recep-
tion in all its recipients leading to an increase in the contention
for resources at the recipient nodes. On the other hand, the NI-
based scheme “spreads” the receive times among the recipients
of the multicasts, causing the performance improvement.

4.3.2 Effect of Number of Switches
Our experiments with single multicasts in systems with in-

creasing number of switches has shown that the path-based
scheme begins to perform worse as the number of switches
in the system increases. We observe a similar trend for our
results with multiple multicast traffic (shown in Fig. 10). As
the number of switches increases, the saturation load for the
path-based scheme approaches that of the NI-based scheme.
However, the NI-based scheme results in a greater amount of
traffic and higher contention in the network. The tree-based
multicast performs almost uniformly well with increase in the
number of switches and saturates much later than the other two
schemes.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

6 switches, 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

6 switches, 15-way

nic
path
tree

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

700000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 15-way

nic
path
tree

0

50000

100000

150000

200000

250000

300000

350000

400000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

12 switches, 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

12 switches, 15-way

nic
path
tree

Figure 10. The effect of the number of switches on the
latency of multicasts under increasing multicast load for
3-way and 15-way multicasts.

4.3.3 Effect of Message Length
Our results for multicast performance under increasing

message length are shown in Fig. 11. The results show that the
tree-based multicasting scheme performs best for all message
lengths. Furthermore, as was noted for single multicasts, the

7

performance of the NI-based and path-based schemes become
comparable as the message lengths increase. Recall that for a
single multicast with a message length of 1024 flits (Sec. 4.2.3)
we observed that the NI-based scheme performs better than
the path-based scheme. Under multiple multicast traffic, the
NI-based scheme performs worse (has a lower saturation point
and higher latencies) than the path-based scheme for this value
of message length, especially for large multicast degrees. This
is because the NI-based scheme involves more communication
phases and results in more traffic than the path-based scheme,
thereby increasing the contention in the network.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

700000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

Default Parameters; 15-way

nic
path
tree

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

256 flit messages, 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

256 flit messages, 15-way

nic
path
tree

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0.010.020.030.040.050.060.070.080.09 0.1

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

1024 flit messages, 3-way

nic
path
tree

0

100000

200000

300000

400000

500000

600000

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ul

tic
as

t L
at

en
cy

 in
 c

yc
le

s

Effective Applied Load

1024 flit messages, 15-way

nic
path
tree

Figure 11. The effect of the message length on the la-
tency of multicasts under increasing multicast load for
3-way and 15-way multicasts.

5 Conclusion
In this paper, we have compared three schemes for efficient

multicast in switch-based irregular networks. We find that the
tree-based multicasting scheme performs better than the path-
based and NI-based schemes. The relative performance of the
path and NI-based schemes is sensitive to a number of param-
eters. The most important of these parameters is the ratio � of
overhead at the host to the overhead at the NI. We find that the
path-based scheme performs better than the NI-based scheme
for values of � less than 1, smaller system sizes, larger switch
sizes, fewer switches for a given system size, and for mul-
ticasts with fewer packets. In all other cases, the NI-based
scheme outperforms the path-based scheme.

Since a wealth of research has focussed on more efficient
network interfaces, the value of � is likely to rise in the future.
It is also important that the performance of multicast scale
with increasing system size and with increase in the number
of switches. We therefore conclude that support for multicast
at the NI is an important first step to improving multicast per-
formance. However, there is still considerable gain that can
be achieved by supporting hardware multicast in switches. In
particular, unlike with the NI-based schemes, the performance
of the switch-based multicasting schemes is able to scale with

the trend of increasing switch size. Finally, while supporting
such hardware multicast, it is better to support schemes that
can achieve multicast in one phase even at a (perhaps) addi-
tional cost.

Additional Information: A number of re-
lated papers and technical reports can be obtained from
http://www.cis.ohio-state.edu/˜panda/pac.html.

References
[1] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-

Second Local Area Network. IEEE Micro, pages 29–35,
Feb 1995.

[2] D. Dai and D. K. Panda. Reducing Cache Invalidation
Overheads in Wormhole DSMs Using Multidestination
Message Passing. In ICPP, pages I:138–145, Chicago,
IL, Aug 1996.

[3] R. Kesavan, K. Bondalapati, and D. K. Panda. Multi-
cast on Irregular Switch-based Networks with Wormhole
Routing. In HPCA-3, pages 48–57, February 1997.

[4] R. Kesavan and D. K. Panda. Multicasting on Switch-
based Irregular Networks using Multi-drop Path-based
Multidestination Worms. In PCRCW ’97, pages 179–
192, June 1997.

[5] R. Kesavan and D. K. Panda. Optimal Multicast with
Packetization and Network Interface Support. In ICPP,
pages 370–377, Aug 1997.

[6] X. Lin and L. M. Ni. Deadlock-free Multicast Wormhole
Routing in Multicomputer Networks. In ISCA, pages
116–124, 1991.

[7] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, Mar 1994.

[8] L. Ni. Should Scalable Parallel Computers Support Ef-
ficient Hardware Multicasting? In ICPP Workshop on
Challenges for Parallel Processing, pages 2–7, 1995.

[9] D. K. Panda. Issues in Designing Efficient and
Practical Algorithms for Collective Communication in
Wormhole-Routed Systems. In ICPP Workshop on
Challenges for Parallel Processing, pages 8–15, 1995.

[10] D. K. Panda, D. Basak, D. Dai, R. Kesavan, R. Sivaram,
M. Banikazemi, and V. Moorthy. Simulation of Modern
Parallel Systems: A CSIM-based approach. In WSC’97,
pages 1013–1020, December 1997.

[11] D. K. Panda, S. Singal, and R. Kesavan. Multidestination
Message Passing in Wormhole k-ary n-cube Networks
with Base Routing Conformed Paths. IEEE TPDS, to
appear.

[12] M. D. Schroeder et al. Autonet: A High-speed, Self-
configuring Local Area Network Using Point-to-point
Links. Technical Report SRC research report 59, DEC,
Apr 1990.

[13] R. Sivaram, R. Kesavan, D. K. Panda, and C. B. Stunkel.
Where to Provide Support for Efficient Multicasting in
Irregular Networks: Network Interface or Switch? Tech-
nical Report OSU-CISRC-02/98-TR05, The Ohio State
University, February 1998.

[14] R. Sivaram, D. K. Panda, and C. B. Stunkel. Multicas-
ting in Irregular Networks with Cut-Through Switches
using Tree-Based Multidestination Worms. In PCRCW
’97, pages 35–48, June 1997.

[15] C. B. Stunkel, R. Sivaram, and D. K. Panda. Imple-
menting Multidestination Worms in Switch-Based Paral-
lel Systems: Architectural Alternatives and their Impact.
In ISCA-24, pages 50–61, June 1997.

[16] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reli-
able Multicast on Myrinet. In ICPP, pages III:156–165,
Aug 1996.

8

