
Scheduling of MPI-2 One Sided Operations over InfiniBand
�

Wei Huang Gopalakrishnan Santhanaraman Hyun-Wook Jin
Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210�
huanwei, santhana, jinhy, panda � @cse.ohio-state.edu

Abstract

MPI-2 provides interfaces for one sided communication,
which is becoming increasingly important in scientific ap-
plications. MPI-2 semantics provide the flexibility to re-
order the one sided operations within an access epoch.
Based on this flexibility, in this paper we try to improve the
performance of one sided communication by scheduling one
sided operations. We have come up with several re-ordering
and aggregating schemes to achieve better network utiliza-
tion. We have evaluated these schemes on both PCI-X and
PCI-Express platforms. With re-ordering scheme, we see
an improvement in the throughput up to 76%, latency up
to 40%. With aggregation scheme, we observe an improve-
ment of 44% and 42% for MPI Put and MPI Get latency
respectively on PCI-Express platform.

1. Introduction

Scientific computing has seen a dramatic growth in the
recent years. Parallel systems with increasingly large num-
ber of processors are being deployed as a means of attaining
the computing power needed to sustain the development in
this field. The advent of clusters of workstations powered
by high performance networks have focused on distributed
memory systems to support this need for higher computing
power.

In the last decade MPI (Message Passing interface) [6]
has evolved as the de facto parallel programming model
for distributed memory systems. MPI has a number of fea-
tures that provide both convenience and high performance
communication. MPI-1 standard specifies message pass-
ing based on the send-receive model. Both the sender and

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542, and grants from Mellanox and Intel.

the receiver are involved in the communication and the syn-
chronization is achieved implicitly through the communi-
cation operation. This model is often referred to as the two
sided communication model. As an extension to MPI-1,
the MPI-2[12] standard introduces the one sided commu-
nication model also known as the Remote Memory Access
(RMA) model. In this model ideally only one side is in-
volved in the data communication process and the other side
is unaware of it. Synchronization is done explicitly to en-
sure completion before using the data.

In the area of High performance networking,
InfiniBand[7] has emerged as a strong player. Infini-
Band architecture provides Remote Direct Memory Access
(RDMA) capability with which we can directly access
the remote address space. This fits in well with the RMA
communication model.

Our research group has been actively involved in de-
signing a high performance implementation of MPI-2 over
InfiniBand[14]. Earlier we have proposed designs to im-
plement two-sided communication by utilizing the RDMA
features provided by InifiniBand[11]. We also proposed
efficient and scalable designs for implementing one sided
communication with both active and passive synchroniza-
tion support[10, 9]. Currently we are working on various
schemes to optimize and improve the performance of our
one-sided implementation.

In this paper, we focus on two important aspects to im-
prove the performance of active one sided communication.
The first aspect is the ability to overlap multiple one sided
operations which in turn can impact the latency. The sec-
ond aspect is to better utilize the network link bandwidth by
aggregating and re-ordering the communication operations
within an window access epoch. Taking into consideration
these aspects, we propose several schemes to schedule or
reorder the RMA operations. In this process we also try
to reduce the number of messages by aggregating the ac-
tual communication data with the synchronization message
whenever possible. We have also come up with schemes

that can take advantage of both point to point based one-
sided implementation and direct one-sided implementation.

The effectiveness of these techniques have been evalu-
ated across two different platforms equipped with PCI-X
and PCI-Express bus, respectively. We have been able to
improve the MPI Put and MPI Get latency by up to 44%
and 42% respectively on PCI-Express platform. Further,
we use certain common scenarios as case studies to demon-
strate the potential of our schemes in real applications. And
we are able to observe significant improvement in through-
put.

The rest of the paper is organized in the following way.
In Section 2, we provide an overview of the InfiniBand Ar-
chitecture and describe the background for our work. In
Section 3, we explain the motivation for our schemes. In
section 4, we discuss detailed design issues. We evaluate
our designs in section 5 and discuss the related work in sec-
tion 6. Conclusions and future work are presented in section
7.

2. Background

2.1. MPI-2 one sided communication

In many parallel scientific applications the data distri-
bution might be changing dynamically and the data access
patterns could be irregular. For these kinds of applications,
each process can compute what data it needs to access or
update at other processes. But a process might not know
which data in its local memory needs to be read or updated
by other processes, and in some cases may not even know
the identification of the remote processes. So in such situ-
ations, there might be only one side in the communication
process which knows all the parameters needed to transfer
the data. MPI-2 one sided communication specifically tar-
gets these kinds of communication patterns.

In MPI-2 one sided communication, the sender can ac-
cess the remote address space directly. This one sided com-
munication is also referred to as Remote Memory Access
or RMA communication. In this model, the origin process
(the process that issues the RMA operation) provides all the
parameters needed for the communication. The memory
area on the target that can be accessed by the origin process
is called a Window. MPI-2 defines several different types
of communication operations. They are MPI Put, MPI Get
and MPI Accumulate. MPI Put and MPI Get functions
transfer the data to and from a window in a target process,
respectively. The MPI Accumulate function combines the
data movement to target with a reduce operation.

By the semantics of one sided communication, when an
one-sided call returns, the completion of the operation is not
guaranteed. In order to make sure that the one-sided opera-
tion is finished, explicit synchronization operations must be

used. In MPI-2, synchronization operations are classified
as active and passive. Active synchronization involves both
sides of communication while passive synchronization only
involves the origin side. We mainly focus on active mode
of synchronization in this paper.

The period between two synchronization calls is called
as access epoch and exposure epoch on the origin and tar-
get process, respectively. MPI-2 semantics allows multiple
communication calls during an access epoch. This is done
to amortize the overhead of synchronization over multiple
communication operations.

The MPI-2 semantics lays down certain rules which need
to be followed for the MPI program to be semantically
correct[12]. Some of these restrictions can be taken advan-
tage of by a smart MPI-2 implementation to enhance the
performance.

� A location in a window must not be accessed locally
once an update to that location has started, until the
update becomes visible in the private window copy in
process memory.

� A location in a window must not be accessed as a tar-
get of an RMA operation once an update to that loca-
tion has started, until the update becomes visible in the
public window copy.

The above statements imply that within an access epoch
there is no order between the different put and get com-
munication calls. At the end of the synchronization all the
communication operations must have completed, but the or-
der in which they complete and when the actual communi-
cation occurs is undefined.

An MPI-2 implementation can thus exploit this flexibil-
ity to improve the performance. In this paper we come with
several schemes to reorder these communication to improve
the latency and throughput. We describe these schemes in
detail in section 4.

2.2. InfiniBand Overview

The InfiniBand Architecture (IBA) [7] is an industry
standard. It defines a switched network fabric for intercon-
necting processing nodes and I/O nodes. InfiniBand Ar-
chitecture supports both channel semantics and memory se-
mantics. In channel semantics, send/receive operations are
used for communication. In memory semantics, InfiniBand
provides Remote Direct Memory Access (RDMA) opera-
tions, including RDMA write and RDMA read. RDMA op-
erations are one-sided and do not incur software overhead
at the remote side. This fits in well with the MPI-2 seman-
tics of one sided communication calls. In the current hard-
ware, RDMA write has better performance than RDMA
read. Compared with the send/receive operations, RDMA

operations have several advantages. First the RDMA op-
erations themselves are generally faster than send/receive
operations because they are simpler at the hardware level.
Second they do not involve managing and posting descrip-
tors at the receiver side which would incur additional over-
heads and reduce the communication performance. VAPI is
a Mellanox implementation of InfiniBand Verbs interface.

2.3. MVAPICH2

MVAPICH2 is our high performance implementation of
MPI-2 over InfiniBand. The implementation is based on
MPICH2. As a successor of MPICH[5], MPICH2[1] sup-
ports MPI-1 as well as MPI-2 extensions including one
sided communication. We have been working on MVA-
PICH2 for the past several months and currently we are
working on further optimizing the existing implementation
for both two sided and one sided communication. There can
be several different approaches for implementing one sided
communication. One approach is based on top of point to
point implementation provided by MPICH2. This approach
involves the remote host involvement for communication
and synchronization operations. In the second approach, the
one sided operations were implemented at the CH3 level by
extending the CH3 interface [10, 9]. This approach shows
overall benefits in most cases with respect to latency and
bandwidth. It also gives better overlap between computa-
tion and communication and also better scalability. Hence-
forth, we will refer to the first approach as Point to Point
Based and second approach as Direct One Sided. Fig. 1
shows the path taken by both the approaches.

Point to Point Based

Direct One Sided

ChannelChannel

MPI 2

ADI3

CH3 CH3’

TCP Socket SHMEM RDMA
Channel

InfiniBand
Sys V

Shared MemorySHMEM

Figure 1. Implementations of one sided com-
munication in MVAPICH2

3. Motivation

The motivation for our work here is two fold:

� As described in section 2.1, MPI-2 semantics does not
impose any restrictions on when and in what order the
RMA operations should occur within an access epoch.
However both the current implementations (Point to
Point Based and Direct One Sided) for active synchro-
nization always maintain the order of the RMA oper-
ations. This might not always lead to the best or op-
timum usage of the underlying network capability. In
this paper we want to exploit this flexibility to explore
different ways to reorder these RMA operations based
on the communication pattern to improve the latency,
bandwidth and throughput.

� Message aggregation can reduce the latency for small
RMA opearations because it can potentially reduce the
number of messages. The Point to Point Based im-
plementation can give this ability because of its two
sided nature. With the Point to Point Based implemen-
tation several RMA operations can be reordered and
combined/aggregated into a single message and the re-
mote side can receive this combined message and scat-
ter them. Aggregation of a RMA communication op-
eration and a synchronization message is also feasible.
Thus the Point to Point Based implementation can be
leveraged to improve the performance of small mes-
sages.

4. Design and Implementation

As described in section 3, MPI-2 semantics potentially
allow the implementation to reorder the actual completion
of the RMA operations, such as MPI Put and MPI Get, is-
sued during a window access epoch. Our main motivation
is to utilize this flexibility to schedule these operations so
that we can achieve better communication overlap, reduced
latency and improved throughput on our InfiniBand imple-
mentation.

We propose two possible approaches for scheduling the
RMA operations. The reordering approach focuses on reor-
ganizing the MPI Put and MPI Get operations issued dur-
ing a window access epoch to allow more efficient usage
of network bandwidth. The aggregation approach tries to
combine RMA operations to give better throughput.

4.1. Reordering approach

Since MPI-2 standard allows the actual communication
for RMA operations to happen at synchronization time, we
can hold all the RMA operations issued during a window

access epoch until synchronization time. At this stage, we
will have enough information of the communication pattern
during this access period. Based on this information, we
may re-order the issuing of these RMA operations to utilize
the underlying InfiniBand network more efficiently.

4.1.1. Interleaving. The bidirectional bandwidth is always
higher than the unidirectional bandwidth. This is because of
the full usage of the link bandwidth of both directions. For
example, with MVAPICH2 point to point communication,
we are able to achieve 874MB/s peak unidirectional band-
width while we can achieve 934MB/s in bidirectional band-
width test. (The unit of bandwidth MB/s in this paper refers
to Million bytes/sec) This trend is more obvious on PCI-
Express systems because the bus contention is no longer
the bottleneck in this scenario. The peak bandwidth num-
ber for unidirectional and bidirectional tests are 964MB/s
and 1905MB/s on the PCI-Express system.

However, in a typical one sided communication scenario,
only one direction of the link bandwidth is fully used, since
the target side is not explicitly involved in the communica-
tion. But this does not mean that we can only stick with the
highest possible unidirectional bandwidth provided by the
link. For MPI Put operations, we issue RDMA write opera-
tions at VAPI level to push the data out. The actual data flow
is from the origin process to the target. But for MPI Get
operation, we issue RDMA read operation at VAPI level to
fetch data from the remote side. So the actual data flow, es-
pecially for large size operations, is from the target process
to the origin process.

During Synchronization Stage
VAPI Level Communication PatternOrigin Process

MPI_Win_start()

MPI_Get()

MPI_Get()

MPI_Put()

MPI_Put()

MPI_Win_complete()

RDMA Write

RDMA Read

RDMA Read

RDMA Write

Target Process

MPI_Win_post

MPI_Win_wait

Figure 2. Sequential issue of MPI Get and
MPI Put

Let us consider the following one sided communica-
tion patterns. In Fig. 2, the origin process issues several
MPI Get operations and then several MPI Put operations
during a RMA access epoch. In Fig. 3, the origin process is-
sues the same number of MPI Get and MPI Put operations,
but in an interleaved way. As we can observe, the second
communication pattern in Fig. 3 can use the link bandwidth

During Synchronization Stage
VAPI Level Communication Pattern Target Process

RDMA Write

RDMA Read

RDMA Write

RDMA ReadMPI_Get()

MPI_Put()

MPI_Get()

MPI_Put()

MPI_Win_start()

Origin Process

MPI_Win_complete()

MPI_Win_post

MPI_Win_wait

Figure 3. Interleaved issue of MPI Get and
MPI Put

in a much more efficient way than the first communication
pattern.

Though we know that the link bandwidth will be used
more efficiently if the issuing of MPI Put and MPI Get is
interleaved, we can not require the MPI programmer to un-
derstand this and always write the optimized program. But
since the RMA operation can actually start during synchro-
nization time, we can schedule the operations so that the
corresponding VAPI level RDMA read and RDMA write
operations are issued in a interleaved manner.

4.1.2. Prioritizing. One of the conclusions of our previous
research is that the Direct One Sided implementation offers
better latency than Point to Point Based implementation for
large RMA operations. But it is still possible to further op-
timize the Direct One Sided implementation.

During the synchronization stage of direct one sided im-
plementation, the origin process will issue a RDMA write
to set a flag at the target process to indicate the end of the
access epoch. Before that, if a MPI Get operation was is-
sued prior to the synchronization call, we need to wait for
local completion of Get to ensure that the data has actually
been fetched and ready for use by the end of synchroniza-
tion phase.

During the access epoch, if the origin process calls sev-
eral MPI Put and MPI Get operations, we want to give pri-
ority to MPI Get operations in order to reduce the time in-
volved in waiting for the local completion. Therefore we
give priority to MPI Get operations over MPI Put opera-
tions. We first issue RDMA read required by MPI Get and
then issue RDMA write required by MPI Put. Fig. 4 illus-
trates the potential benefits of our prioritizing scheme. It is
to be noted that this prioritizing scheme does not necessar-
ily contradict with the interleaving scheme we proposed in
the last section. We can still interleave the operations but
we can issue RDMA read operations first.

VAPI level Communication pattern
During Synchronization stage

Without scheduling

Synchronization

RDMA Read

RDMA Write

Priority to Get operations

RDMA Write

RDMA Read

Synchronization

MPI_Win_start()
Origin Process:

MPI_Win_wait()

MPI_Win_post()

Target Process
MPI_Win_complete()

MPI Program

MPI_Put()

MPI_Get()

Figure 4. Potential benefit by giving priority
to MPI Get

4.2. Aggregation

VAPI level Communication pattern
During Synchronization stage

MPI Program

Without Aggregation With Aggregation

RDMA Write 1

RDMA Write 2

MPI_Win_wait()

MPI_Win_post()

Target Process

MPI_Win_complete()

MPI_Put(Large) 2

MPI_Put(Small) 1

MPI_Win_start()

Origin Process:

RDMA Write 2

Synchronization

RDMA Write 1
+ Synchronization

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

Figure 5. Aggregation of RMA operation and
synchronization

As described earlier our goal here is to better utilize the
network bandwidth. If we have multiple small RMA mes-
sages within an access epoch the network utilization would
be suboptimal. Because, for small messages, the overhead
associated with initiation and completion of RMA opera-
tions is relatively high.Hence a natural and obvious choice
would be to try and see if we can aggregate several of these
messages together. The users can use MPI user defined
datatypes to aggregate several one sided and two sided op-
erations to improve network utilization. However, our aim
is to provide optimizations inside the MPI library so that we
can deliver good performance even if there is no optimiza-
tion at the user level. Also, as described in section 2, no
order needs to be guaranteed among the MPI Put/MPI Get
operations between two synchronization calls. So we are
not violating any MPI-2 semantics by aggregating some of

VAPI level Communication pattern
During Synchronization stage

MPI Program

Origin Process:

Synchronization

Aggregated Write

RDMA Write

Synchronization

MPI_Win_wait()

MPI_Win_post()

Target Process

MPI_Win_start()

MPI_Win_complete()

Without Aggregation With Aggregation

MPI_Put(Small) 1

MPI_Put(Small) 1MPI_Put(Small) 1

MPI_Put(Large) 2

MPI_Put(Small) 3

MPI_Put(Small) 4

RDMA Write 1

RDMA Write 2

RDMA Write 3

RDMA Write 4

 2

 1+3+4

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 6. Aggregation of multiple small size
RMA operations

these operations, as long as all the data finally reaches the
target side. We can consider the following two aggregation
schemes:

� Aggregation between an RMA operation and a syn-
chronization operation

� Aggregation between multiple RMA operations

These schemes are illustrated in Figs. 5 and 6. By utilizing
Point to Point Based approach, we can aggregate multiple
RMA operations or an RMA operation and a synchroniza-
tion operation. In contrast, Direct One Sided approach can-
not provide aggregation because the target is not involved in
communication and hence cannot scatter aggregated mes-
sages into target buffers. To maximize aggregation, we de-
fer small RMA messages until we have sufficiently large
number of them. Then we can trigger deferred RMA mes-
sages as an aggregated operation and send it by Point to
Point Based approach. Meanwhile, large size RMA opera-
tions are still issued by Direct One Sided approach. We can
also hold back one small RMA operation and combine it
with the synchronization operation. In this paper, we mainly
focus on the aggregation between a RMA operation and a
synchronization operation.

5. Performance Evaluation

In this section, we use several micro benchmarks to eval-
uate the performance of our different schemes.

Due to the lack of publicly available applications using
MPI-2 one sided calls, we came up with our own bench-
marks to evaluate our scheduling schemes. We use some
specific throughput and latency tests to measure the impact
of our re-ordering scheme. In addition to this, we use ping-
pong latency tests for MPI Put and MPI Get to show the

benefit of the aggregation scheme. These experiments have
been conducted on two platforms specified in section 5.1.

5.1. Experimental Testbed

We evaluated our schemes on two different testbeds. The
first testbed is equipped with PCI-X interface and the sec-
ond is equipped with PCI-Express interface.

Our PCI-X testbed cluster consists of 8 SuperMicro SU-
PER X5DL8-GG nodes with ServerWorks GC LE chipsets,
Intel Xeon 3.0 GHz processors based on IA32 architecture,
and PCI-X 64-bit 133 MHz bus. The PCI-Express node
of our testbed has a 3.4 GHz Intel Xeon processor based
on EM64T architecture and runs in 64 bit mode with 8x
PCI-Express interfaces. They are equipped with MT25208
HCAs with PCI-Express interfaces. On both platforms In-
finiScale MTS2400 switch is used to connect all the nodes.
The versions of InfiniBand SDK and firmware are 3.2 RC17
and 4.5.2 RC4-BUILD-001 respectively. The operating sys-
tem used is RedHat Linux.

5.2. Impact of Re-ordering Scheme on different
Communication Patterns

We created two communication patterns at microbench-
mark level to study the impact of the re-ordering scheme we
proposed in the previous section.

Communication Pattern 1: We created a throughput
test which involves two processes. The first process starts
a window access epoch and then issues 16 MPI Put and 16
MPI Get operations of the same size. The second process
just starts an exposure epoch. The same sequence of opera-
tions are repeated for several iterations and we measure the
maximum throughput we can achieve (in terms of Million-
Bytes/sec).

We compared the performance of re-ordering scheme
and the original Direct One Sided implementation. On PCI-
Express systems, as we can see from Fig. 7(a), with re-
ordering scheme we are able to attain maximum throughput
of 1788MB/s, which is much closer to the peak bidirectional
bandwidth. We observe an improvement in throughput up to
76% compared with the original design. This trend is also
there on IA32 systems where the maximum improvement
of throughput is about 8%, as shown in Fig. 7(b). However,
we do not get as much improvement as on EM64T testbed
because on IA32 system, the PCI-X bus becomes the bot-
tleneck.

Communication Pattern 2: The test consists of multi-
ple iterations involving two processes. In each iteration, the
first process calls MPI Win start to start a window access
epoch, issues one MPI Put and one MPI Get, and then calls
MPI Win complete to end the epoch. After that it starts and
ends a window exposure epoch by calling MPI Win post

and MPI Win wait. The second process does the same job,
but in a reversed order, first it starts the exposure epoch then
the access epoch. We measure the average latency for each
iteration.

Our Scheduling scheme switches the order of these two
operations when it is actually issuing the corresponding
RDMA read or RDMA write during the access epoch. We
can see that especially for large messages, we can show sig-
nificant benefits by scheduling the operations internally. We
can reduce the latency up to 40% on EM64T testbed and
20% on IA32 testbed, as shown in Fig. 8.

5.3. Impact of Aggregation Scheme on Latency

In this section we measure the impact of our aggregation
scheme on MPI Put and MPI Get latency. The test consists
of multiple iterations involving two processes. In each itera-
tion, the first process starts a window access, issues a RMA
operation (MPI Put or MPI Get) and then ends the epoch.
Then it starts and ends a window exposure epoch. The sec-
ond process does the same job, but in a reversed order. We
measure the time needed for each iteration and define half
of its value as the ping-pong latency for the RMA operation.

Fig. 9(a) compares the ping-pong latency for MPI Put
operation and Fig. 10(a) compares the ping-pong latency for
MPI Get operations on EM64T testbed. The aggregation
scheme did noticeably better than our original Direct One
Sided implementation for small size RMA operation. We
see an improvement of up to 44% for MPI Put latency and
42% for MPI Get latency. For larger sizes, the aggregation
scheme actually falls back to Direct One Sided implementa-
tion so that these two schemes delivers the same latency. We
can observe the similar trends on IA32 platform, as shown
in Fig. 9(b) and Fig. 10(b). The maximum improvement
is around 38% and 42% for MPI Put and MPI Get latency
respectively.

6. Related Work

There are several studies regarding implementing one
sided communication in MPI-2. Some of the MPI-2 im-
plementations which implement one sided communication
are WMPI [13], NEC [8] and SUN-MPI [3]. We are aware
of MPICH2 performing aggregation between the last one
sided operation with a synchronization. In [17], reordering
of one sided operations is done to reduce the cost of lock
synchronization operation.

Besides MPI, there are other programming models that
use one sided communication. ARMCI [15], GASNET [2]
and BSP [4] are some examples of this model. One dis-
tinguishing feature of MPI as compared to these is that
MPI supports both one sided and two sided communica-
tions, which we use to our advantage in implementing our

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

(a) EM64T with PCI-Express

no scheduling
scheduling

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

(b) IA32 with PCI-X

no scheduling
scheduling

Figure 7. Impact of scheduling on throughput on EM64T and IA32

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

4k 16k 64k 256k 1M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

no scheduling
scheduling

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4k 16k 64k 256k 1M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

no scheduling
scheduling

Figure 8. Impact of scheduling on latency on EM64T and IA32

schemes. It is to be noted that ARMCI performs aggrega-
tion [16].

7. Conclusions and Future work

This paper describes different scheduling and aggrega-
tion schemes to improve the performance of MPI-2 one
sided communication over InfiniBand. We have proposed
different schemes and evaluated them with micro bench-
marks and different scenarios on two different platforms.
With scheduling scheme, we see an improvement in the
throughput up to 76%, latency up to 40% for certain scenar-
ios. With aggregation scheme, we observe an improvement
of 44% and 42% for MPI Put and MPI Get latency on PCI-
Express platform. Similar trends were observed for PCI-X
platform.

As part of our future work, we will extend our imple-
mentation of our aggregation scheme for combining multi-
ple RMA operations. We would like to explore more opti-
mized scheduling schemes. Further, we intend to merge the
different schemes into one framework which can adaptively
choose based on the communication pattern.

References

[1] Argonne National Laboratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[2] D. Bonachea. GASNet Specification, v1.1. Technical Report
UCB/CSD-02-1207, Computer Science Division, University
of California at Berkeley, October 2002.

[3] S. Booth and F. E. Mourao. Single Sided MPI Implementa-
tions for SUN MPI. In Supercomputing, 2000.

[4] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsanti-
las. Portable and Effcient Parallel Computing Using the BSP
Model. IEEE Transactions on Computers, pages 670–689,
1999.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[6] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface,
2nd edition. MIT Press, Cambridge, MA, 1999.

[7] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification, Release 1.0, October 24 2000.

[8] J. Traff and H. Ritzdorf and R. Hempel. The Implementation
of MPI-2 One-Sided Communication for the NEC SX. In
Proceedings of Supercomputing, 2000.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

Direct One Sided
Aggregation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

Direct One Sided
Aggregation

Figure 9. One sided MPI Put latency on EM64T and IA32

 0

 10

 20

 30

 40

 50

 60

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

Direct One Sided
Aggregation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

Direct One Sided
Aggregation

Figure 10. One sided MPI Get latency on EM64T and IA32

[9] W. Jiang, J.Liu, H. W. Jin, D. K. Panda, D. Buntinas,
R.Thakur, and W.Gropp. Efficient Implementation of MPI-2
Passive One-Sided Communication on InfiniBand Clusters.
EuroPVM/MPI, September 2004.

[10] J. Liu, W. Jiang, H.-W. Jin, D. K. Panda, , W. Gropp, and
R. Thakur. High Performance MPI-2 One-Sided Communi-
cation over InfiniBand. International Symposium on Cluster
Computing and the Grid (CCGrid 04), April 2004.

[11] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and Imple-
mentation of MPICH2 over InfiniBand with RDMA Support.
Int’l Parallel and Distributed Processing Symposium (IPDPS
04), April 2004.

[12] Message Passing Interface Forum. MPI-2: A Message Pass-
ing Interface Standard. High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

[13] F. E. Mourao and J. G. Silva. Implementing MPI’s One-
Sided Communications for WMPI. In EuroPVM/MPI,
September 1999.

[14] Network-Based Computing Laboratory. MPI over Infini-
Band Project. http://nowlab.cis.ohio-state.edu/projects/mpi-
iba/index.html.

[15] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and
Compiler Run-Time Systems. Lecture Notes in Computer

Science, 1586, 1999.
[16] J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman,

and D. K. Panda. Optimizing Mechanisms for Latency Tol-
erance in Remote Memory Access Communication on Clus-
ters . In Proceedings of the IEEE International Conference
on Cluster Computing, 2003.

[17] R. Thakur, W. Gropp, and B. Toonen. Minimizing Synchro-
nization Overhead in the Implementation of MPI One-Sided
Communication. In EuroPVM/MPI, September 2004.

