
Nomad: Migrating OS-bypass Networks in Virtual Machines

W. Huang† J. Liu‡ M. Koop† B. Abali‡ D. K. Panda†
† Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{huanwei, koop, panda}@cse.ohio-state.edu

‡ IBM T. J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532
{jl, abali}@us.ibm.com

Abstract
Virtual machine (VM) technology is experiencing a resurgence due
to various benefits including ease of management, security and
resource consolidation. Live migration of virtual machines allows
transparent movement of OS instances and hosted applications
across physical machines. It is one of the most useful features of
VM technology because it provides a powerful tool for effective
administration of modern cluster environments.

Migrating network resources is one of the key problems that
need to be addressed in the VM migration process. Existing studies
of VM migration have focused on traditional I/O interfaces such
as Ethernet. However, modern high-speed interconnects with intel-
ligent NICs pose significantly more challenges as they have addi-
tional features including hardware level reliable services and direct
I/O accesses.

In this paper we present Nomad, a design for migrating modern
interconnects with the aforementioned features, focusing on cluster
environments running VMs. We introduce a thin namespace virtu-
alization layer to efficiently address location dependent resource
handles and a handshake protocol which transparently maintains
reliable service semantics during migration. We demonstrate our
design by implementing a prototype based on the Xen virtual ma-
chine monitor and InfiniBand. Our performance analysis shows
that Nomad can achieve efficient migration of network resources,
even in environments with stringent communication performance
requirements.
Categories and Subject Descriptors D.4.4 [OPERATING SYS-
TEMS]: Communications Management—Network communica-
tion; C.2.5 [COMPUTER-COMMUNICATION NETWORKS]: Lo-
cal and Wide-Area Networks—High-speed

General Terms Design, Performance

Keywords Virtual Machines, Migration, High Speed Intercon-
nects, Xen, InfiniBand

1. Introduction
Virtual machine (VM) technologies are experiencing a resurgence
in recent years in both industry and academia [25]. With the virtual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’07, June 13–15, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

hardware interfaces provided by virtual machine monitor (VMM),
many different guest VMs can be hosted simultaneously in a single
physical machine. Virtual machine environments provide a wide
range of benefits including resource consolidation, performance
isolation, and user-transparent migration and checkpointing/restart.
Among them, user-transparent live migration is one of the most in-
teresting features. It helps separate the hardware and software man-
agement and consolidate clustered hardware into a single coherent
management domain [6]. It serves as a base for modern system
management frameworks to target performance, scalability, and
system management problems caused by today’s ultra-scale clus-
ters [22, 12].

Recently, network interconnects providing low latency (less
than 5µs) and very high bandwidth (multiple Gbps) are emerging,
such as InfiniBand [11], Myrinet [16], Quadrics [24], etc. Such
interconnects also support features including OS-bypass I/O and
Remote Direct Memory Access (RDMA). With OS-bypass, appli-
cations can directly initiate communication operations without the
involvement of the operating system. RDMA additionally allows
processes on remote nodes to access certain memory buffers of
a local process. Excellent performance and flexibility provided by
these features make modern interconnects widely adopted in cluster
environments, which typically host data center or high performance
computing (HPC) applications.

By utilizing the OS-bypass feature of the high speed intercon-
nects, direct I/O access without involvement of the VMM can be
realized for high performance I/O in virtual machine environment,
as we have done previously in VMM-bypass I/O [13]. As a re-
sult, virtual machine based cluster environments are a promising
solution to achieve both high performance and high manageabil-
ity. However, compared with traditional network devices such as
Ethernet, modern network interconnects with OS-bypass pose ad-
ditional unresolved challenges with respect to VM migration in
cluster environments. First, the intelligent NICs (Network Interface
Card) required for these networks manage large amounts of loca-
tion dependent resources which are kept transparent to both appli-
cations and operating systems and cannot be migrated with the OS
instances. This makes the existing solutions of current VM tech-
nologies, which target TCP/IP networks, less applicable. Further,
applications in cluster environments using special program inter-
faces of high speed interconnects typically expect reliable services
at the NIC level. Thus, it is important to make migration transpar-
ent to applications and to avoid packet drops or out-of-order de-
livery during migration. Online maintenance may not be the only
purpose of VM migration in cluster environment. VM migration
can be carried out for load balancing, where jobs are migrated to
servers with lighter loads, or for performance, where VMs involved
in a large parallel job should be migrated to servers close by in net-

work topologies. As a result, efficiency is also an important factor
of migration. Otherwise, benefits gained by migration can be easily
overshadowed by the migration overhead.

In this paper, we overcome these challenges by proposing No-
mad, a framework to address the migration issues of modern OS-
bypass interconnects. We target cluster computing environments,
which are very tightly coupled systems with stringent communica-
tion performance requirements.

Our approach introduces a thin namespace virtualization layer
to efficiently address location dependent resources. We also devise
a coordination protocol to avoid packet drops or out-of-order com-
munication during migration. To demonstrate our design, we im-
plemented a prototype of Nomad in the Xen virtual machine envi-
ronment for InfiniBand. The prototype is based on our earlier work
of VMM-bypass I/O [13] that extends the OS-bypass features to
bypass both the OS and the hypervisor for time-critical I/O opera-
tions. Our implementation includes three parts: modified user level
communication library, which allows us to suspend and resume
communication during migration without application level modi-
fications; modified device drivers in guest kernels, which frees and
re-allocates communication resources before and after migration,
respectively; and a coordination framework, which includes coor-
dinators in the privileged domains and a central server. The user li-
brary and the guest kernel modifications also realize the namespace
virtualization. Note that no changes to applications or the native de-
vice drivers in the privileged domain are needed. Through the high
performance communication of VMM-bypass and the Nomad’s ef-
ficient migration, we can realize the promise of cluster comput-
ing environments with both high performance and the benefits of
modern VM technologies. Nomad can also be used for coordinated
checkpointing of the virtual machines in a cluster environment. Our
design is readily applicable to other virtual machine environments
and other OS-bypass networks as well. The concepts presented can
also be extended for process-level migration.

In summary, the main contributions of our work are:

• Discussing in-depth the challenges of transparently migrating
modern OS-bypass interconnects in virtual machine environ-
ments, and proposing Nomad, a possible solution with names-
pace virtualization and coordination protocols.

• Implementing Nomad for a Xen-based cluster using InfiniBand.
Based off of our earlier work of VMM-bypass I/O, our imple-
mentation maintains application transparency and requires no
changes to native device drivers running in the Xen privileged
domain, device firmware, or hardware.

• Evaluating our prototype on an InfiniBand cluster with various
high performance computing (HPC) benchmarks. Our evalua-
tion shows that together with Xen live migration, Nomad can
be used efficiently even in environments with stringent require-
ments on communication performance.

The rest of the paper is organized as follows: In Section 2, we
briefly introduce the background information, including the Xen
VM environment, modern RDMA capable interconnects using In-
finiBand as example, and VMM-bypass I/O. In Section 3, we dis-
cuss in detail the challenges of migrating OS-bypass interconnects.
In Sections 4 and 5, we present the design and implementation
of Nomad. Performance evaluation results are given in Section 6.
In Section 7, we discuss our experiences with Nomad and propose
some hardware changes to OS-bypass networks which can ease mi-
gration. We discuss related work in Section 8 and conclude the pa-
per in Section 9.

2. Background
In this section we discuss background information for our work. In
Section 2.1, we introduce the OS-bypass approach of modern high
speed interconnects and give an overview of InfiniBand architec-
ture, which is a typical OS-bypass interconnect. In Section 2.3 we
describe direct I/O access in virtual machines and how OS-bypass
interconnects are supported by VMM-bypass I/O. Since our proto-
type is based on the Xen virtual machine environment, we introduce
Xen in Section 2.2.

2.1 OS-bypass I/O
Device I/O accesses have traditionally been carried out inside the
OS kernel. This approach, however, imposes several overheads into
the critical path such as context switches between user processes
and OS kernels and extra data copies which degrade I/O perfor-
mance [3]. It can also result in QoS crosstalk [26] due to lack of
proper accounting for I/O access cost carried out by the kernel on
behalf of applications.

To address these problems, a concept called user-level commu-
nication was introduced by the research community. One of the no-
table features of user-level communication is OS-bypass. Using this
model, devices allow frequent and time-critical operations such as
I/O communication be performed directly by user processes with-
out involvement of OS kernels, while other operations, such as
setup and management operations, are often handled by OS ker-
nels. OS-bypass has been adopted by commercial products, many
of which have become popular in areas such as high performance
computing where low latency is vital to application performance.

The key challenge to implement OS-bypass I/O is to enable safe
access to a device shared by different applications. To achieve this,
OS-bypass capable devices usually require more intelligence in
the hardware than traditional I/O devices. Typically, an OS-bypass
capable device is able to present virtual access points to different
user applications. Hardware data structures for virtual access points
can be encapsulated into different I/O pages. With the help of the
OS kernel, the I/O pages can be mapped into the virtual address
spaces of different user processes. Thus, different processes can
access their own virtual access points safely, with the protection
provided by the virtual memory mechanism.

2.1.1 InfiniBand Architecture
InfiniBand [11] is a high speed interconnect offering OS-bypass
features. InfiniBand host channel adapters (HCAs) are the equiva-
lent of network interface cards (NICs) in traditional networks. In-
finiBand uses a queue-based model for communication. A Queue
Pair (QP) consists of a send queue and a receive queue, which hold
work descriptors to transmit data. Once a work descriptor is posted
to the QP, it is carried out by the HCA. The completion of commu-
nication events is reported through Completion Queues (CQs) using
Completion Queue Entries (CQEs). All other detailed complexities
of communication are hidden from users. InfiniBand offers reliable
connection service (RC) as well as Remote Direct Memory Access
(RDMA). After QPs are created, they need to be explicitly bound
together to establish a reliable connection (RC).

To ensure safe hardware access at the user level, InfiniBand
requires all buffers involved in communication be registered. Upon
the completion of registration, a local key and a remote key are
returned, which will be used later for local and remote (RDMA)
accesses.

A user communication library takes care of time-critical oper-
ations. In the Mellanox [15] approach1 , which represents a typi-
cal implementation of the InfiniBand specification, initiating data

1 Please note that when discussing InfiniBand, we refer to the Mellanox
approach in this paper.

transmission includes copying a work descriptor to the user-space
queue pair (QP) buffer and ringing a doorbell. Doorbells are rung
by writing to the registers that form the User Access Region (UAR),
which is a 4k I/O page mapped into the virtual address space of a
process. The completion queue entries (CQEs) are also located in
user space (CQ buffer) and can be directly accessed from the pro-
cess virtual address space. These OS-bypass features make it possi-
ble for InfiniBand to provide very low communication latency. Fig-
ure 1 illustrates the architecture of OpenFabric Gen2 stack, which
is a popular software stack for InfiniBand.

User −level Infiniband Service

User−level Application

Core Infiniband Modules

HCA Driver

InfiniBand HCA

User−space
Kernel

OS−bypass

User−level Communication Library

Figure 1. Architectural overview of OpenFabrics Gen2 stack [19]

2.2 Xen Virtual Machine Monitor
Xen is a popular high performance virtual machine monitor orig-
inally developed at the University of Cambridge. It uses para-
virtualized [36] Xen architecture. This architecture is similar to the
native hardware such as the x86 architecture, with only slight mod-
ifications to support efficient virtualization.

The Xen hypervisor is at the lowest level and has direct ac-
cess to the hardware. Above the hypervisor are the Xen domains
(VMs); many domains can be run simultaneously. A special do-
main0, which is created at boot time, hosts application-level man-
agement software and performs the tasks to create, terminate or
migrate other domains.

To ensure manageability and safe access, device virtualization
in Xen follows a split device driver model [9]. Each device driver is
expected to run in an isolated device domain (IDD), which hosts a
backend driver to serve access requests from guest domains. Each
guest OS uses a frontend driver to communicate with the backend.
This split device driver model requires the development of frontend
and backend drivers for each device class.

Xen supports hot migration, which transparently moves one
running VM to another physical host without interruption of the
services hosted on the virtual OS of the migrating VM. Xen uses a
pre-copy approach, which iteratively copies the modified pages of
memory from the source machine to the destination host. Because
the VM is only paused at the final stage of migration, only a very
short downtime is noticed by the user application. Migration of
devices is handled by the para-virtualized device drivers. The front-
end drivers receive suspend callbacks at the final migration stage
when the VM is about to be paused and resume callbacks when
the VM is resumed at the new host machine. To handle Ethernet
devices, Xen suspends the network traffic of the migrating OS at
the suspend stage and resumes communication at the resume stage
on the new host. The IP and MAC addresses are migrated with the
OS instance. Dropped or out-of-order packets caused by migration
is handled by the TCP layer of the migrating OS.

2.3 Direct I/O in Virtual Machines
Traditional I/O accesses in virtual machines involve either the hy-
pervisor [35] or a device domain [9] to achieve device sharing and
safe access. Such schemes, however, also introduce extra overhead
to access I/O devices. This behavior is not desirable in many cases

especially for cluster computing environment, where I/O perfor-
mance is often critical to application performance.

Privileged Access
VMM−Bypass Access

......

VM

Backend Module

Module

VMM

Device

OS

Device Driver VM
Application

Guest ModulePrivileged

Figure 2. VMM-Bypass I/O

Our previous work proposed VMM-bypass I/O, which extends
OS-bypass I/O to allow safe direct network I/O access in virtual
machines. The architecture of VMM-bypass I/O is illustrated in
Figure 2. We target network devices with OS-bypass capabilities.
A device driver called guest module in the OS of the guest VM is
responsible for handling all privileged accesses to the device. In
order to allow I/O operations be carried out directly in the guest
VM, the guest module must be able to create virtual access points
on behalf of the guest OS and map them into the appropriate
addresses (e.g., UAR for InfiniBand) of user processes. Since the
guest module does not have direct access to the device hardware, a
backend module in the device domain helps to provide such access
to all the guest modules. In addition to serving as a proxy for device
hardware access, the backend module also coordinates accesses
among different VMs so that system integrity can be maintained.
Once the virtual access points have been setup, applications in the
guest VM can directly access the hardware, which brings close-to-
native I/O performance.

3. Challenges for Migrating OS-bypass Networks
Figure 3 illustrates an environment using virtual machines for clus-
ter management. Each physical machine hosts several VMs which
can run serial or parallel jobs. System administrators can move the
VMs across nodes for load balance or for online maintenance. Also,
for long running parallel jobs it is desirable to move the participat-
ing VMs to physical nodes adjacent in network topology whenever
possible. In either case, the basic requirements of VM migration
in a cluster environment include the transparency to applications
(keep alive the open network connections), as well as low impact
on application performance.

Physical Resources Computing Nodes

VMM

Guest VMs

Storage Nodes
Module
Management

Front−End

User Generated Data
VM Image Distribution/

Execute Jobs
Instantiate VMs/Control

Submit Jobs/

Control

Figure 3. A VM-based cluster environment

Compared with traditional network devices such as Ethernet,
migration of modern OS-bypass interconnects have been studied
less. In this section we take a closer look at the challenges of mi-
grating OS-bypass interconnects. We use InfiniBand and Ethernet
as examples for OS-bypass interconnects and traditional network
devices, respectively, in our description.

3.1 Location Dependent Resources
Many network resources associated with OS-bypass interconnects
are location dependent, making them very difficult to migrate with
the migrating OS instance with application transparency.

First, as mentioned in Section 2, to allow user level communi-
cation and remote memory access, the HCAs of modern intercon-
nects will often manage some data structures in hardware. Software
can use opaque handle to access HCA resources but cannot man-
age them directly. Once a VM is migrated to another physical ma-
chine with a different HCA, the opaque handles are no longer valid.
One approach is to attempt to reallocate the resources on the new
host using the same handle values. This method requires changes
to the device firmware which assigns the handles. Even with that
additional complexity, we will have a problem if multiple VMs are
sharing the HCA, because the handles may have already been as-
signed to other VMs.

Further, InfiniBand port addresses (local ID or LID) are asso-
ciated with each port, and only one LID can be associated with
each port. The mapping between the LIDs and physical ports are
managed by external subnet management tools, making it difficult
to change during migration. Also, since the LIDs can be used by
other VMs sharing the same HCA, in many case it is not feasible
to change them during migration. In contrast, both IP and MAC
addresses used in Ethernet are device-transparent and can be asso-
ciated with any Ethernet devices. Multiple MAC and IP addresses
can also be associated with one device, which offers flexibility to
migrate and share the network devices in VM environment. For ex-
ample, each Xen domain has its own IP and MAC address that are
associated with the physical Ethernet devices. Those addresses can
be easily migrated with domains, and can be re-associated to the
new hardware.

3.2 User Level Communication
User level communication makes migration more difficult from at
least two aspects:

First, besides kernel drivers, applications can also cache multi-
ple opaque handles to reference the HCA resources. If those han-
dles are changed after migration we cannot update those cached
copies at the user level. Also, RDMA needs some handles (remote
memory keys) be cached at remote peers, which makes the prob-
lem even more difficult. In contrast, applications for traditional net-
works generally use the sockets interface, where all complexities
are hidden inside the kernel and can be changed transparently after
migration.

Second, with direct access to the hardware device from the user
level it is difficult to suspend the communication during migration.
For traditional networks with socket programming, the kernel in-
tercepts every I/O request, making it much easier to suspend and
resume the communication during migration.

3.3 Hardware Managed Connection State Information
To achieve high performance and RDMA, OS-bypass interconnects
typically store connection state information in hardware. This in-
formation is also used to provide hardware-level reliable service,
which automatically performs packet ordering, re-transmission,
etc. With hardware managed connection states, the operating sys-
tem avoids the stack processing overhead and can devote more CPU
resources to computation. This presents a problem for migration,
however, since there is no easy way to migrate connection states be-
tween the network devices. Given this, the hardware cannot recover
any dropped packets during migration. Meanwhile, any dropped or
out-of-order packets may cause a fatal error to be returned to an
application since there is no software recovery mechanism.

In contrast, migration is easier for a traditional TCP stack on
Ethernet. The connection states are managed by the operating sys-

tem. Thus it is usually sufficient to save the main memory during
migration and all connection states will be migrated with the virtual
OS. For example, Xen does not make special effort to recover any
lost or out-of-order IP packet during migration, such IP level errors
are recovered by the OS at the TCP layer.

4. Detailed Design Issues of Nomad
In this section we present some of the design choices made for
Nomad to address the challenges we explained in Section 3. We
use namespace virtualization to virtualize the location dependent
resources and a handshake protocol to coordinate among VMs to
make the connection state deterministic during migration. We first
focus on migrating VMs hosting applications using RC services
only. Then we will also briefly mention how to support unreliable
datagram (UD) services.

We use Xen and InfiniBand throughout our discussion. Xen and
InfiniBand are each very typical in their domains, virtual machine
monitors and OS-bypass interconnects, respectively. Thus, most of
the issues discussed are common to other VM technologies and
OS-bypass network devices.

4.1 Location Dependent Resources
As we have discussed, software can only use opaque handles to
refer to HCA resources. All details of connection-level states are
managed by HCAs and cannot be directly accessed or modified.
Thus, we need to free the location dependent resources before the
migration starts and re-allocate them after the migration. The major
complexity comes from the location dependent opaque handles.
These handles are assigned by the firmware and can only be used to
access local HCA resources. It means they must be changed after
the resources are re-allocated on the new host. However, they can
be cached by user applications to access the HCA resources. How
to approach these cached opaque handles is a challenging task. For
example, a typical parallel application using InfiniBand cache the
following opaque handles:
• LIDs (port addresses), which are exchanged among the pro-

cesses involved after the application starts to address the remote
peers.

• Queue Pair numbers (QPN) after the QPs are created; To estab-
lish a reliable connection, each QP has to know both the LID
and the QP number of the remote side.

• Local and remote memory keys after registration. The same
keys must be used to reference the communication buffer
for either local communication operations or remote access
(RDMA).
All above handles may be changed upon migration. In order to

maintain application transparency, we must ensure that the applica-
tion can still use the re-allocated resources with the old handles.

4.1.1 Nomad Namespace Virtualization
To achieve application transparency, we introduce a virtualization
layer between the opaque handles that applications may use and the
real handles associated with HCA resources. To virtualize the LID,
we assign a VM identification (VLID), which is unique within a
cluster, to each VM once it is instantiated. The VLID is returned to
the application as LID. Similarly, once a QP is created, a virtual QP
number (VQPN) is returned to application instead of actual QPN.

In order to determine the real LID and QPN when the appli-
cations try to setup a connection, Nomad maintains a destination
mapping table similar to Figure 4 at the front-end driver. When an
application tries to setup a connection to a remote peer represented
by VLID and VQPN, the front-end driver intercepts the connection
request and replaces the VLID and VQPN according the content in
the mapping table. The driver may not be able to locate the entry

...

VLID2

VLID1

VLID3

LID1

VQPN1
VQPN2

......
QPN2
QPN1

LID1 and QPN1 is used when user
wants to setup connection to VLID1
and VQPN1

Figure 4. Destination mapping table

in the table, which happens the first time the connection is estab-
lished. In that case it will send a lookup request to the front-end
driver on the VM denoted by VLID to “pull” the real LID and QPN
that should be used and create an entry in the mapping table.

Once a connection is setup between two processes on different
VMs we consider those two VMs connected. When a VM is mi-
grated, the same VQPN and VLID then may correspond to a differ-
ent QP number and LID. Nomad must make sure that any changes
are reflected in the destination mapping table on each of the con-
nected VMs. To achieve that, each VM maintains a registered list
at the front-end driver to keep track of the connected VMs. Once a
VM receives a lookup request, it puts the remote VM into the reg-
istered list. After migration, updates of new handles will be sent to
all the connected VMs in the registered list to “push” the updates,
which will be reflected in their mapping table. The connections can
then be re-established automatically between the VMs without no-
tifying the application, using the latest handles.

Once an application completes, the driver will determine all
remote VMs to which it no longer has connections. It then sends
an “unregister” request to those VMs to remove itself from their
registered list. In this way we avoid unnecessary updates being sent
among VMs.

4.1.2 Virtualizing Memory Keys
An additional challenge is handling of the memory keys, especially
for remote memory keys, which are sent to peers for RDMA. If
we use similar approach as above, say generating globally unique
keys for each memory registration, then we have to update mapping
tables both locally and at the remote side for each memory regis-
tration. Otherwise, each time a new remote memory key is used for
communication, there will be no entry in the mapping table, requir-
ing a query to the remote VM. Since both memory registration and
communication can be in the critical path of application, in either
cases there may be significant and unacceptable delays.

To avoid the extra cost of looking for updates, we make modi-
fications based on the lookup list mentioned in the last section. We
still keep a similar mapping table, as shown in Figure 5. Note that
we need a mapping table for the local keys too because they are
used by applications to reference the local memory buffers. We re-
turn the real memory keys as the “virtual” keys to the applications.
Thus, if no entry is found corresponding to a key used by appli-
cation, instead of querying for updates, Nomad will use the key
directly for communication. After migration we will get a new set
of “physical” memory keys for the communication buffers. We will
then update all connected peer VMs with the new keys, which will
be kept in their own mapping tables.

The extra complexity caused by using real keys as virtual
keys is that we may have a conflict of physical keys with vir-
tual keys after migration. For example, on the origin host we first
register a user buffer and get memory key 0x1000. After migra-
tion we re-register the buffer and get key 0x2000, creating an
entry “0x1000→0x2000” in the mapping. Now we register an-

VLID VLID

VRKEY1 RKEY1
VRKEY1 RKEY1

... ...

...

... ...

VLKEY1 LKEY1
VLKEY1 LKEY1

(a)Local keys (b) remote keys

Figure 5. Nomad keeps: a) mapping table for local keys; b) list of map-
ping table for remote keys, updated upon peer’s request

other buffer, this time we get key 0x1000 since it has not been
used on the new host. Then if the application uses key 0x1000 to
communicate, Nomad cannot distinguish which buffer it is refer-
encing. To solve the conflict, we have to select an unused virtual
key, say key 0x3000, and update all connected VMs with an entry
“0x3000→0x1000”. Connected VMs are the only locations where
the keys could possibly be in use. We believe for memory keys,
such conflicts will not occur often, reducing any possible overhead.
For instance, InfiniBand firmware randomly selects 32-bit keys,
making the possibility of such conflicts very low.

We do not use this scheme for virtualizing LIDs or QP num-
bers. The main reason is that in case of conflict, we do not know
which VM will use the LID/QP number to set up a connection. We
will end up updating all active VMs in the cluster, which may be
prohibitively expensive on large clusters. Also, connection setup
typically is not in the communication critical path, thus there is no
need for this extra complexity.

4.2 User-level Communication
With namespace virtualization, the applications can use the same
handle to access the HCA resources after migration. Even with this,
we still need to suspend the network activity during the migration.
Unlike the traditional TCP/IP stack where all communication goes
through kernel, the user level communication leaves no central con-
trol point from where we can suspend the communication. Fortu-
nately, almost no application accesses the hardware directly. The
user level communication is always carried out from a user commu-
nication library, which is maintained synchronously with the kernel
driver. This allows us to intercept all send operations in this com-
munication library. Taking InfiniBand as an example, we generate
an event to the communication library to mark the QP suspended
if we want to suspend the communication on that specific QP. If
the application attempts to send a message to a suspended QP, we
buffer the descriptors in the QP buffer, but do not ring the door-
bell so that the requests are not issued to HCA. When resuming
the communication, we update every buffered descriptor with the
latest memory keys and ring the doorbell, the descriptors then will
be processed on the new HCA. This delays communication with-
out compromising application transparency. Note that this scheme
does not require extra resources to buffer the descriptors, because
the QP buffers are already allocated.

4.3 Connection State Information
Since there is no easy way to manage the connection state informa-
tion stored on the HCA, we work around this problem by bringing
the connection (QP) states to a deterministic state. When the VM
starts migrating, we not only mark all QPs as suspended, but also
wait for all the outstanding send operations to finish during the sus-
pension of communication. In this way, there will be no in-flight
packets originating from the migrating VM.

We must also avoid packets being sent to the migrating VM.
Nomad achieves this by sending a suspend request to all the con-
nected VMs. Upon receiving a suspend request, the connected VM
will notify the user communication library to mark the correspond-

ing QP as suspended and wait for all outstanding send operations
on that QP to finish. Note that communication on QPs to other VMs
will not be affected. The registered list can be used to identify all
the connected VMs.

After all communication on all the migrating and the connected
VMs are suspended and all the outstanding sends finish, the con-
nection states are deterministic and thus need not be migrated. We
simply need to resume the communication after the migration is
done.

4.4 Unreliable Datagram (UD) Services
Besides RC service, most modern interconnects also provide unre-
liable datagram (UD) service. UD service is easier to manage since
we do not need to suspend the remote communication, lost packets
during migration will be recovered by application itself. Only the
UD address handles need to be updated after migration; for Infini-
Band these are the LID and QP number.

Updating the UD address can be done in a similar way as
described in Section 4.1. For example, InfiniBand requires a UD
address handle to be created before any UD communication takes
place. Nomad checks with the destination VM, denoted by VLID,
for updates when creating the address handle. It is then registered
with that VM. When a VM is migrated, it will update all VMs in the
registered list with the new QP numbers and LIDs so the address
handles will be re-created.

5. Nomad Architecture for Xen and InfiniBand
In this section we present a prototype of Nomad over Xen and
InfiniBand. We built the prototype based on our earlier work of
XenIB, which virtualizes InfiniBand in the Xen environment with
VMM-bypass I/O. Our implementation extends XenIB with migra-
tion functionalities. In the following section we first show the over-
all architecture of the prototype. Then we discuss the protocols to
migrate one VM and how we extend the protocols to migrate a
group of VMs. Finally, we discuss some optimizations to further
reduce the overhead of Nomad during migration. Please note that
Nomad targets cluster environment, where all parties involved in
the same parallel jobs are trusted to be secure and reliable.

5.1 Architecture
Figure 6 illustrates the overall architecture of Nomad, which con-
sists of the following major components:

...node 2node 1

Central server for

frontend driver

kernel modifications kernel

backend driver

userspace

node n

management

user library

user−lib modifications

Nomad migration

User−level services

Applications

DomU
Device
Domain

Figure 6. Architecture of Nomad

• Modified user communication library: The major modification
includes code to suspend/resume communication on QPs, and
a lookup list for memory keys as described in Section 4.1.2 for
user level communication. Note that all changes are transparent
to the higher level InfiniBand services and applications.

• Modified InfiniBand driver in kernels of guest operating sys-
tem: Major code changes include the suspend/resume callback
interfaces interacting with XenBus interfaces[38]; the interac-
tion with the user library notifying it to suspend/resume com-
munication as necessary; the destination mapping tables as de-
scribed as Section 4.1; re-allocation of opaque handles after mi-
gration; and memory key mapping tables for all kernel commu-
nication.

• Management network: This includes a central server and man-
agement module plug-ins at the privileged domain. All control
messages (i.e. suspend or resume requests) are forwarded by
a management module in the privileged domain. The central
server keeps track of the physical host of each virtual machine
so that control messages addressed by VID can be sent to the
correct management module. Though this forwarding is not ab-
solutely necessary, this design has its advantages. First, we can
verify the correctness/validity of the control messages, so a ma-
licious guest domain (which may not belong to the same par-
allel job) will not break the migration protocols. Further, the
privileged domain will not be migrated, so the management
framework itself can be built on high speed interconnects like
InfiniBand. If the management network involves the VMs that
could be migrated, using InfiniBand may cause additional com-
plexity. Note that the central server does not necessarily affect
system scalability on large node clusters. It is only accessed to
resolve the actual location of VMs. All communication does not
go through this central server.

5.2 Migrating a Single Virtual Machine
Figure 7 illustrates the protocol of Nomad to migrate a VM. We
use a two stage protocol, following the model of migrating para-
virtualized devices in Xen. The front-end drivers go into a sus-
pend stage after receiving a suspend callback from the hypervi-
sor to get ready for migration. It goes into a resume stage after
receiving the resume callback to restart communication on the new
host. At the suspend stage, the driver sends suspend requests to
the connected VMs to suspend their communication. Local com-
munication is then suspended in parallel. Once acknowledgments
have been received from all connected VMs, location dependent
resources are freed and the suspend stage is finished. In the re-
sume stage, the driver will first re-allocate all location dependent re-
sources and then send update messages to all VMs in the registered
list. Upon receiving the update, connected VMs can re-establish
the connection and resume the communication. After all connected
VMs have acknowledged, the communication on the migrating VM
will be resumed.

(a) SUSPEND stage

2

3

1

5

4

Resetup HCA dependent resource

Send SUSPEND request

Suspend all communication

Free HCA dependent resources

on the QP to

SUSPEND REQ

Send RESUME request &
updates of all QPNs, keys ...

Resume communication

Resume communication
Re−init connections

ACK

RESUME REQ

ACK

(b) RESUME stage

Suspend communication

Migrating VM Connected Peers

10

8

7

6

9

SUSPEND callback from Xen

the migrating VM

Re−init connections to remote VM

Figure 7. Protocol for migrating one VM

In some cases users need to migrate a group of virtual machines
to new hosts. In this case, because of the existence of the central

server as a coordinator, we simplify the control message exchange
among the migrating VMs. We assume the central server will know
the set of VMs that user wants to migrate simultaneously. Then dur-
ing the suspend stage, each migrating VM will query the server to
get the list of connected VMs which are also migrating. Suspension
requests are not sent to those VMs, because they will suspend their
communication regardless. Instead, all migrating VMs will send
the suspend acknowledgments directly to each other. During the
resume stage, however, extra steps are needed to exchange the up-
dated resource handles among the migrating VMs before the con-
nections between the QPs can be re-established (before step 7 in
Figure 7) with the correct resource handles.

5.3 Optimization
Jobs running in a cluster environment, especially HPC jobs, can
involve hundreds to thousands of nodes. Applications such as MPI
may use a static connection model, which means that each process
will set up a reliable connection to every other processes. Sending
suspension requests to all connected VMs and waiting for replies
may cause significant delay.

Fortunately, earlier studies [2] reveal that not necessarily all pro-
cess pairs communicate between each other even though the con-
nections are created. To further reduce the synchronization over-
head, we introduce a concept called active connections.

Once a connection (QP) is created, by default it is in “non-
active” mode, with no communication is allowed on “non-active”
QPs. Thus during migration, we need not handshake with VMs
connected with “non-active” QPs, which may significantly reduce
the number of control messages sent. When a process posts a send
to a “non-active” QP, Nomad will first contact the remote side to
retrieve any possible updates on the QP numbers, LID or memory
keys, and re-establish the connection if needed. After that, the QP
is switched to “active” state and is ready for communication.

6. Performance Evaluation
In this section, we evaluate the performance of our prototype im-
plementation of Nomad. We first evaluate the impact of VM migra-
tion on InfiniBand verbs layer micro-benchmarks, then we move to
application-level HPC benchmarks. We focus on HPC benchmarks
since they are typically more sensitive to the network communi-
cation performance and allow us to evaluate the performance of
Nomad better. Since there are few HPC benchmarks directly writ-
ten with InfiniBand verbs, we use benchmarks on top of MPI [27]
(Message Passing Interface). We use MVAPICH [14, 18], a popular
MPI implementation over InfiniBand, for this evaluation.

6.1 Experimental Setup
The experiments are carried out on an InfiniBand cluster. Each
system in the cluster is equipped with dual Intel Xeon 2.66 GHz
CPUs, 2 GB memory and a Mellanox MT23108 PCI-X InfiniBand
HCA. The systems are connected with an InfiniScale InfiniBand
switch. Besides InfiniBand, the cluster is also connected with Giga-
bit Ethernet as the control network. Xen-3.0 with the 2.6.16 kernel
is used on all computing nodes. Domain 0 (the device domain) is
configured to use 512 MB and each guest domain runs with a single
virtual CPU and 256 MB memory. Because Xen migration transfers
memory pages over TCP/IP networks, which requires heavy CPU
resources, we host one VM on each physical node. In this way,
there is one spare CPU to handle the memory page transfer, which
separates the overhead of Nomad from other migration costs. This
allows us to better evaluate our implementation.

6.2 Micro-benchmark Evaluation
In this subsection, we evaluate the impact of Nomad on micro-
benchmarks. We use Perftest benchmarks provided with the Open-

Fabrics stack. They consist of a set of InfiniBand verb layer bench-
marks to evaluate the basic communication performance between
two processes. We ran the tests on two VMs, with each of them
hosting one process. We measure the performance reported by the
benchmarks while migrating the VMs, one at a time.

We first measure performance numbers with all the Perftest
benchmarks without migration. We observe no noticeable overhead
caused by Nomad as compared to our original VMM-bypass I/O
in [13], on either latency or bandwidth. This means the overhead of
the namespace virtualization is negligibly small.

Next we measure the migration downtime using RDMA latency
test. It is a ping-pong test that a process RDMA writes to the peer
and the peer acknowledges with another RDMA write. This process
repeats one thousand times and the worst and median half round-
trip time are reported. We modify the benchmark to keep measuring
the latency in loops. Figure 8 shows the RDMA latency reported in
each iteration. The worst latency is always higher than the typical
latency due to process skews at the first few ping-pongs. We also
observe that during iterations that we migrate the VMs, the worst
latency increases to around 90 ms from under few hundred micro-
seconds. This approximates the migration cost when migrating
simple programs.

 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

 262144

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(u
se

c)

Iteration

Worst Latency
Typical Latency

Figure 8. Impact of migration on RDMA latency

6.3 HPC Benchmarks
In this subsection we examine the impact of migration on HPC
benchmarks. We use the NAS Parallel Benchmarks (NPB) [17]
for evaluation, which are a set of computing kernels widely used
by various classes of scientific applications. Also, the benchmarks
have different communication patterns, from the ones hardly com-
municate (EP) to communication intensive ones like CG and FT.
This allows us to better evaluate the overhead of Nomad.

We run the benchmarks on 8 processes with each VM hosting
one computing process. We then migrate VMs one at a time during
the process to see the impact of migration. Figure 9 compares the
performance between running NAS on native systems, with Nomad
but no migration, migrating a VM once, and migrating a VM twice.
As we can see from the graph, Nomad causes only slight overhead
if there is no migration, which conforms to our earlier evaluation
on XenIB [34]. Each migration causes 0.5 to 3 seconds increase of
total execution time, depending on the benchmark. This overhead
will be marginal for longer running applications.

We now take a closer look at the migration cost caused by No-
mad. As we have discussed, the migration process can be divided
into suspend and resume stages. We analyze the cost of both of
these stages.
6.3.1 Suspend Stage of Nomad
The overhead of the suspend stage can be broken down into two
parts, time to wait for local and remote peers to suspend com-
munication and the time to free local resources. Suspending local

 0

 10

 20

 30

 40

 50

 60

BT.A.9 CG.B.8 EP.B.9 FT.B.8 LU.A.8 SP.A.9

El
ap

se
d

Ti
m

e
(s

ec
)

Benchmarks

Native
No Migration

1 Migration
2 Migrations

Figure 9. Impact of migration on NAS benchmarks (migrating one
VM out of eight)

Num. of Msg. Avg. Size (KBytes)
BT 615 100.4
CG 6006 49.4
FT 48 3844.8
EP 5 0.024
LU 15763 3.8
SP 1214 74.9

Table 1. NAS Communication patterns: number of total messages
to the most frequently communicated peer and the average message
size to that peer

communication occurs in parallel with suspending remote com-
munication. Suspension of remote communication typically takes
a relatively larger amount of time since there is extra overhead
to synchronize through the management network. To estimate the
overhead of synchronization, we also measure the cost of suspend-
ing communication on the remote peers (remote suspension time).
Please note that the results are based on multiple runs.

We profile each of these stages, as in Figure 10. We observe
that the remote suspension time vary largely depending on the com-
munication patterns. Table 1 characterizes the communication pat-
terns observed on the MPI process hosted in the migrating VM.
As we can see, CG has the longest remote suspension time, be-
cause it communicates frequently with relatively large messages,
thus likely takes long time waiting for the outstanding communi-
cations. Following CG are LU and FT, which has large number of
small messages and small number of large messages, respectively.
EP has extremely low communication volume, and its remote sus-
pension time is almost unobservable in the figure. With additional
synchronization time, the migrating VM takes typically a few to
tens of milliseconds waiting for communication suspension.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Ti
m

e
(u

s)

Suspend
Local Free

Remote Suspend

SP.A.9LU.A.8EP.B.8FT.B.8CG.B.8BT.A.9

Figure 10. Suspend time running NAS benchmarks

Another major cost observed is the time to free local resources,
which takes 22 to 57 ms based on the resources allocated. Because
we fix the number of peers in the job, we see a strong correlation
between the time to free the resources and the amount of memory
registered. For instance, for NAS-BT, the VM has registered 7540
pages of memory by the time it is migrated, and it takes 57 ms
to free the local resources. For NAS-EP, where only 2138 pages
are registered by the time the VM is migrated, and it takes only
around 22 ms to free all the resources. This suggests that a scheme
which delays the freeing of resources will potentially reduce the
migration cost further: the VM can be suspended without freeing
HCA resources; and the privileged domain can track the resources
used by the VM and free them after VM migration.

6.3.2 Resume Stage of Nomad
The cost at the resume stage mainly includes the time to re-allocate
the HCA resources and the time to resume the communication.
Similar to our analysis of the suspend stage, we also profile the
time taken on the remote peers to resume the communication. The
time is measured from the resume request arrival to send of the
acknowledgment; this time includes updating the resource handle
lookup list, re-establishing the connections, and reposting the un-
posted descriptors during the migration period. Time to resume lo-
cal communication on the migrating VM has very low overhead
because there are no unposted descriptors.

As shown in Figure 11, re-allocating the HCA resources is still
a major cost of the resume period. We see the same correlation
between the amount of registered memory and the time to re-
allocate resources. The time varies from around 105ms for NAS-FT
to 22ms for NAS-EP in our studies. This suggests pre-registration
of memory pages can help reducing the migration cost too.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Migrating

Remote

Ti
m

e
(u

s)

Resume
Setup

Remote Resume

SP.A.9LU.A.8EP.B.8FT.B.8CG.B.8BT.A.9

Figure 11. Resume time running NAS benchmarks

Our evaluation shows slightly more time to resume than to
suspend the communication on remote peers. This difference is
largely due to the process to update the lookup list and to re-
establish the connections. Also, total time spent in the suspend and
resume stages is smaller than the overhead we observed in Figure 9.
We believe that the extra overhead is the cost of live migration, e.g.,
the migrating OS is running in a shadow mode, with extra cost to
dirty a page.

6.4 Migrating Multiple VMs
We also measure the overhead of migrating multiple VMs simul-
taneously while running the applications. We run the NAS bench-
marks on 4 processes located on 4 different VMs. During the exe-
cution we migrate all 4 VMs simultaneously to distinct nodes.

Figure 12 shows the comparison of the total execution time.
We observe from the graph that the average per checkpoint cost
is not increased much as compared to the case of migrating one
VM. Since the applications have longer execution time with four

processes, the impact of migration looks much smaller. Despite
this, we observe larger variation of the results we collected. We
believe that the skew between processes is the major cause for the
variation. The skew can be mainly due to two reasons:

 0

 50

 100

 150

 200

 250

 300

 350

 400

BT.A.4 CG.B.4 EP.B.4 LU.A.4 SP.A.4

El
ap

se
d

Ti
m

e
(s

ec
)

Benchmarks

No Migration
1 Migration

2 Migrations

Figure 12. Impact of migration on NAS benchmarks (migrating
all four VMs)

 0

 100

 200

 300

 400

 500

1 2 3 4

El
ap

se
d

Ti
m

e
(m

se
c)

VMs

Suspend Local Communication
Synchronize with Remote VMs

Free Local Resources

Figure 13. Suspend time running NAS-CG

• Though we start migration of all 4 VMs at the same time, Xen
may take a varied amount of time to pre-copy the memory
pages, thus the time each process enters the Nomad suspend
stage is different.

• Each VM may not take the same amount of time to suspend the
local communication and to free the local resources. Similarly,
the time to re-allocate the resources on the new host and resume
communication can also be different.
Figure 13 shows a breakdown of suspend time spent on each of

the migrating VM. As we can see, VM1 takes a significantly shorter
time to wait for remote communication suspension than other three
VMs. It clearly indicates that VM1 enters the suspend stage later
than other three: all other three VMs have already suspended their
traffic and are waiting to synchronize with VM1.

7. Discussion
In this paper we present a software design for migrating OS-bypass
networks in virtual machines. Many of the design choices are
due to the “unfriendly” nature of OS-bypass hardware for virtual
machine environments. In this section, based on our experiences,
we propose features for future OS-bypass devices that may provide
better support for virtualization at hardware level.

First, one physical device should be able to associate with mul-
tiple addresses. In this case, there is no need to manually manage

the globally unique IDs for the virtual devices in each domain. The
next generation of InfiniBand devices, Mellanox ConnectX [15],
has already added this capability of presenting multiple virtual end
points to software. This satisfies the need for easier address man-
agement in virtual machine environment.

Second, for migration purposes, the hardware addresses should
be able to migrate to another device dynamically. As in Ethernet,
once the IP address is associated to another Ethernet card, packets
will be routed correctly after an ARP packet is sent. However, to
the best of our knowledge, there is no flexible support in today’s
typical OS-bypass networks. This could be potentially realized by
modifying the vendor-maintained routing software. We will further
explore along this direction.

Finally, the major complexity of Nomad is due to the difficulty
of getting the connection state during migration, which is trans-
parent to software. Thus we have to handshake with remote side
to suspend communication. We would like to propose Extract

and Inject operations to device management interfaces. Extract
saves the connection state of a specific connection (similar as se-
quence number, etc., for TCP) to a memory buffer, while Inject

sets the connection to a specific state defined by the contents in a
memory buffer. In this way, device on the new host can be synchro-
nized to the exact state before the VM is migrated, which seam-
lessly handles the reliability during migration. Such support with
careful software management of other resources, such as registered
buffers, can provide transparent migration with less overhead.

8. Related Work
In this paper we discussed the migration of OS-bypass intercon-
nects in virtual machine environment. OS-bypass is a feature found
in user-level communication protocols. After significant effort of
academic research including [31, 28] and prototypes such as active
messages [33], U-Net [32], FM [21], VMMC [4], and Arsenic [23],
it has been adopted by the industry [8, 11] and has been incorpo-
rated into various commercial products [16, 24].

Our implementation is based on our earlier work of VMM-
bypass I/O [13]. VMM-bypass I/O extends the idea of OS-bypass to
VM environments. Using this method, I/O and communication op-
erations can be initiated directly by userspace applications, bypass-
ing the guest OS, the VMM, and the device driver VM. It avoids the
additional cost of involving the VMM or a privileged VM to handle
I/O operations, such as the approaches used in VMware Worksta-
tion [30], VMware ESX Server [35], and Xen [9]. Instead, VMM-
bypass makes use of intelligence in modern high speed network
interfaces, targeting a relatively small range of devices which are
used mostly in high-end systems.

Current virtual machine technologies have provided several so-
lutions for migration of traditional network devices like Ethernet.
The solution used in Xen [6] is based on the observation that the
network interfaces of the source and destination machines typically
exist on a single switched LAN. The migrating virtual OS will carry
its IP address. An unsolicited ARP reply will be generated to adver-
tise that the IP has been moved. However, the location dependent
resources and the need for hardware level reliable service leads to
additional challenges for the migration of OS-bypass networks.

Some previous work on process-level migration also have ad-
dressed the issue of network migration. For example, Zap [20]
adopts Virtual Network Address Translation (VNAT) [29] which
intercepts all network packets and dynamically translates between
the address seen by the pod and the physical address. Another
method is to use a “home node” approach, as is used in Mobile
IP [1]. In this method a home node will re-route packets sent to the
default or old address to the current address. These schemes, how-
ever, due to OS-bypass communication and performance reasons,

can not be utilized in cluster environments where communication
performance is extremely important.

Both the VMM-bypass I/O and the Nomad migration require
a para-virtualization approach. As a technique to improve VM
performance by introducing small changes in guest OSes, para-
virtualization has been used in many VM environments [5, 10, 37,
7]. Essentially, para-virtualization presents a different abstraction
to the guest OSes than native hardware, which lends itself to easier
and faster virtualization.

9. Conclusions and Future Work
In this paper we present Nomad, a design for migrating modern
interconnects with OS-bypass features, focusing on cluster envi-
ronments running VMs. We discussed in detail the challenges of
migrating modern interconnects due to hardware level reliable ser-
vices and direct I/O accesses. We proposed a possible solution
based on namespace virtualization and handshake protocols. To
demonstrate our ideas, we present a prototype implementation of
Nomad based on the Xen virtual machine monitor and VMM-
bypass I/O with InfiniBand. We elaborated on the detailed design
issues and possible improvements with respect to scalability on
large scale clusters. Our performance analysis shows that Nomad
can achieve efficient migration of network resources.

We are working on improving the safety of Nomad migration
by pre-allocating resources before the VM suspends. We plan to
further reduce the migration overhead of Nomad and improve the
scalability on large scale clusters. We also plan to use high speed
interconnects to accelerate the Nomad control and the Xen migra-
tion traffic because they currently go through Ethernet. Also, cur-
rent implementation requires both peers involved in communica-
tion handshake during migration, thus requiring both of them run-
ning Nomad. We plan to explore solutions to achieve interoper-
ability of Nomad and unmodified hosts running native operating
systems, where the handshake will be impossible.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-
ful comments, which help to improve the final version of this paper.

This research is supported in part by the following grants
and equipment donations to the Ohio State University: Depart-
ment of Energy’s Grant #DE-FC02-06ER25749 and #DE-FC02-
06ER25755; National Science Foundation grants #CNS-0403342
and #CCR-0509452; grants from Intel, Mellanox, Sun, Cisco, and
Linux Networx; and equipment donations from Apple, AMD, IBM,
Intel, Microway, Pathscale, Silverstorm and Sun.

References
[1] RFC 2002: Mobile IP. http://www.ietf.org/rfc/rfc2002.txt.
[2] Communication Characteristics of Large-Scale Scientific Applications

for Contemporary Cluster Architectures. In IPDPS, page 27.2,
Washington, DC, USA, 2002. IEEE Computer Society.

[3] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. User-Level Network
Interface Protocols. IEEE Computer, pages 53–60, November 1998.

[4] M. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R. Mesarina.
Virtual-Memory-Mapped Network Interfaces. In IEEE Micro, pages
21–28, Feb. 1995.

[5] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. ACM
Transactions on Computer Systems, 15(4):412–447, 1997.

[6] C. Clark et al. Live Migration of Virtual Machines. In Proceedings of
2nd Symposium on Networked Systems Design and Implementation,
2005.

[7] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. In

Proceedings of the ACM Symposium on Operating Systems Principles,
pages 164–177, October 2003.

[8] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert,
F. Berry, A. Merritt, E. Gronke, and C. Dodd. The Virtual Interface
Architecture. IEEE Micro, pages 66–76, March/April 1998.

[9] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the xen virtual machine
monitor. In OASIS ASPLOS Workshop, 2004.

[10] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular
disco: resource management using virtual clusters on shared-memory
multiprocessors. ACM Transactions on Computer Systems, 18(3):229–
262, 2000.

[11] InfiniBand Trade Association. InfiniBand Architecture Specification.
[12] K. Koch. How does ASCI Actually Complete Multi-month 1000-

processor Milestone Simulations? In Proceedings of the Conference
on High Speed Computing, Gleneden Beach, Oregon, 2002.

[13] J. Liu, W. Huang, B. Abali, and D. K. Panda. High Performance
VMM-Bypass I/O in Virtual Machines. In Proceedings of 2006
USENIX Annual Technical Conference, June 2006.

[14] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over InfiniBand.
In Proceedings of 17th Annual ACM International Conference on
Supercomputing (ICS ’03), June 2003.

[15] Mellanox Technologies. http://www.mellanox.com.
[16] Myricom, Inc. Myrinet. http://www.myri.com.
[17] NASA. NAS Parallel Benchmarks. http://www.nas.nasa.gov-

/Software/NPB/.
[18] Network-Based Computing Laboratory. MVAPICH: MPI for

InfiniBand and other RDMA Interconnects. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/index.html.

[19] OpenFabrics Alliance. http://www.openfabrics.org.
[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Imple-

mentation of Zap: A System for Migrating Computing Environments.
In Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[21] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging
on Workstations: Illinois Fast Messages (FM). In Proceedings of the
Supercomputing, 1995.

[22] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In Proceedings of SC ’03, Washington,
DC, USA, 2003.

[23] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit Ethernet
Interface. In INFOCOM, pages 67–76, 2001.

[24] Quadrics, Ltd. QsNet. http://www.quadrics.com.
[25] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current

Technology and Future Trends. IEEE Computer, May 2005.
[26] S. M. Hand. Self-Paging in the Nemesis Operating System. In

Proceedings 3rd OSDI, pages 73–86, 1999.
[27] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.

MPI–The Complete Reference. Volume 1 - The MPI-1 Core, 2nd
edition. The MIT Press, 1998.

[28] A. Z. Spector. Performing remote operations efficiently on a local
computer network. Commun. ACM, 25(4):246–260, 1982.

[29] G. Su and J. Nieh. Mobile Communication with Virtual Network
Address Translation. Technical Report CUCS-003-02, Columbia
University, Feb 2002.

[30] J. Sugerman, G. Venkitachalam, and B. H. Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor.
In Proceedings of USENIX, 2001.

[31] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Separating Data and
Control Transfer in Distributed Operating Systems. In Proceedings

of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 2–11, San
Jose, California, 1994.

[32] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-level
Network Interface for Parallel and Distributed Computing. In ACM
Symposium on Operating Systems Principles, 1995.

[33] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: A Mechanism for Integrated Communication and
Computation. In International Symposium on Computer Architecture,
pages 256–266, 1992.

[34] W. Huang, J. Liu, B. Abali and D. K. Panda. A Case for High
Performance Computing with Virtual Machines. In Proceedings of
the 20th ACM International Conference on Supercomputing, 2006.

[35] C. Waldspurger. Memory resource management in vmware esx server.
In Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[36] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual
machines for distributed and networked applications. In Proceedings
of the USENIX Annual Technical Conference, June 2002.

[37] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in
the Denali Isolation Kernel. In Proceedings of 5th USENIX OSDI,
Boston, MA, Dec 2002.

[38] Xen Wiki. http://wiki.xensource.com/xenwiki/xenbus.

