
Virtual Machine Aware Communication Libraries for
High Performance Computing

Wei Huang Matthew J. Koop Qi Gao Dhabaleswar K. Panda

Network-Based Computing Laboratory
The Ohio State University

Columbus, OH 43210
{huanwei, koop, gaoq, panda}@cse.ohio-state.edu

ABSTRACT
As the size and complexity of modern computing systems
keep increasing to meet the demanding requirements of High
Performance Computing (HPC) applications, manageability
is becoming a critical concern to achieve both high perfor-
mance and high productivity computing. Meanwhile, virtual
machine (VM) technologies have become popular in both in-
dustry and academia due to various features designed to ease
system management and administration. While a VM-based
environment can greatly help manageability on large-scale
computing systems, concerns over performance have largely
blocked the HPC community from embracing VM technolo-
gies.

In this paper, we follow three steps to demonstrate the abil-
ity to achieve near-native performance in a VM-based envi-
ronment for HPC. First, we propose Inter-VM Communica-
tion (IVC), a VM-aware communication library to support
efficient shared memory communication among computing
processes on the same physical host, even though they may
be in different VMs. This is critical for multi-core systems,
especially when individual computing processes are hosted
on different VMs to achieve fine-grained control. Second,
we design a VM-aware MPI library based on MVAPICH2 (a
popular MPI library), called MVAPICH2-ivc, which allows
HPC MPI applications to transparently benefit from IVC.
Finally, we evaluate MVAPICH2-ivc on clusters featuring
multi-core systems and high performance InfiniBand inter-
connects. Our evaluation demonstrates that MVAPICH2-
ivc can improve NAS Parallel Benchmark performance by up
to 11% in VM-based environment on eight-core Intel Clover-
town systems, where each compute process is in a separate
VM. A detailed performance evaluation for up to 128 pro-
cesses (64 node dual-socket single-core systems) shows only a
marginal performance overhead of MVAPICH2-ivc as com-
pared with MVAPICH2 running in a native environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC 07 November 10-16, 2007, Reno, Nevada, USA.
(c) 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00

This study indicates that performance should no longer be
a barrier preventing HPC environments from taking advan-
tage of the various features available through VM technolo-
gies.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management
—Message sending ; C.2.5 [Computer Communication
Networks]: Local and Wide-Area Networks—High-speed

Keywords
Virtual Machines (VM), Inter-VM communication, MPI, Xen,
VMM-bypass

1. INTRODUCTION
With ever-increasing computing power demands for ultra-
scale applications, the High Performance Computing (HPC)
community has been deploying modern computing systems
with increasing size and complexity. These large scale sys-
tems require significantly more system management effort,
including maintenance, reconfiguration, fault tolerance, and
administration, which are not necessarily the concerns of
earlier smaller scale systems. As a result, manageability is
widely considered a critical requirement to achieve both high
performance and high productivity computing.

Modern virtual machine (VM) technologies have emphasized
ease of system management and administration. Through a
Virtual Machine Monitor (VMM or hypervisor), which is
implemented directly on hardware, VM technologies allow
running multiple guest virtual machines (VMs) on a single
physical node, with each guest VM possibly running a dif-
ferent OS instance. VM technologies separate hardware and
software management and provide useful features including
performance isolation, server consolidation and live migra-
tion [6]. For these reasons, VM technologies have already
been widely adopted in industry computing environments,
especially data-centers.

Many of the benefits provided by VM technologies are also
applicable to HPC. For example, researchers have proposed
proactive fault tolerance based on VM migration [27], which
moves a running OS instance to another physical node when
the original host is predicted to fail in the near future. HPC
can also take advantage of online system maintenance, per-

formance isolation, or customized OSes [23], which are easily
supported in VM-based environments.

Despite these promising features, VM technologies have not
yet been widely deployed in HPC environments. Many in
the HPC community are wary of virtualization technologies
due to perceived performance overheads. These overheads,
however, have been significantly reduced with recent VM
technologies such as Xen [7] and I/O virtualization tech-
nologies like VMM-bypass I/O [21]. Two main challenges
remain to be addressed to convince the HPC community of
the low overhead of VM environments:

• Lack of shared memory communication between
VMs: In VM environments, management activities
such as migration occur at the level of entire VMs.
Thus, all processes running in the same VM must be
managed together. To achieve fine-grained process-
level control, each computing process has to be hosted
in a separate VM, thus, in a separate OS. This presents
a problem, because processes in distinct OSes can no
longer communicate via shared memory [5], even if
they share a physical host. This restriction is unde-
sirable because communication via shared memory is
typically considered to be more efficient than network
loopback and is being used in most MPI implementa-
tions [5, 11]. This inefficiency is magnified with the
emergence of modern multi-core systems.

• Lack of thorough performance evaluations: As
part of our earlier work, we have demonstrated the po-
tential of a VM-based HPC environment[13, 21] with
efficient network I/O virtualization. However, these
studies have focused on prototype evaluations. In lit-
erature, there lacks a thorough performance evaluation
published on VM-based computing environment with
newer generation systems featuring multi-core plat-
forms and recent high speed network interconnects.

In this paper we address both of these challenges. We first
propose IVC, an Inter-VM Communication library to sup-
port shared memory communication between distinct VMs
on the same physical host in a Xen environment. IVC has
a general socket-style API and can be used by any parallel
application in a VM environment. To allow HPC applica-
tions to benefit without modification, we design a VM-aware
MPI library, MVAPICH2-ivc. Our MPI library is a modified
version of MVAPICH2 [26], a popular MPI-2 library over In-
finiBand. MVAPICH2-ivc takes advantage of both IVC and
VMM-bypass I/O [21]. VM migration is also supported,
so shared memory communication through IVC can be es-
tablished or torn-down at runtime as a VM migrates. As a
result, MVAPICH2-ivc achieves near-native performance re-
gardless of whether the communicating processes are on the
same or different physical hosts. Finally, we conduct a thor-
ough performance evaluation of MVAPICH2-ivc on modern
clusters featuring multi-core systems and a high speed inter-
connect (PCI-Express InfiniBand HCAs [22]). We demon-
strate that using MVAPICH2-ivc in a VM-based environ-
ment can deliver up to 11% better performance of NAS
Parallel Benchmarks than running unmodified MVAPICH2
when hosting one process per VM. An integrated evaluation
on an InfiniBand cluster with up to 128 processors shows

that with the latest virtualization technologies, including
Xen, VMM-bypass I/O and IVC, a VM-based environment
achieves near-native performance. Our evaluation concludes
that performance should no longer be a barrier to deploying
VM environments for HPC.

The rest of the paper is organized as follows: Section 2 in-
troduces background information on VM technologies and
VMM-bypass I/O. In Section 3, we further motivate our
work by discussing the value of VM technology to HPC and
the importance of efficient shared memory communication
between VMs. In Section 4, we present IVC, including its
API, design and implementation. We describe the design
of MVAPICH2-ivc in Section 5. Section 6 includes a de-
tailed performance evaluation. Related work is discussed in
Section 7 and we present our conclusions in Section 8.

2. BACKGROUND
In this section, we briefly describe Xen [7], a popular VM
environment. We also introduce VMM-bypass I/O and In-
finiBand, both of which play important roles in a VM-based
HPC environment.

2.1 Xen Virtual Machine Environment
Xen is a popular VM technology originally developed at the
University of Cambridge. Figure 1 (courtesy [34]) illustrates
the structure of a physical machine hosting Xen. The Xen
hypervisor (the VMM) is at the lowest level and has direct
access to the hardware. Above the hypervisor are the Xen
domains (VMs) running guest OS instances. Each guest OS
uses a pre-configured share of physical memory. A privileged
domain called Domain0 (or Dom0), created at boot time,
is allowed to access the control interface provided by the
hypervisor and performs the tasks to create, terminate and
migrate other guest VMs (User Domain or DomU) through
the control interfaces.

Device Manager
and Control
Software

(Domain0)
VM0

Unmodified
User

Software

Unmodified
User

Software

VM1 VM2
(Guest Domain) (Guest Domain)

Safe HW IF Control IF Event Channel Virtual CPU Virtual MMU

Hardware (SMP, MMU, Physical Memory, Ethernet, SCSI/IDE)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Back−end driver

Native
Device
Driver

Xen Hypervisor

front−end driverfront−end driver

Figure 1: The structure of the Xen virtual machine
monitor

I/O device virtualization in Xen follows a split device driver
model [10]. The native device driver is expected to run in an
Isolated Device Domain (or IDD). The IDD is typically the
same as Dom0 and hosts a backend driver, running as a dae-
mon and serving the access requests from each DomU. The

guest OS in a DomU uses a frontend driver to communicate
with the backend. To pass the I/O requests, domains com-
municate with each other through shared pages and event
channels, which provide an asynchronous notification mech-
anism between domains. To send data to another domain,
the typical protocol is for the source domain to grant the
remote domain access to its local memory pages by first
registering the pages to grant tables, which are managed by
the hypervisor. After registration, a grant reference handle
is created for each physical page. The remote domain then
uses these reference handles to map the pages into its local
address space. Our proposed inter-VM communication uses
the same mechanism to create shared memory regions.

During VM migration, the front-end drivers receive a sus-
pend callback when the VM is about to be suspended on the
original host and a resume callback when the VM is resumed
on the new host machine. This gives an opportunity for the
device drivers in the VM to cleanup local resources before
migration and re-initialize themselves after migration.

2.2 InfiniBand and VMM-Bypass I/O
InfiniBand [15] is a popular interconnect offering high per-
formance through user level communication and OS-bypass.
With OS-bypass, applications can directly initiate commu-
nication operations without the involvement of the operat-
ing system. This allows InfiniBand to achieve low latency
and high bandwidth. High performance and other features
such as Remote Direct Memory Access (RDMA) make In-
finiBand a strong player in HPC cluster computing environ-
ments. User level communication of InfiniBand is through
the user-level APIs. Currently, the most popular API is
provided by the OpenFabrics stack [29].

InfiniBand can be supported in Xen through VMM-bypass
I/O, which is proposed in our earlier work [21]. To achieve
high performance, the Xen split device driver model is only
used to setup necessary user access points to allow OS-
bypass communication to take place. After the initial setup,
data communication in the critical path bypasses both the
guest OS and the VMM by taking advantage of OS-bypass.
By avoiding the overhead caused by the Xen split driver
model, which passes I/O requests between DomU and the
privileged domain, VMM-bypass achieves near-native per-
formance. Application-transparent migration support for
VMM-bypass I/O is also feasible through namespace virtu-
alization and coordination among the communicating peers,
as proposed in [14].

3. MOTIVATION
Figure 2 illustrates a possible VM-based HPC environment
deployment using Xen. Each computing node in the physical
server pool is running a hypervisor that hosts one or more
VMs. Because HPC applications are typically compute in-
tensive, each active VM runs on one or more dedicated cores.
A set of VMs across the system form a virtual cluster, on
which users run their HPC applications. There can be a
management console which performs all management activ-
ities, including launching, checkpointing or migrating VMs
across the computing nodes.

System management capabilities are increased in a VM-
based environment – including allowing special configura-

Guest VMs

Computing node
Migrate

VMM VMMVMM

Physical server pool

Management
console Storage Servers

Figure 2: A possible deployment of HPC with vir-
tual machines

tions and online maintenance. To prepare a virtual cluster
with a special configuration, all that is required is to choose
a set of physical nodes and launch VMs with the desired
configurations on those nodes. This avoids the lengthy pro-
cedure to reset all the physical hosts. More importantly, this
does not affect other users using the same physical nodes.
Online maintenance is also simplified. To apply patches or
update a physical node, system administrators no longer
need to wait for application termination before taking them
off-line. VMs on those nodes can be migrated to other avail-
able physical nodes, reducing administrative burden.

Besides manageability, under certain circumstances VM en-
vironments can also lead to performance benefit. For exam-
ple, with easy re-configuration it becomes much more practi-
cal to host HPC applications using customized, light-weight
OSes. This concept of a customized OS is proven to be de-
sirable for achieving increased performance in HPC [2, 8,
19, 23, 24]. VM migration can also help improving commu-
nication performance. For example, a parallel application
may initially be scheduled onto several physical nodes far
from each other in network topology due to node availabil-
ity. But whenever possible, it is always desirable to schedule
the processes onto physical nodes near each other, which im-
proves communication efficiency. Through VM migration,
it is also possible to alleviate resource contention and thus
achieve better resource utilization. For instance, VMs host-
ing computing jobs with a high volume of network I/O can
be relocated with other VMs hosting more CPU intensive
applications with less I/O requirements.

VM technology can also benefit HPC in many other aspects,
including security, productivity or debugging. Mergen et
al. [23] have discussed in more detail the value of a VM-
based HPC environment.

To achieve efficient scheduling in VM-based environments,
such as migration to avoid resource contention, it is desir-
able to schedule jobs at the granularity of individual pro-
cesses. This is especially the case for multi-core systems
which are capable of hosting many computing processes on
the same physical host. Benefits of VMs are severely lim-
ited if all processes on one node are required to be man-
aged at the same time. Since VM management, such as
migration, is at the level of individual VMs, fine-grained
control requires computing processes to be hosted in sep-
arate VMs. This separation, however, is not efficient for
communication. Many MPI implementations communicate
through user space shared memory between processes in the
same OS [5, 11]. With processes running on separate VMs

(OSes), shared memory communication is no longer avail-
able and communication must go through network loopback.
Since shared memory communication is typically more effi-
cient than network loopback, hosting computing processes
on separate VMs may lead to a significant performance gap
as compared with native environments.

4. DESIGN FOR EFFICIENT INTER-VM
COMMUNICATION

In this section we present our inter-VM communication (IVC)
library design, which provides efficient shared memory com-
munication between VMs on the same physical host. It al-
lows the flexibility of hosting computing processes on sepa-
rate VMs for fine-grained scheduling without sacrificing the
efficiency of shared memory communication to peers sharing
the same physical host.

Our design is based on the page sharing mechanisms through
grant tables provided by Xen, as described in Section 2.1.
There are still many challenges that need to be addressed,
however. First, the initial purpose of grant table mechanism
is for sharing data between device drivers in kernel space.
Thus, we need to carefully design protocols to setup shared
memory regions for user space processes and provide com-
munication services through these shared regions. Second,
we need to design an easy-to-use API to allow applications to
use IVC. Further, IVC only allows communication between
VMs on the same host, which leads to additional concerns
for VM migration. We address these challenges in the fol-
lowing sections.

4.1 Setting up Shared Memory Regions
In this section we describe the key component of IVC: How
to setup shared memory regions between two user processes
when they are not hosted in the same OS?

IVC sets up shared memory regions through Xen grant table
mechanisms. Figure 3 provides a high level architectural
overview of IVC and illustrates how IVC sets up shared
memory regions between two VMs. IVC consists of two
parts: a user space communication library and a kernel
driver. We use a client-server model to setup an IVC con-
nection between two computing processes. One process (the
client) calls the IVC user library to initiate the connection
setup (step 1 in Figure 3). Internally, the IVC user library
allocates a communication buffer, which consists of several
memory pages and will be used later as the shared region.
The user library then calls the kernel driver to grant the
remote VM the right to access those pages and returns the
grant table reference handles from Xen hypervisor (steps 2
and 3). The reference handles are sent to the IVC library
on the destination VM (step 4). The IVC library on the
destination VM then maps the communication buffer to its
own address space through the kernel driver (steps 5 and
6). Finally, IVC notifies both computing processes that the
IVC connection setup is finished, as in step 7 of Figure 3.

4.2 Communication through Shared Memory
Regions

After creating a shared buffer between two IVC libraries,
we design primitives for shared memory communication be-
tween computing processes. IVC provides a socket style

Shared Memory Pages

IVC Library

IVC Kernel Driver IVC Kernel Driver

IVC Library

Parallel Applications
VM1

Computing Process 1 Computing Process 2

Address Space

2

3

VM2

Xen Virtual Machine Monitor

1

4

5

6

77

Figure 3: Mapping shared memory pages

Consumer
Producer

ivc_write

Process 1 Process 2

ivc_read

Shared Memory Pages

Figure 4: Communication through mapped shared
memory regions

read/write interface and conducts shared memory commu-
nication through classic producer-consumer algorithms. As
shown in Figure 4, the buffer is divided into send/receive
rings containing multiple data segments and a pair of pro-
ducer/consumer pointers. A call to ivc_write places the
data on the producer segments and advances the producer
pointer. And a call to ivc_read reads the data from the con-
sumer segment and advances the consumer pointer. Both
the sender and receiver check the producer and consumer
pointers to determine if the buffer is full or for data ar-
rival. Note that Figure 4 only shows the send ring for pro-
cess 1 (receive ring for process 2). Total buffer size and the
data segment size are tunable. In our implementation, each
send/receive ring is 64KB and each data segment is 64 bytes.
Thus, an ivc_write call can consume multiple segments. If
there is not enough free data segments, ivc_write will sim-
ply return the number of bytes successfully sent, and the
computing process is responsible to retry later. Similarly,
ivc_read is also non-blocking and returns the number of
bytes received.

Initialization of IVC also requires careful design. IVC sets
up connections for shared memory communication between
VMs only after receiving a connection request from each of
the hosted processes. Computing processes, however, can-
not be expected to know which peers share the same physical
host. Such information is hidden to the VMs and thus has
to be provided by IVC. To address this issue, an IVC back-
end driver is run in the privileged domain (Dom0). Each
parallel job that intends to use IVC should have a unique

/* Register with IVC */

/* Get all Peers on the same physical node */

/* We assume only one peer now (the server).
 * Connect to server (peers[0]).
 * channel.id will be SERVER_ID upon success. */

 * success. Otherwise, we will have to retry. */

/* Close connection */

ctx = ivc_register(MAGIC_ID, CLIENT_ID);

peers = ivc_get_hosts(ctx);

channel = ivc_connect(ctx, peers[0]);

bytes = ivc_write(channel, buffer, size);

ivc_close(channel);

/* Send data to server, bytes will be @size upon

(a) Communication client

/* Register with IVC */

/* Block until an incomming connection.
 * Upon success, channel.id will be CLIENT_ID */

 * We will have to retry other wise. */

/* Close connection */

/* Receive data from client. */

ctx = ivc_register(MAGIC_ID, SERVER_ID);

channel = ivc_accept(ctx);

ivc_close(channel);

bytes = ivc_read(channel, buffer, size);

 * Upon success, bytes will be equal to @size.

(b) Communication server

Figure 5: A very brief client-server example for using IVC

magic id across the cluster. When a computing process ini-
tializes, it notifies the IVC library of the magic id for the
parallel job through an ivc_init call. This process is then
registered to the backend driver. All registered processes
with the same magic id form a local communication group,
in which processes can communicate through IVC. A com-
puting process can obtain all peers in the local communi-
cation group through ivc_get_hosts. It can then connect
to those peers through multiple ivc_connect calls, which
initialize the IVC connection as mentioned above. Using a
magic id allows multiple communication groups for differ-
ent parallel jobs to co-exist within one physical node. As-
signment of this unique magic id across the cluster could be
provided by batch schedulers such as PBS [33], or other pro-
cess manager such as MPD [1] or SLURM [35]. Additional
details go beyond the scope of this paper.

Figure 5 shows a brief example how two processes commu-
nicate through IVC. As we can see, IVC provides socket
style interfaces, and communication establishment follows a
client-server model.

4.3 Virtual Machine Migration
As a VM-aware communication library, an additional chal-
lenge faced by IVC is handling VM migration. As a shared
memory library, IVC can only be used to communicate be-
tween processes on the same physical host. Subsequently,
once a VM migrates to another physical host, processes run-
ning on the migrating VM can no longer communicate with
the same peers through IVC. They may instead be able to
communicate through IVC with a new set of peers on the
new physical host after migration.

IVC provides callback interfaces to assist applications in
handling VM migration. Figure 6 illustrates the main flow of
IVC in case of VM migration. First, the IVC kernel driver
gets a callback from the Xen hypervisor once the VM is
about to migrate (step 1). It notifies the IVC user library
to stop writing data into the send ring to prevent data loss
during migration; this is achieved by returning 0 on every
attempt of ivc_write. After that, the IVC kernel noti-
fies all other VMs on the same host through event chan-
nels that the VM is migrating. Correspondingly, the IVC
libraries running in other VMs will stop their send opera-

tions and acknowledge the migration event (steps 2 and 3).
IVC then gives user programs a callback, indicating that
the IVC channel is no longer available due to migration.
Meanwhile, there may be data remaining in the receive ring
that has not been passed to the application. Thus, IVC
also provides applications a data buffer containing all data
in the receive ring that has not been read by the application
through ivc_read(step 4). Finally, IVC unmaps the shared
memory pages, frees local resources, and notifies the hyper-
visor that the device has been successfully suspended and
can be migrated safely (step 5). After the VM is migrated
to the remote host, the application will receive another call-
back indicating arrival on a new host, allowing connections
to be setup to a new set of peers through similar steps as in
Figure 5(a) (step 6).

VM1
Computing Process 1

Parallel Applications

VM3

Computing Process 2 Computing Process 3

IVC Library and
IVC Kernel Driver IVC Kernel Driver

IVC Library and IVC Library and
IVC Kernel Driver

Xen Virtual Machine Monitor Xen Virtual Machine Monitor

Physical node 2Physical node 1

4

1 5

2

3

6

4

VM2

Figure 6: Migrating one VM (VM2) of a three pro-
cess parallel job hosted on three VMs

5. MVAPICH2-IVC: VIRTUAL MACHINE
AWARE MPI OVER IVC

IVC has defined its own APIs. Thus, to benefit HPC ap-
plications transparently, we design MVAPICH2-ivc, a VM-
aware MPI library modified from MVAPICH2. MVAPICH2-
ivc is able to communicate through IVC with peers on the
same physical host and over InfiniBand when communica-
tion is inter-node. MVAPICH2-ivc is also able to intelli-
gently switch between IVC and network communication as
VMs migrate. By using MVAPICH2-ivc in VM environ-
ments, MPI applications can benefit from IVC without mod-
ification.

MPI Layer

Application

SMP channel Network channel

InfiniBand API

MPI Library

Device APIs
Communication

Native hardware

Shared memory

ADI3 Layer

(a) Native environment

Application

MPI Layer

Network channel

Virtualized hardware

VMM−bypass I/O

IVC channel

MPI Library
Aware
Virtual Machine

Device APIs
Communication

Communication coordinator

IVC

ADI3 Layer

(b) VM environment

Figure 7: MVAPICH2 running in different environments

5.1 Design Overview
MVAPICH2-ivc is modified from MVAPICH2 [26], a popular
multi-method MPI-2 implementation over InfiniBand based
on MPICH2 from Argonne National Laboratory [1]. For
portability reasons, MVAPICH2/MPICH2 follows a layered
approach, as shown in Figure 7(a). The Abstract Device
Interface V3 (ADI3) layer implements all MPI-level primi-
tives. Multiple communication channels, which in turn pro-
vide basic message delivery functionalities on top of commu-
nication device APIs, implement the ADI3 interface. There
are two communication channels available in MVAPICH2:
a shared memory channel communicating over user space
shared memory [5] to peers hosted in the same OS and a
network channel communicating over InfiniBand user-level
APIs to other peers.

An unmodified MVAPICH2 can also run in VM environ-
ments; however, its default shared memory communication
channel can no longer be used if computing processes are
hosted on different VMs (OSes). By using IVC, MVAPICH2-
ivc is able to communicate via shared memory between pro-
cesses on the same physical node, regardless of whether they
are in the same VM or not. Figure 7(b) illustrates the over-
all design of MVAPICH2-ivc running in a VM environment.
Compared with MVAPICH2 in a native environment, there
are three important changes. First, we replace the original
shared memory communication channel with an IVC chan-
nel, which performs shared memory communication through
IVC primitives. Second, the network channel is running on
top of VMM-bypass I/O, which provides InfiniBand service
in VM environments (because VMM-bypass I/O provides
the same InfiniBand verbs, no changes to MVAPICH2 are
needed). Third, we design a communication coordinator,
which dynamically creates and tears down IVC connections
as the VM migrates.

The communication coordinator keeps track of all the peers
to which IVC communication is available. To achieve this,
it takes advantage of a data structure called a Virtual Con-
nection (VC). In MVAPICH2, there is a single VC between
each pair of computing processes, which encapsulates de-
tails about the available communication methods between
that specific pair of processes as well as other state informa-
tion. As shown in Figure 8, the communication coordinator

maintains an IVC-active list, which contains all VCs for peer
processes on the same physical host. During the initializa-
tion stage, this IVC-active list is generated by the commu-
nication coordinator according to the peer list returned by
ivc_get_hosts. VCs in the list can be removed or added to
this list when the VM migrates.

All Virtual Connections
...

...
...

...

Outstanding receives

Outstanding sends

IVC−active list

Figure 8: Organization of IVC-active list in
MVAPICH2-ivc

Once the application issues a MPI send to a peer process,
the data is sent through IVC if the VC to that specific peer
is in the IVC-active list. As described in Section 4.1, IVC
cannot guarantee all data will be sent (or received) by one
ivc_write (or ivc_read) call. Thus, to ensure in order de-
livery, we must maintain queues of all outstanding send and
receive operations for each VC in the IVC-active list. Oper-
ations on these queues are retried when possible.

5.2 Virtual Machine Migration
As discussed in Section 4.3, IVC issues application call-
backs upon migration. Correspondingly, applications are
expected to stop communicating through IVC to peers on
the original physical host and can start IVC communica-
tion to peers on the new physical host. In MVAPICH2-ivc,
the communication coordinator is responsible to adapt to
such changes. The coordinator associates an ivc state to
each VC. As shown in Figure 9, there are four states pos-
sible: IVC CLOSED, IVC ACTIVE, IVC CONNECTED
and IVC SUSPENDING. At the initialization stage, each
VC is either in the IVC ACTIVE state if the IVC connec-
tion is set up, or in the IVC CLOSED state, which indicates
IVC is not available and communication to that peer has to
go through the network.

IVC_SUSPENDING IVC_CONNECTED

IVC_CLOSED

IVC_ACTIVE
Migration Callback: IVC no
longer available

IVC connection
established
(Init phase)

Outstanding sends
sent over network/
Data buffer consumed

IVC connection
established
(VM migration)

message
Received tag

Figure 9: State transition graph of ivc state

When a VM migrates, IVC communication will no longer be
available to peers on the original host. As we have discussed,
the communication coordinator will be notified, along with a
data buffer containing the contents of the receive ring when
IVC is torn down. The coordinator then changes the state
to IVC SUSPENDING. In this state, all MPI-level send op-
erations are temporarily blocked until the coordinator trans-
mits all outstanding requests in the IVC outstanding send
queue through the network channel. Also, all MPI-level re-
ceive operations are fulfilled from the data buffer received
from IVC until all data in the buffer is consumed. Both of
these steps are necessary to guarantee in order delivery of
MPI messages. Next, the coordinator changes the ivc state
to IVC CLOSED and removes the VC from the IVC active
list. Communication between this pair of processes then
flows through the network channel.

Once migrated, IVC will be available to peers on the new
host. The coordinator will get a callback from IVC and setup
IVC connections to eligible peers. IVC cannot be immedi-
ately used, however, since there may be pending messages on
the network channel. To reach a consistent state, the com-
munication coordinators on both sides of the VC change the
ivc state to IVC CONNECTED, and send a flush message
through the network channel. Once the coordinator receives
a flush message, no more messages will arrive from the net-
work channel and the ivc state is changed to IVC ACTIVE
and VC added to the IVC active list. Both sides can now
communicate through the IVC channel.

6. EVALUATION
In this section we present performance evaluation of a VM-
based HPC environment running MVAPICH2-ivc with each
process in a separate VM. We first evaluate the benefits
achieved through IVC using a set of micro-benchmark and
application-level benchmarks. We show that on multi-core
systems MVAPICH2-ivc shows clear improvement compared
with unmodified MVAPICH2, which cannot take advantage
of shared memory communication when processes are on dis-
tinct VMs. We demonstrate that performance of MVAPICH2-
ivc is very close to that of MVAPICH2 in a native (non-
virtualized) environment. Evaluation on up to 128 processes
shows that a VM-based HPC environment can deliver very
close application-level performance compared to a native en-
vironment.

6.1 Experimental Setup
The experiments are carried out on two testbeds. Testbed
A consists of 64 computing nodes. There are 32 nodes with
dual Opteron 254 (single core) processors and 4GB of RAM
each and 32 nodes with dual Intel 3.6 GHz Xeon proces-
sors and 2GB RAM each. Testbed B consists of computing
nodes with dual Intel Clovertown (quad-core) processors,
for a total of 8 cores and 4GB of RAM. Both testbeds are
connected through PCI-Express DDR InfiniBand HCAs (20
Gbps). Xen-3.0.4 with the 2.6.16.38 kernel is used on all
computing nodes for VM-based environments. We launch
the same number of VMs as the number of processors (cores)
on each physical host, and host one computing process per
VM.

We evaluate VM-based environments with MVAPICH2-ivc
and unmodified MVAPICH2, each using VMM-bypass I/O.
We also compare against the performance of MVAPICH2
in native environments. More specifically, our evaluation is
conducted with the following three configurations:

• IVC - VM-based environment running MVAPICH2-
ivc, which communicates through IVC if the processes
are hosted in VMs on the same physical host.

• No-IVC - VM-based environment running unmodi-
fied MVAPICH2, which always communicates through
network since each process is in a separate VM.

• Native - Native environment running unmodified MVA-
PICH2, which uses shared memory communication be-
tween processes on the same node.

6.2 Micro-benchmark Evaluation
In this section, the performance of MVAPICH2-ivc is eval-
uated using a set of micro-benchmarks. First a compari-
son of basic latency and bandwidth achieved by each of the
three configurations, when the computing processes are on
the same physical host is performed. Next, the performance
of collective operations using Intel MPI Benchmarks (IMB
3.0) [16] is measured.

Figure 10 illustrates the MPI-level latency reported by OSU
benchmarks [26]. For various message sizes, this test ‘ping-
pongs’ messages between two processes for a number of itera-
tions and reports the average one-way latency observed. IVC
communication is able to achieve latency around 1.2µs for
4 byte messages, which, in the worst case, is only about 0.2µs
higher than MVAPICH2 communicating through shared mem-
ory in a native environment. The IVC latency is slightly
higher because MVAPICH2 has recently incorporated sev-
eral optimizations for shared memory communication [5].
We plan to incorporate those optimizations in the future, as
they should be applicable to IVC as well. In both cases, the
latency is much lower than the No-IVC case, where com-
munication via network loopback shows 3.16µs latency for 4
byte messages.

Figure 11 presents MPI-level uni-directional bandwidth. In
this test, a process sends a window of messages to its peer
using non-blocking MPI sends and waits for an acknowledg-
ment. The total message volume sent divided by the total
time is reported as bandwidth. Both IVC and native cases

achieve much higher bandwidth for medium-sized messages
than in the No-IVC case. An interesting observation is that
IVC achieves higher bandwidth than the native case. This
can be due to two reasons: first, MVAPICH2’s optimized
shared memory communication requires more complicated
protocols for sending large messages, thus adding some over-
head; second, IVC uses only 16 pages as the shared mem-
ory region, but MVAPICH2 uses a few million bytes. At a
micro-benchmark level, a larger shared memory buffer can
slightly hurt performance due to cache effects. A smaller
shared memory region, however, holds less data, thus re-
quiring the peer to receive data fast enough to maintain a
high throughput. This can lead to less efficient communi-
cation progress for applications using large messages very
frequently because processes are likely to be skewed. For
IVC, we find 16 pages as a good choice for shared memory
buffer size 1.

 0

 2

 4

 6

 8

 10

 12

 1 4 16 64 256 1024 4096

La
te

nc
y

(u
se

c)

Message Size (bytes)

Native
No-IVC

IVC

Figure 10: Latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K 64K 256K

Ba
nd

wi
dt

h
(M

B/
se

c)

Message Size (bytes)

Native
No-IVC

IVC

Figure 11: Bandwidth

Figures 12 and 13 illustrate the ability of MVAPICH2-ivc
to automatically select the best available communication
method after VM migration. In Figure 12, we keep run-
ning a latency test with 2KB messages. The test is first
carried out between two VMs on distinct physical hosts. At
around iteration 400, we migrate one VM so that both VMs
are hosted on the same physical node. From the figure it can
be observed that the latency drops from 9.2µs to 2.8µs be-
cause MVAPICH2-ivc starts to use IVC for communication.
At about iteration 1100, the VMs are again migrated to dis-
tinct physical hosts, which causes the latency to increase to
1We do not go for larger number of pages because the current
Xen-3.0.4 allows at most 1K pages to be shared per VM.
While this restriction can be fixed in the future, 16 page
shared buffer will allow us to support up to 60 VMs per
physical node with the current implementation.

the original 9.2µs. The drastic increase in latency during
migration is because network communication freezes during
VM migration, which is explained in more detail in [14].
In Figure 13, the same trend for a bandwidth test is ob-
served, which reports bandwidth achieved for 2KB messages
while the VM migrates. When two VMs are located on the
same host (iteration 1100 to iteration 2000), communication
through IVC increases the bandwidth from around 720MB/s
to 1100MB/s.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 200 400 600 800 1000 1200 1400 1600

La
te

nc
y

(u
se

c)

Iteration

Latency

Figure 12: Migration during latency test

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

Ba
nd

wi
dt

h
(M

B/
se

c)

Iteration

Bandwidth

Figure 13: Migration during bandwidth test

Next, the performance of collective operations using Intel
MPI Benchmarks is evaluated. In Figure 14, several of the
most commonly used collective operations are compared us-
ing all three configurations. The tests are conducted on
Testbed B, using 2 nodes with 8 cores each (in total 16
processes). Collective performance is reported for small (16
bytes), medium (16KB), and large (256KB) size operations,
with all results normalized to the Native configuration. Sim-
ilar to the trends observed in the latency and bandwidth
benchmarks, IVC significantly reduces the time needed for
each collective operation as compared with the No-IVC case.
It is able to deliver comparable performance as a native
environment. Another important observation is that even
though the No-IVC case achieves almost the same band-
width for 256KB messages as IVC in Figure 11, it still per-
forms significantly worse for some of the collective opera-
tions. This is due to the effect of network contention. On
multi-core systems with 8 cores per node, the network per-
formance can be largely degraded when 8 computing pro-
cesses access the network simultaneously. Though the pro-
cesses are also competing for memory bandwidth when com-
municating through IVC, memory bandwidth is typically
much higher. This effect shows up in large message collec-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d
Ti

m
e

Collective

No IVC IVC Native

(a) 16 Bytes

 0

 0.5

 1

 1.5

 2

 2.5

 3

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d
Ti

m
e

Collective

No IVC IVC Native

(b) 16K Bytes

 0

 0.5

 1

 1.5

 2

AllgatherAllreduce Alltoall Bcast Reduce

No
rm

al
ize

d
Ti

m
e

Collective

No IVC IVC Native

(c) 256K Bytes

Figure 14: Comparison of collective operations (2 nodes with 8 cores each)

tives, which further demonstrates the importance of shared
memory communication for VM-based environments.

6.3 Application-level Benchmark Evaluation
In this section, several application-level benchmarks are used
to evaluate the performance of MVAPICH2-ivc. As in the
micro-benchmarks evaluation, we evaluate configurations of
IVC (MVAPICH2-ivc in VM environment), No-IVC (un-
modified MVAPICH2 in a VM environment) and Native
(MVAPICH2 in a native environment).

We use several applications in our evaluations. These ap-
plications have various communication patterns, allowing a
thorough performance comparison of our three configura-
tions. The applications used in the evaluation are:

• NAS Parallel Benchmark Suite - NAS [28] con-
tains a set of benchmarks which are derived from the
computing kernels common on Computational Fluid
Dynamics (CFD) applications.

• LAMMPS - LAMMPS stands for Large-scale Atomic/
Molecular Massively Parallel Simulator [20]. It is a
classical molecular dynamics simulator from Sandia
National Laboratory.

• NAMD - NAMD is a molecular dynamics program
for high performance simulation of large biomolecular
systems [32]. It is based on Charm++ parallel objects,
which is a machine independent parallel programming
system. NAMD can use various data sets as input files.
We use one called apoa1, which models a bloodstream
lipoprotein particle.

• SMG2000 - SMG2000 [3] is a parallel semicoarsening
multigrid solver for the linear systems on distributed
memory computers. It is written in C using MPI.

• HPL - High Performance Linpack (HPL) is the par-
allel implementation of Linpack [31] and the perfor-
mance measure for ranking the computer systems of
the Top 500 supercomputer list.

Figure 15 shows the evaluation results on Testbed B, with
all results normalized to performance achieved in the na-
tive environment. IVC is able to greatly close the perfor-
mance gap between the No-IVC and native cases. Compared

with No-IVC, IVC improves performance by up to 11% for
NAS Parallel Benchmarks – IS (11%) and CG (9%). We ob-
serve a 5.9%, 11.8%, and 3.4% improvement in LAMMPS,
SMG2000 and NAMD, respectively.

We further analyze the communication patterns of these
benchmarks. Figure 16(a) introduces a communication rate
metric, which is the total volume of messages sent by each
process divided by execution time. This represents an ap-
proximation of how frequent the application communicates.
As we can see, for several applications which have a high
communication rate, such as NAS-IS, NAS-CG, SMG2000
and LAMMPS, IVC achieves performance improvement as
compared with No-IVC. When running on a larger num-
ber of computing nodes, some applications could benefit less
from IVC because a larger percentage of peers are not lo-
cated on the same physical host. However, Figure 16(b) sug-
gests that IVC is still very important in many cases. We ana-
lyze the percentage of data volume that will be sent through
IVC on clusters with 8 core computing nodes. We find that
IVC communication is well above average, especially for CG,
MG, SMG2000 and LAMMPS, the percentage of IVC com-
munication is higher than 50% even on a 64 core cluster2.
This is because some applications tend to communicate fre-
quently between neighbors, which have high probability to
be on the same host for multi-core systems. For those appli-
cations, the benefits of IVC are expected to be observable.

We also observe that IVC achieves comparable performance
with the native configuration. The overhead is marginal
(within 1.5%) in most cases. The only exception is NAS-FT,
where a performance degradation of 6% is observed. This is
due to the main communication pattern of NAS-FT, an all-
to-all personalized operation with very large message sizes.
In MVAPICH2 (and also MVAPICH2-ivc), all-to-all person-
alized operations are implemented on top of non-blocking
send operations. As noted earlier, IVC only uses a 16 page
shared memory space, which takes multiple iterations of the
buffer space to send out a large message, hurting commu-
nication progress. Meanwhile, MVAPICH2 incorporated an
optimized shared memory communication proposed by Chai
et al. [5], which leads to better performance than IVC. Fortu-
nately, FT is currently the only application we have noticed
which has such communication pattern. Thus, in most cases

2Data is collected through simulation on Testbed A, which
has a larger number of processors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BT.A CG.B EP.B FT.B IS.B LU.A MG.B SP.A

No
rm

al
ize

d
Ti

m
e

No IVC IVC Native

(a) NAS Parallel Benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LAMMPS SMG2000 NAMD

No
rm

al
ize

d
Ti

m
e

No IVC IVC Native

(b) LAMMPS, SMG2000 and NAMD

Figure 15: Application-level evaluation on Testbed B (2 nodes with 8 cores each)

 0

 200

 400

 600

 800

 1000

 1200

SP BT CG MG IS FT EP SMG2000

NAMD
LAMMPS

Co
m

m
un

ica
tio

n
Ra

te
 (M

B/
se

c)

(a) Communication Rate (2 x 8cores)

 0

 0.2

 0.4

 0.6

 0.8

 1

CG EP FT IS LU MG SP SMG2000

NAMD
LAMMPS

Pe
rc

en
ta

ge
 In

tra
-N

od
e

2x8 8x8 (simulated)

(b) Percentage volume of IVC communi-
cation

Figure 16: Communication patterns of the evaluated applications

we will not notice this performance gap. Optimizing IVC
for better performance under such communication patterns
is also planned, since optimizations used in MVAPICH2 are
also possible for IVC.

In order to examine the performance of MVAPICH2-ivc on
a larger scale cluster, a 64-node VM-based environment was
setup on Testbed A. Figures 17 and 18 show the perfor-
mance comparison of NAS Parallel Benchmarks and HPL
on Testbed A. Because systems of Testbed A are 2 proces-
sors per node with single-core only, the percentage of IVC
communication is small compared to inter-node communi-
cation through the network. Thus, IVC and No-IVC con-
figurations achieve almost the same performance here and
the No-IVC configuration is omitted for conciseness. Com-
pared with the Native configuration, we observe that the
VM-based environment performs comparably. In most cases
the performance difference is around 1%, except for NAS-
FT, which degrades around 5% because of its large message
all-to-all personalized communication pattern.

7. RELATED WORK
In this paper, we have focused on VM-based environments
for high performance computing. VMs have been a popular
research topic in recent years and are being deployed in in-
dustry production environments, through such products as
VMware VirtualCenter [37] and Xen Enterprise [39]. VM
technologies have the potential to greatly benefit HPC ap-
plications. Mergen et al. [23] had a thorough discussion on
the values of hardware virtualization in HPC environments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CG.C EP.C FT.C IS.C LU.C MG.C SP.C

No
rm

al
ize

d
Ti

m
e

Benchmark

IVC Native

Figure 17: Normalized Execution time of NAS (64
nodes with 2 processors each)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8x2 16x2 32x2 64x2

No
rm

al
ize

d
Ti

m
e

Configuration

IVC Native

Figure 18: Normalized Execution time of HPL

There have been several research works focused on address-
ing manageability issues of HPC environment through VM
technologies, such as VM-based proactive fault tolerance
proposed by Mueller et al. [27].

Several researchers have deployed experimental VM-based
computing environments. Figueiredo et al. [9] proposed grid
computing based on virtualization and middleware mecha-
nisms to manage VMs in a distributed environment. In our
earlier work [13], we have further explored using VMs in
cluster-based HPC environments. In this paper, we focused
on the cluster environment and proposed inter-VM commu-
nication (IVC), which is designed to alleviate another per-
formance overhead of VM-based computing. Inter-VM com-
munication is very important to achieve fine-grained control
without sacrificing performance on multi-core systems.

The para-virtualized Xen network device driver also uses
shared memory pages to communicate among VMs on the
same physical host. However, it has more overhead includ-
ing network stack processing and interrupt handling com-
pared with IVC. IVC communication is performed through
polling at user space, which is much more desired for HPC
applications. IVC is based on grant table mechanisms avail-
able to Xen-compatible kernels. We notice that there is a
recent effort from the Xen community to expose the grant
table for user space usage [39]. Such a method could sim-
plify the design of IVC, however, other issues that we have
discussed, such as the design of easy-to-use communication
APIs and handling VM migration, are still required. There
are several other researchers studying inter-VM communi-
cation in different problem domains. For example, Muir et
al. [25] have proposed Proper, a service running on Planet-
Lab to allow multiple services to cooperate and interact with
each other. Kourai et al. [18] proposed HyperSpector, which
achieves secure intrusion detection in distributed computer
systems through inter-VM cooperation. XenFS [39] aims
to improve file system performance through inter-VM cache
sharing.

We have proposed and implemented a VM-aware MPI in this
paper, which is a multi-method MPI that is able to commu-
nicate through both the network and IVC. There are several
published studies on multi-method MPIs, including [4, 11,
12, 17, 30, 36]. Most of these assume static configurations
of available communication methods. Some of them support
switching communication methods at runtime, but the main
purpose is network fail-over [11, 12, 36]. MVAPICH2-ivc is
designed for an environment where available communication
methods may change due to migration. The MPI level can
adapt to a new communication method more smoothly by
taking advantage of library callbacks.

Our detailed performance evaluation shows very little over-
head of MVAPICH2-ivc for virtualization in HPC environ-
ments. VMM-bypass I/O [21] and its migration support [14]
plays an important role by drastically reducing the I/O over-
head in VM environments by taking advantage of user level
communication. Willmann [38] also proposed CDNA (Con-
current Direct Network Access), which provides direct net-
work access on a programmable and reconfigurable FPGA-
based Gigabit Ethernet network interface in VM environ-
ments.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the performance concerns
of deploying a VM-based environment for high performance
computing. One concern is the trade-off between fine-grain
management of parallel applications at the level of each in-
dividual process and the ability to communicate via shared
memory. Correspondingly, we propose VM-aware commu-
nication libraries, including an Inter-VM Communication
(IVC) library and MVAPICH2-ivc, an MPI library based
on IVC. MVAPICH2-ivc is able to communicate via shared
memory for processes on the same physical host, even if
they are on separate VMs. This provides the ability to host
one computing process per VM, thus achieving the flexi-
bility of fine-grain management without sacrificing the ef-
ficiency of shared memory communication. We evaluate
MVAPICH2-ivc on clusters featuring multi-core systems and
high performance InfiniBand interconnects. Our evalua-
tion demonstrates that MVAPICH2-ivc can improve NAS
Parallel Benchmark performance by up to 11% in a VM-
based environment on an eight-core Intel Clovertown sys-
tem. Application-level performance achieved by MVAPICH2-
ivc on 128 processes shows only marginal overhead as com-
pared to MVAPICH2 running in a native environment. Our
work demonstrates that performance overhead should no
longer be a major concern for VM-based HPC environments.
With additional manageability, VM-based environments pro-
vide a solution to achieve both high performance and high
productivity computing.

In the future, we plan to further optimize the performance
of IVC, especially for large message communication pat-
terns. We will explore efficient runtime management of VM-
based computing. For example, how to efficiently launch a
virtual cluster with customized configurations, how to ef-
ficiently checkpoint parallel applications in a VM environ-
ment, etc. Solutions can be from multiple system-level per-
spectives such as OS, file system, or network support. We
also plan to address other potential issues for VM-based
computing environments, such as reducing the memory over-
head of the OS running on each separate VM.

Acknowledgments
We would like to thank Dr. Jiuxing Liu and Dr. Bulent
Abali from IBM T. J. Research Center for the valuable dis-
cussion and suggestions. We thank Carrie Casto for proof
reading this paper. We would also like to thank the anony-
mous reviewers for their insightful comments, which help to
improve the final version of this paper.

This research is supported in part by the following grants
and equipment donations to the Ohio State University: De-
partment of Energy’s Grant #DE-FC02-06ER25749 and #DE-
FC02-06ER25755; National Science Foundation grants #CCF-
0702675; grants from Intel, Mellanox, Sun, Cisco, and Linux
Networx; and equipment donations from Apple, AMD, IBM,
Intel, Microway, Pathscale, Silverstorm and Sun.

9. REFERENCES
[1] Argonne National Laboratory.

http://www-unix.mcs.anl.gov/mpi/mpich/.
[2] Argonne National Laboratory. Zeptoos: The small linux for

big computers. http://www-unix.mcs.anl.gov/zeptoos/.

[3] P. N. Brown, R. D. Falgout, and J. E. Jones.
Semicoarsening multigrid on distributed memory machines.
SIAM Journal on Scientific Computing, 21:1823–1834,
2000.

[4] D. Buntinas, G. Mercier, and W. Gropp. Design and
Evaluation of Nemesis, a Scalable, Low-Latency,
Message-Passing Communication Subsystem. In
Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’06), pages
521–530, Washington, DC, USA, 2006.

[5] L. Chai, A. Hartono, and D. K. Panda. Designing High
Performance and Scalable MPI Intra-node Communication
Support for Clusters. In Proceedings of the IEEE
International Conference on Cluster Computing (Cluster
2006), Barcelona, Spain, September 2006.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proceedings of 2nd Symposium on
Networked Systems Design and Implementation
(NSDI’05), Botson, MA, 2005.

[7] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Lake
George, NY, October 2003.

[8] FastOS: Forum to Address Scalable Technology for runtime
and Operating Systems. http://www.cs.unm.edu/ fastos/.

[9] R. Figueiredo, P. Dinda, and J. Fortes. A Case for Grid
Computing on Virtual Machines. In Proceedings of
International Conference on Distributed Computing
Systems (ICDCS), May 2003., 2003.

[10] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Reconstructing I/O. Technical Report
UCAM-CL-TR-596, University of Cambridge, UK, 2004.

[11] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary,
September 2004.

[12] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalski. A Network-failure-tolerant Message-passing
System for Terascale Clusters. Int. J. Parallel Program.,
31(4):285–303, 2003.

[13] W. Huang, J. Liu, B. Abali, and D. K. Panda. A Case for
High Performance Computing with Virtual Machines. In
Proceedings of the 20th ACM International Conference on
Supercomputing (ICS’06), Cairns, Australia, June 2006.

[14] W. Huang, J. Liu, M. Koop, B. Abali, and D. Panda.
Nomad: Migrating OS-bypass Networks in Virtual
Machines. In Proceedings of the third ACM/USENIX
Conference on Virtual Execution Environments (VEE’07),
San Diego, California, June 2007.

[15] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.2.

[16] Intel Corporation. Intel Cluster Toolkit 3.0 for Linux.
[17] N. T. Karonis, B. R. Toonen, and I. T. Foster. MPICH-G2:

A Grid-enabled implementation of the Message Passing
Interface. Int. J. Parallel Program., 63(5):551–563, 2003.

[18] K. Kourai and S. Chiba. HyperSpector: Virtual Distributed
Monitoring Environments for Secure Intrusion Detection.
In Proceedings of the first ACM/USENIX International
Conference on Virtual Execution Environments (VEE’05),
2005.

[19] O. Krieger, M. Auslander, B. Rosenburg, R. Wisniewski,
J. Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42:
Building a Complete Operating System. In Proceedings of
EuroSys 2006, Leuven, Belgium, April 2006.

[20] LAMMPS Molecular Dynamics Simulator.
http://lammps.sandia.gov/.

[21] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
Performance VMM-Bypass I/O in Virtual Machines. In
Proceedings of USENIX ’06, Boston, MA, May 2006.

[22] Mellanox Technologies. http://www.mellanox.com.
[23] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis.

Virtualization for High-Performance Computing. SIGOPS
Oper. Syst. Rev., 40(2):8–11, 2006.

[24] MOLAR: Modular Linux and Adaptive Runtime Support
for High-end Computing Operating and Runtime Systems.
http://forge-fre.ornl.gov/molar/.

[25] S. Muir, L. Peterson, M. Fiuczynski, J. Cappos, and
J. Hartman. Proper: Privileged Operations in a Virtualised
System Environment. In USENIX 05, Anaheim, CA, April
2005.

[26] MVAPICH/MVAPICH2 Project Website.
http://mvapich.cse.ohio-state.edu.

[27] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive Fault Tolerance for HPC with Xen
Virtualization. In Proceedings of the 21st Annual
International Conference on Supercomputing (ICS’07),
Seattle, WA, June 2007.

[28] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[29] Open Fabrics Alliance. http://www.openfabrics.org.
[30] S. Pakin and A. Pant. VMI 2.0: A Dynamically

Reconfigurable Messaging Layer for Availability, Usability,
and Management. In Workshop on Novel Uses of System
Area Networks (SAN-1), in Conjuction with HPCA-8,
Cambridge, MA, Feb 2002.

[31] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL
- A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/.

[32] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale,
and K. Schulten. Scalable molecular dynamics with NAMD.
Journal of Computational Chemistry, 26:1781–1802, 2005.

[33] Portable Batch System (OpenPBS).
http://www.openpbs.org/.

[34] I. Pratt. Xen Virtualization. Linux World 2005
Virtualization BOF Presentation.

[35] SLURM: A Highly Scalable Resource Manager.
http://www.llnl.gov/linux/slurm/.

[36] A. Vishnu, P. Gupta, A. Mamidala, and D. Panda. A
Software Based Approach for Providing Network Fault
Tolerance in Clusters with uDAPL interface: MPI Level
Design and Performance Evaluation. In Proceedings of
SuperComputing (SC’06), Tampa, FL, Nov 2006.

[37] VMware – Virtual Infrastructure Software.
http://www.vmware.com.

[38] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. Cox, and W. Zwaenepoel. Concurrent Direct Network
Access for Virtual Machine Monitors. In Proceedings of the
13th International Symposium on High-Performance
Computer Architecture (HPCA-13), Phoenix, AZ, Feb.
2007.

[39] XenSource. http://www.xensource.com/.

