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ABSTRACT
While software reliability in large-scale systems becomes in-
creasingly important, debugging in large-scale parallel sys-
tems remains a daunting task. This paper proposes an in-
novative technique to find hard-to-detect software bugs that
can cause severe problems such as data corruptions and
deadlocks in parallel programs automatically via detecting
their abnormal behaviors in data movements. Based on the
observation that data movements in parallel programs typ-
ically follow certain patterns, our idea is to extract data
movement (DM)-based invariants at program runtime and
check the violations of these invariants. These violations
indicate potential bugs such as data races and memory cor-
ruption bugs that manifest themselves in data movements.

We have built a tool, called DMTracker, based on the
above idea: automatically extract DM-based invariants and
detect the violations of them. Our experiments with two
real-world bug cases in MVAPICH/MVAPICH2, a popular
MPI library, have shown that DMTracker can effectively de-
tect them and report abnormal data movements to help pro-
grammers quickly diagnose the root causes of bugs. In ad-
dition, DMTracker incurs very low runtime overhead, from
0.9% to 6.0%, in our experiments with High Performance
Linpack (HPL) and NAS Parallel Benchmarks (NPB), which
indicates that DMTracker can be deployed in production
runs.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.2.5 [Software
Engineering]: Testing and Debugging—Debugging aids,
Distributed debugging

General Terms
Reliability, Design, Experimentation

Keywords
Bug Detection, Parallel Programs, Data Movements, Anomaly
Detection
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1. INTRODUCTION
Software bugs greatly affect the reliability of high per-

formance systems. A recent study [52] with more than 20
different high-performance computer systems at Los Alamos
National Laboratory has shown that software bugs account
for as many as 24% of failures. Furthermore, software bugs
may silently corrupt application data and remain unnoticed
until termination of the whole task, which leads to incorrect
results and significantly affects overall productivity. With
peta-scale and many-core architectures becoming a main-
stream in High Performance Computing (HPC) systems in
the predictable future, software will become much more com-
plex and software bugs may cause more frequent and more
severe system problems.

Unfortunately, finding software bugs in high-performance
systems is a daunting task due to the systems’ inherent
nature of non-determinism and large scale. Bugs such as
data races manifested during one execution may not be
triggered during another execution because of various non-
deterministic events, such as process execution orders, thread
interleaving, signal delivery timing, I/O events, etc. Such
non-determinism makes it difficult to reproduce bugs and
thus renders a significant challenge for detecting and lo-
cating a software bug. Furthermore, the problem becomes
much more complicated due to the ever-increasing scale of
high performance systems. For example, some software bugs
can only be triggered in very large-scale systems. However,
it would cause a huge resource waste if developers have to
occupy the whole large-scale system for inefficient manual
debugging. Therefore, it is imperative to have low-overhead
tools deployed in production runs to help automatically lo-
cate software bugs.

Previous work on detecting bugs at execution time can be
classified into two categories: programming-rule-based ap-
proach and statistics-rule-based approach [60]. While meth-
ods in both categories check certain rules during program ex-
ecution, they focus on different types of rules. Programming-
rule-based approaches detect violations of rules imposed by
specific languages such as C/C++ or specific interfaces such
as Message Passing Interface (MPI). For example, “bounds
of the message buffer cannot exceed its allocated bounds”
and “all members of one process group must execute col-
lective operations over the same communicator in the same
order” are two rules used by MPI-CHECK [38] and Um-
pire [55], respectively. Much research has been conducted
in this category, such as Purify [25], Valgrind [42], Um-
pire [55], MARMOT [31], MPI-CHECK [38], etc. While



they are effective in detecting some types of software bugs
at runtime, their rules are either too general to be able to
detect semantics-related bugs [25, 42] or highly dependent
on domain-specific expertise and human efforts [55, 31, 38].

Statistics-rule-based methods extract rules statistically at
program runtime, and check the violations of the extracted
rules. Statistical rules, or dynamic invariants [18, 24], are
properties that likely hold at a certain point or points in a
program. One can extract invariants at runtime over a single
run or across multiple runs. Several recent works [18, 24, 60]
have demonstrated that statistics-rule-based approaches are
very promising due to their effectiveness in detecting bugs
that do not violate any programming rules. Daikon [18]
and DIDUCE [24] extract value-based invariants (i.e., the
possible values of a given variable are always within a cer-
tain range) at runtime and can detect bugs that generate
abnormal values. Similarly, AccMon [60] captures the run-
time program-counter-based invariants (i.e. a given variable
is typically accessed by only a few instructions), and use
them to detect memory-related bugs. Many statistical rules
extracted from program execution are related to program
semantics, which are usually not accurately documented by
programmers and difficult to infer from the code itself [53].

Parallel or distributed programs, the common type of
most applications running on HPC systems, are especially
suitable for applying statistics-rule-based methods. In addi-
tion to the temporal dimension explored by previous works
[18, 24, 60] (i.e., invariants based on program behaviors
in multiple runs or multiple phases of a single run), one
can explore the spatial dimension (i.e., invariants based on
the behaviors of multiple concurrently-running processes) in
parallel systems. For example, in scientific parallel applica-
tions, usually similar or even identical tasks are performed
in multiple iterations (the temporal dimension), as well as
by multiple processes (the spatial dimension). Similarly, in
some commercial HPC systems such as web server farms,
a group of processes concurrently handle tasks in the same
way for achieving high throughput.

Recently, Mirgorodskiy et al. have conducted an initial
study of using statistics-rule-based approach to diagnose
software problems in large-scale systems [41]. Their ap-
proach extracts the invariant of function time distribution in
control flow, and then identify the abnormal process among
a large number of parallel processes. They have shown that
this invariant is effective for locating problematic processes
and functions. However, their approach has two limitations
in detecting software bugs. First, they cannot detect bugs
that do not cause abnormal function time distribution across
multiple processes. For example, data corruption may only
cause wrong results without affecting the function time dis-
tribution. Similarly, some bugs manifest themselves in all
the processes, resulting in the same distorted function time
distribution for all the processes, and thereby their approach
cannot detect these bugs. Second, the function time distri-
bution invariant is easily interfered by system-level noises [8]
(e.g., process scheduling, signal delivery, network conges-
tion), and thus, it does not reflect the semantics of pro-
grams very accurately. For example, the processes perform-
ing identical tasks on different nodes can show very different
function time distribution if the network traffic load is un-
balanced across nodes.

Our Contributions. In this paper, we propose a novel
statistics-rule-based technique, called data movement (DM)-

based invariants, to find hard-to-detect software bugs that
can cause severe problems such as data corruptions and
deadlocks in large-scale parallel programs. Our idea is based
on the observation that data movement in parallel programs
typically follow certain patterns. If we can extract such DM-
based invariants at runtime, it is possible to detect abnormal
data movements that are caused by potential software bugs.

Our idea is inspired by the fact that data movements
in parallel programs are pervasive and bug-inducing. Dif-
ferent from sequential programs, parallel programs require
multiple processes to coordinate with each other to perform
large tasks. Therefore, processes in parallel programs usu-
ally communicate with each other very frequently. Unfor-
tunately, programmers can easily make mistakes in various
situations when performing data movements. On the ap-
plication level, many parallel algorithms require data to be
exchanged in non-trivial ways due to subtle boundary con-
dition handling. In addition, parallel programming models,
such as MPI, provide a variety of communication interfaces
with different semantics such as point to point send/receive,
collective calls, etc. Often, it is difficult for application pro-
grammers to precisely understand the subtle semantic dif-
ferences and choose the correct interface. Furthermore, to
achieve better performance, the applications and libraries
may introduce aggressive and error-prone optimizations, which
may work correctly for most of the time but affecting cor-
rectness in some corner cases. Therefore, bugs can be easily
introduced and manifested in pervasive data movements in
parallel programs.

More specifically, we propose two types of DM-based in-
variants: frequent chain (FC)-invariants, i.e., frequently oc-
curring data movement chains, and chain distribution (CD)-
invariants, i.e., clusters of data movement chain distribu-
tions of multiple processes. FC-invariants and CD-invariants
focus on temporal and spatial similarity of data movements
in parallel programs, respectively. The violations of them,
abnormal data movement chains for FC-invariants or outlier
data movement chain distribution in one process for CD-
invariants, may indicate the potential software bugs such
as data corruptions, livelocks, deadlocks, etc. Note that
these two types of invariants are based on data movement
chains formed by linking individual data movements where
the destination of one data movement is the source of a sub-
sequent data movement. The reason for doing so is that
data movement chains reflect better semantic information
than individual data movements.

Based on these ideas, we have built a tool, called DM-
Tracker, to extract FC-invariants and CD-invariants at run-
time and check for violations of them. Our experiments with
two real-world bug cases in MVAPICH/MVAPICH2 [43], a
popular MPI library, have shown that DMTracker can ef-
fectively detect them and report abnormal data movements
to help programmers quickly diagnose the root causes of
bugs. Complementary to existing programming-rule-based
and statistics-rule-based tools, DMTracker has the following
unique advantages, some or all of which are unavailable in
other tools.

• To the best of our knowledge, DMTracker is the first
automatic tool that utilizes statistical rules based on
data movements (i.e., DM-based invariants) for detect-
ing hard-to-detect software bugs that can cause severe
problems such as data corruptions and deadlocks in
parallel programs. To find software bugs, it focuses on



a key aspect in parallel programs – the data move-
ments. Based on DM-based invariants, DMTracker
can detect various types of severe bugs such as data
corruptions and deadlocks that manifest themselves in
data movements and help programmers to diagnose
the root causes.

• DMTracker can detect both deterministic and non-
deterministic software bugs that manifest themselves
in only a few processes or across all processes. This is
because it extracts invariants by exploring both tem-
poral and spatial similarities of data movements. Our
experiments have shown that DMTracker is effective in
detecting both deterministic bug and non-deterministic
bugs. In contrast, previous work [41] cannot han-
dle software bugs manifested across all the processes,
which is demonstrated by our first bug case.

• DMTracker can detect software bugs that do not vi-
olate the function time distribution since DM-based
invariants capture “how data move” instead of “when
data move.” Our experiments with the second bug
case have shown that the problematic function time
distribution can be easily overshadowed by other func-
tions or system-level noises and thus it is hard to be
identified by previous work [41].

• DMTracker incurs low overhead due to our system de-
sign and usage of a low-overhead dynamic instrumen-
tation tool called Pin [39]. Our experimental results
show that the runtime overhead of DMTracker is only
0.9-6.0%. Therefore, it is possible to directly apply
DMTracker to production runs.

The rest of this paper is organized as follows: In Section 2,
we discuss the background of statistics-rule-based bug detec-
tion. In Section 3, we introduce the DM-based invariants; In
Section 4, we present our design of DMTracker and discuss
several key design issues. We describe the evaluation results
in Section 5 and discuss related work in Section 6; Finally,
we conclude in Section 7.

2. BACKGROUND: STATISTICAL RULE
BASED BUG DETECTION

Statistics-rule-based bug detection methods extract statis-
tic rules, (i.e., dynamic invariants), at program runtime and
check violations of the extracted invariants, which indicate
potential software bugs. These approaches are motivated
from an observation that the hard-to-detect bugs are usu-
ally those lurking in a corner case that rarely happens. Be-
cause the program behaves correctly for most of the cases,
the bugs in corner cases are more difficult to be manifested
by testing and thus more likely to cause problems in pro-
duction runs. Due to their hidden nature, these bugs take
much more time to detect and fix.

In recent years, research efforts have been made toward
this direction [18, 24, 60, 37]. They have introduced several
types of dynamic invariants to detect bugs that manifest
themselves in different ways. Daikon [18] and DIDUCE [24]
focus on the value ranges of variables and use them as in-
variants to detect the abnormal values of variables. Acc-
Mon [60] focuses on the program counter (PC)-based in-
variants to detect the abnormal instructions accessing to

a certain memory location. AVIO [37] makes use of Ac-
cess Interleaving (AI) invariants to detect the violation of
atomicity execution in multi-thread programs. These works
focus on sequential programs, and thus their proposed in-
variants are mainly to capture the temporal similarity of the
programs behavior. Recently in [41], an anomaly-detection
method was proposed to use function time based invariants
for diagnosing problems in large distributed computing en-
vironments. This work focuses on identifying the abnormal
process in a parallel application, by capturing the spatial
similarity of parallel programs.

In our work, we focus on one of the key aspects of par-
allel programs, the data movements, and propose two data
movement-based invariants to capture both temporal simi-
larity and spatial similarity in parallel programs.

3. DATA MOVEMENT-BASED INVARIANTS
Data movement is the movement of a chunk of memory

data from a source buffer to a destination buffer. For exam-
ple, copying a chunk of memory data from buffer A to buffer
B corresponds to one data movement A → B. Typically, we
can capture data movements in parallel programs on differ-
ent levels: on application level by regarding each communi-
cation calls such as MPI library calls as one data movement,
or on library level by analyzing each primitive operation
such as memory copy, network send/receive, etc., as one
data movement. For bug detection purposes, we choose the
library level because it provides comprehensive information
for finding bugs in applications as well as communication
libraries and it is decoupled from particular programming
models and communication interfaces.

Individual data movement reveals little information about
program semantics. Thus it is difficult to extract invariants
from them. To address this issue, we link a series of data
movements to form a data movement (DM)-chain in a way
that the destination of previous data movement is the source
of the subsequent data movement. Figure 1 illustrates a sim-
ple DM-chain between two processes. The whole chain in the
figure can be caused by a pair of communication calls such
as MPI Send and MPI Recv on the application level. DM-
chains are the basis of our proposed two types of invariants,
which are described in the following two subsections.

Figure 1: A simple DM-chain: A1→B1→B2→A2

3.1 Frequent Chain Invariants
FC-invariants are the frequently-occurring DM-chains. This

is based on the observation that processes in parallel pro-
grams often exhibit temporal similarity, e.g., performing
similar or identical tasks in multiple iterations. As a result,
similar DM-chains occur many times during program execu-
tion. Based on this observation, we can group similar DM-
chains together according to their type information, e.g.,
call sites of data movements and memory buffers. Then we
can use large-sized groups, i.e., frequently-happening DM-
chains, as FC-invariants.



1   int send (void* buf, int len, ...) {
2     //Send operation using bottom-fill
3     void *comm_buf_bottom = get_comm_buf_bottom(...);
4     void *data_buf = comm_buf_bottom - len;
5     memcpy (data_buf, buf, len);
6     if (need_piggyback) {//Rare case
7       Piggyback_t *pb = (Piggyback_t*) data_buf-sizeof(Piggyback_t);

/*bug here: missing parentheses*/
8       ... /*Fill piggy back structure*/
9       return low_level_send((void*)pb, len+sizeof(Piggyback_t), ...);
10   } else {// Common case
11     return low_level_send(data_buf, len, ...);
12   }
13 }

(a)

(b)

Figure 2: An abstracted bug case reflected in ab-
normal data movement chain

Based on the FC-invariants, it is possible to detect abnor-
mal data movements, i.e., similar to a FC-invariant but with
slight difference. These abnormal data movements are po-
tentially caused by software bugs and deserve programmers’
attention. Typically, abnormal data movements are caused
by buffer misuse and can lead to data corruptions as well as
other errors such as crash or deadlock.

Figure 2(a) shows a simplified bug case extracted from a
communication library, where data corruption is caused by
pointer misuse. While the code path of common case goes
through line 11, the bug is at line 7, in the code path to
deal with a rare case, where some data need to be piggy-
backed to the packet to notify its peer about some event,
e.g. out of resource. Since the programmer tends to think
more of bytes rather than data objects when programming
network protocols, sizeof is used to calculate the offset.
Unfortunately, without parentheses, the type cast happens
in a higher precedence and the address is subtracted in
unit of sizeof(Piggyback t), so the actual address change is
sizeof(Piggyback t) × sizeof(Piggyback t), which causes
the pointer to point to another buffer. This bug can easily
slip through normal software tests since it deals with uncom-
mon cases only when some rare event occurs. Furthermore,
it is difficult to detect this bug during production runs since
it may manifest itself as silently sending incorrect data to
the remote receiver.

Figure 2(b) shows data movements related to the send()
routine, including both common cases and uncommon cases.
It clearly tells that the bug manifests itself in the abnormal
data movement. During normal program execution, DM-
chains related to the send() routine are X → A → B →
C → D → Y . When the bug occurs, the DM-chain changes
to A′ → B → C → D → Y , similar to the FC-invariant
for the common case but with the link from A → B broken.
Obviously, it violates the FC-invariant.

FC-invariants can be extracted from one run or based on
multiple runs. DMTracker does not require reference data
to distinguish abnormal chains from normal. But in some

cases, the incorrect DM-chains can be the “common cases”
in one specific run when the bug happens. To be more ef-
fective in detecting bugs in these cases, DMTracker also al-
lows users to provide a “training set”, a number of traces
known to reflect correct behaviors, so that it can extract
patterns only from those traces. Then DMTracker can be
more effective in locating incorrect behaviors in traces from
problematic runs.

3.2 Chain Distribution Invariants
CD-invariants are the clusters of chain distributions that

the chain distribution of each process should fit in. It is
based on the observation that processes in parallel programs
often exhibit spatial similarity, e.g., performing similar or
identical tasks and following the same symmetric commu-
nication patterns in multiple processes. As a result, the
distribution of various groups of DM-chains (grouping DM-
chains using the same method as we did for FC-invariants)
are similar across multiple processes. Therefore, we can use
chain distributions clusters as CD-invariants.

Figure 3 demonstrates the chain distributions in all pro-
cesses for High Performance Linpack (HPL) benchmark [2]
and SP, MG in NAS Parallel Benchmarks (NPB) [56]. (Most
benchmarks in NPB show similar trends, we omit them due
to lack of space). The x-axis indicates the process ID of
each process in the parallel programs and each column of
a graph shows the chain distribution in that process. It is
clear that during normal execution, all 64 processes for the
tested benchmarks share very similar chain distributions.

Based on CD-invariants, it is possible to capture bugs
that happen in a small number of processes. DMTracker
compares chain distributions across all processes and auto-
matically locates the manifesting process in a large number
of peers, so that the search space for the bug can be greatly
narrowed down. Typically, an abnormal chain distribution
is caused by some algorithm or protocol error in parallel
programs, which can manifest itself as infinite loop (i.e.,
livelock), deadlock, etc.

In addition to the chain distributions of the whole run,
comparing the chain distributions within a certain time pe-
riod can be more effective for detecting bugs in some cases.
For example, to diagnose deadlock bug, chain distributions
of all processes in the last phase of execution are especially
useful. Since in a deadlock situation, processes usually stop
to proceed their executions and also stop communicating,
the distorted chain distribution only shows in the last phase
and can potentially be overshadowed by the chain distribu-
tion in earlier phases.

In cases where processes in a parallel application are de-
signed to perform different tasks (e.g. in master-worker
model), the chain distributions for some processes (e.g. rank
0) will be very different from others even in correct runs. In
these cases, CD-invariants are only valid for groups of pro-
cesses which perform similar or identical tasks. DMTracker
can be configured to only analyze chain distributions of a
specific subset of processes rather than all processes in the
whole parallel program.

4. DESIGN OF DMTracker
DMTracker consists of two major components, the online

tracking component and the offline analysis component, as
shown in Figure 4. The online tracking component (Sec-
tion 4.1) collects data movement (DM)-traces at runtime by
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Figure 3: Distribution of Chains for 64 Processes

leveraging lightweight binary instrumentation. Based on the
collected DM-traces, the offline analysis component forms
DM-chains (Section 4.2), extracts FC-invariants and CD-
invariants respectively (Section 4.3) and detects anomalies
that violate the extracted invariants (Sections 4.4 and 4.5).

4.1 Lightweight Data Movement Tracking
The online data movement tracking component records

data movement related information into traces, called DM-
trace, by instrumenting binary code of the parallel programs.
A dynamic instrumentation tool called Pin [39] is used in
our current implementation. Unlike traditional bug detec-
tion tools such as Purify [25] that track every memory ac-
cesses, DMTracker only instruments function calls related
to memory management (e.g. allocation/deallocation) and
data movements (e.g., memory copy and network opera-
tions). Therefore, it incurs very low overhead. Furthermore,
by directly instrumenting binary code, DMTracker requires
no recompilation of the source code, which can avoid some
inconvenience for usage.

To capture data movement semantics, DMTracker records
the following information of instrumented function calls: (1)
key arguments and return values, (2) call sites that con-
tain stack context when the call is made, (3) thread IDs for
multi-threaded processes, and (4) local timestamps when the
call is made. More specifically, for memory allocation calls
such as malloc, calloc, etc., DMTracker records both request
size and the memory object address; for memory copy calls,
it records source and destination addresses and the copy
length; for network operations, it records the buffer, length,
and the information to identify the network endpoint. The
call sites are useful in analyzing traces and providing more
diagnosis information to programmers. The timestamp is
used to order local operations. Note that for the programs
using customized memory management module, additional
instrumentation needs to be done regarding the customized
interfaces.

DM-trace grows moderately since DMTracker only records
data movement related functions. Its growth rate largely
depends on the communication patterns of parallel applica-
tions. In our experiments, typically 20MB of disk space can
store traces for several minutes for parallel benchmarks such
as HPL and NPB, and thus it is usually not a big problem for
storing the whole traces into local disks. In addition, we can
leverage existing techniques such as trace compression [44]
and streaming processing [5] to reduce storage overhead if
it becomes a big concern.

4.2 Preprocessing: DM-Chain Formation
Based on the collected DM-traces, DMTracker forms DM-

chains by parsing data movement operations, DM-operations,
and linking related data movements. For scalability, DM-

Tracker processes individual traces and forms DM-chains in
parallel instead of processing all the traces in a central node.

Parsing DM-Operations. DMTracker parses informa-
tion of each function call recorded in the DM-traces and
correlates each DM-operation to its source and destination
buffers’ allocation information. For example, a memory copy
A → B correlates to the allocation information of A (e.g.
malloc at PCa) and B (e.g. memalign at PCb). This corre-
lation information provides contexts for linking data move-
ments and grouping chains, which are discussed in detail
later.

In parallel programs, some data movements such as data
pack/unpack may contain multiple memory copies. In many
cases, data in multiple small non-contiguous buffers are packed
to a larger contiguous buffer, or data in a large buffer are
unpacked to multiple smaller non-contiguous buffers. Since
a memory copy usually requires source and destination to
be contiguous, these operations require multiple memory
copies. DMTracker aggregates multiple memory copies for a
pack or unpack operation and parses them as a single DM-
operation to better reflect the semantics of data movements.

For network operations, in this step, DMTracker can only
correlate partial allocation information, either the source
buffer (for send) or the destination buffer (for receive), to
the data movement within each process. In order to link
data movements across the network, DMTracker keeps the
connection end-point information temporarily.

Movement Concatenation. Based on the parsed DM-
operations, DMTracker forms chains by linking related data
movements where the destination buffer of a previous DM-
operation is the source buffer of a subsequent DM-operation.
To form a complete chain, DMTracker performs two steps,
intra-process linking and inter-process linking. The intra-
process linking is to link DM-operations within one pro-
cess. For example, it links memory copies with related mem-
ory copies or network operations. To efficiently match the
source buffer of a DM-operation with the destination buffer
of some previous DM-operation, DMTracker maintains an
active chain table for existing DM-chains that can poten-
tially have successive DM-operations. If matching happens,
DMTracker extends the matched DM-chain and updates
the table correspondingly. Otherwise, it inserts the DM-
operation as a new DM-chain into the table.

The inter-process linking is to link the chains across differ-
ent processes together by matching the send operations and
receive operations. To achieve this, DMTracker maintains
the information of network connections (e.g., file descrip-
tors for sockets, queue pairs (QPs) for InfiniBand [29]). For
the FIFO communication channel (e.g. TCP and InfiniBand
RC), send and receive can be matched simply by the order.
For the channels which do not guarantee FIFO, further in-



Figure 4: DMTracker Design Overview

strumentation needs to be done to track sequence numbers
with the packets. When a send matches with a receive, the
chain starting with the receive is linked to the end of the
chain ending with the send. This way the DM-chain that
reflects the whole process of data movement across multiple
processes can be formed.

4.3 Invariants Generation
To generate FC-invariants and CD-invariants, DMTracker

first groups the same type of chains together based on the
information of data movements in each chain since chain
groups provide better data movement semantics. More pre-
cisely, DMTracker regards two chains as the same type and
puts them into the same group if the corresponding indi-
vidual data movements within the two chains have the same
call sites for the DM-operations and the same allocation call
sites for their source and destination buffers. For example,
the chain A1 → A2 → A3 and the chain B1 → B2 → B3

are of the same type and belong to the same chain group
if the data movement Ai → Ai+1 has the same call site as
Bi → Bi+1 and Aj has the same allocation call site as Bj ,
where i = 1, 2 and j = 1, 2, 3. We use call site information
for grouping chains due to two reasons: (1) data movements
at different program locations usually handle different cases,
capturing program semantics in communication, and (2) the
same memory allocation site usually allocates the same type
of data, capturing characteristics of memory buffers.

4.3.1 Generating FC-invariants: Frequent Chain Pat-
tern Selection

DMTracker extracts FC-invariants from the above-formed
chain groups based on two criteria. Obviously, the chains
of that group must happen frequently, i.e., the number of
chains in the chain group should be relatively large. One
naive way is to set an absolute number as the threshold and
require all the FC-invariants with chain number larger than
that threshold. However, it is difficult to do so in practice
since the threshold is highly dependent on the number of
chains in the trace. Therefore, DMTracker uses a relative
number, the percentage of total number of chains, as the
threshold.

Another criteria is that, the chain type for each chain

group must preserve unique characteristics so that we can
easily determine whether another chain matches the FC-
invariant or not, and how much it matches. If a chain type
contains only one data movement, there is no point to select
it as invariant and compare other chains with it because
other chains are either 0% match or 100% match, there-
fore they can not be the violations we are interested in,
which are mostly similar to but have some difference from
the invariant chain type. The uniqueness of a chain type is
determined by the length of the chain as well as the unique-
ness of each individual data movement that forms the chain.
Therefore, we define the uniqueness value of a chain type C,
Uniqueness(C), as the sum of the uniqueness values of its
DM-operations (O1, O2, ...):

Uniqueness(C) =
X

Uniqueness(Oi) (1)

Uniqueness values of different types of data movements
should be assigned in different ways since they reflect differ-
ent semantics. We normalize the single memory copy to 1,
and define the uniqueness of a DM-operation Oi,
Uniqueness(Oi), as follows

Uniqueness(Oi) =

8

<

:

1, if Oi is a single memory copy;
M, if Oi is a network operation;
min(N, n), if Oi is a data pack/unpack.

(2)

In Equation 2, n represents the number of segments of
data to pack/unpack, and M and N are tunable parameters.
Since network operation involves two processes, we use M =
2 in our experiments. Uniqueness of data pack/unpack is
designed that way because: a) it should reflect the number
of segments it has, and b) it should not overwhelm other
movements. We use N = 10 in our experiments.

The thresholds to select FC-invariants should partially de-
pend on the target program. In our experiments, we set the
uniqueness threshold to 5, and require the number of chains
in a chain group for FC-invariants to account for more than
10% of the total number of chains in the chain groups whose
uniqueness value is above the threshold.

4.3.2 Generating CD-invariants: Chain Distribution
Clustering



DMTracker extracts CD-invariants, i.e., clusters of chain
distributions that the chain distribution of individual pro-
cesses should fit in, based on the chain distributions. We
define the chain distribution in a trace T for a process as a
vector, CD(T ). Each element in the vector represents the
percentage of all the chains one chain group accounts for.

CD(T ) =

fi

Count(C1 , T )

Count(T )
,
Count(C2, T )

Count(T )
, ...,

Count(Cm , T )

Count(T )

fl

(3)

where m is the total number of distinct chain groups for all
the processes, Count(Ci, T ) represents the number of chains
in the ith chain group Ci in the trace T , and Count(T ) rep-
resents total number of chains occurred in T . Even though
in many cases a chain goes across multiple processes, to an-
alyze the distribution, we consider a chain to belong to a
certain process when the chain starts from that process. In
this way, we do not calculate a chain multiple times and still
have a symmetric measurement.

To cluster chain distributions, DMTracker uses Manhat-
tan distance [32] to the kth nearest neighbor [48] as our met-
ric, which is also used in previous work [41]. The Manhattan
distance between two traces Ti and Tj , Distance(Ti, Tj), is
the sum of the absolute differences of each element in the
chain distribution vector as defined in Equation 4. Distancek

is the distance to kth nearest neighbor (Equation 5), which
reflects how well a chain distribution fits into a cluster with
multiple peers. A lower value of Distancek means the chain
distribution fits better into a cluster. Thus, DMTracker uses
it to measure how similar a chain distribution in one process
is compared to its peers’.

DMTracker uses a certain range of Distancek(Ti) as CD-
invariants. Similar to [41], in our experiments, the values
of parameters k is set to n/4, where n is total number of
processes.

Distance(Ti, Tj) =

˛

˛

˛

˛

Count(C1 , Ti)

Count(Ti)
−

Count(C1 , Tj)

Count(Tj )

˛

˛

˛

˛

+ ...

+

˛

˛

˛

˛

Count(Cm , Ti)

Count(Ti)
−

Count(Cm , Tj)

Count(Tj )

˛

˛

˛

˛

(4)

Distancek(Ti) = Distance(Ti, Tjk
),

where Distance(Ti, Tjl
) < Distance(Ti, Tjl+1

),
i 6= jl, 1 ≤ l ≤ n − 1

(5)

4.4 FC-invariants Based Anomaly Detection
Based on the extracted FC-invariants, DMTracker can de-

tect abnormal chain groups potentially caused by software
bugs, and validate the reported bug by checking each chain
instance in the abnormal groups with its context.

4.4.1 Abnormal Chain Group Detection
DMTracker detects abnormal chain groups by comparing

each chain group with the extracted FC-invariants. It con-
siders a chain group C being an abnormal case of a FC-
invariant P if they are similar enough and C is relatively
rare compared to P . On one hand, C needs to be similar
to P so that we can determine it as an abnormal case of P .
The more similar they are, the more likely that C is an ab-
normal case of P , except C is identical to P . For example, if

C matches 90% with P , then we can consider the rest 10%
unmatched part to be abnormal. But if C only matches 10%
with P , it is likely to be just an infrequent type of chains
instead of being an abnormal case of P .

To measure the similarity between a chain group C and
a FC-invariant P , DMTracker uses a metrics derived from
Jaccard Coefficient [54], a widely used metric to measure
similarity, to capture the matched part and unmatched part
between C and P . Equation 6 shows the formal definition
of similarity. To find the largest matching part (C ∩ P ),
we symbolize the DM operations in the chain and convert
the problem to a longest common substring problem. The
longest common substring problem can be solved in O(m+n)
time with the help of a generalized suffix tree [23], where m
and n are the lengths of the two strings.

Similarity(C, P ) =
Uniqueness(C ∩ P )

Uniqueness(C ∪ P )

=
Uniqueness(C ∩ P )

Uniqueness(C) + Uniqueness(P )− Uniqueness(C ∩ P )
(6)

On the other hand, C needs to be relatively rare compared
to P . Otherwise, if C is almost as frequent as, or even
more frequent than P , it is very likely to be another pattern
instead of an abnormal case of P . To measure the rareness,
DMTracker compares the frequency of C, Frequency(C),
with the frequency of P , Frequency(P ). There is no point
to compare the C with P if Frequency(C) is larger than
Frequency(P ). We define the rareness, Rareness(C,P ), as
below:

Rareness(C, P ) =
Frequency(P )− Frequency(C)

Frequency(P )
,

where Frequency(P ) > Frequency(C)

(7)

We are looking for abnormal chain groups with high sim-
ilarity, meaning the chain group is very similar to the FC-
invariants, and with high rareness, meaning the chain group
is relatively rare compared to the FC-invariants. We choose
to use harmonic mean to combine similarity and rareness be-
cause it is a commonly used way which prefers high scores
in both dimensions. Thus the overall metric of abnormality
can be defined as follows:

Abnormality(C, P ) =
2

1

Similarity(C, P )
+

1

Rareness(C,P )
(8)

For each pattern Pi, DMTracker detects a list of chain
groups, noted as Ci1 , Ci2 , ..., with Abnormality(Cik

, Pi) >
ThresholdAbnormality, Cik

6= Pi, and Frequency(Cik
) <

Frequency(Pi). We call each pair, (Cik
, Pi), a violation.

DMTracker then combines lists of violations for all patterns,
and ranks them according to the abnormality score. In our
experiments, DMTracker reports all violations with an ab-
normality score more than 0.7

4.4.2 Chain Instance Checking
Since not all DM-chains in the abnormal chain groups are

necessarily caused by bugs, DMTracker needs to check each
chain instance in the context of chain trace for validation
and providing more detailed diagnosis information to the
programmer.

In this step, DMTracker goes through each chain instance
in the abnormal chain groups, and examines the DM-opera-



tions that happened immediately before/after the chain in-
stance to see whether they match the previously unmatched
part between the abnormal chain and its matching FC-inva-
riant. For instance, assume that a chain group C with
three DM-operations (X, Y, Z) matches third to fifth DM-
operations in a FC-invariant P (U, V, X, Y, Z) and c is a
chain instance of C. If some DM-operations closely before
c in the chain trace match the DM-operations U and/or V
in P , it strongly suggests a broken chain. DMTracker will
highlight it by marking as “context match.”

Furthermore, DMTracker can provide the detailed infor-
mation with each abnormal instance into report, and rank
the anomalies with “context match” and high abnormal-
ity score on the top. The reported information includes
buffer address, buffer allocation call sites, data movement
call sites, etc., of both the abnormal chains and their con-
texts (i.e. data movements chains happened before/after it).
It is likely to be helpful for diagnosing the problem.

4.5 CD-invariants Based Anomaly Detection
Based on the CD-invariants, reflected as a certain range

of Distancek scores, it is relatively straightforward to detect
the outliers. Different from [48], where the number of out-
liers is given by users, here DMTracker uses another criterion
to find all traces that are not similar enough to their peers.
If a trace has a significantly larger value of Distancek than
the average, e.g. K times larger, DMTracker will report it
as an abnormal trace. In our experiments, we use 5 as the
value of parameter K for fewer false positives. The chain
group that contributes the most to the Distance(Ti, Tjk

) in
Equation 4 is also included as diagnosis information in bug
reports.

In some cases, the most interesting part of the chain dis-
tribution is about the last phase of execution. For instance,
if a parallel program deadlocks and we want to find out
which process causes this problem, the chains that happen
much earlier in the run may dilute the difference. To deal
with this case, we can use a binary search method. When
no outliers have been found but users want to do in-depth
diagnosis, DMTracker can perform multiple rounds of CD-
invariant based detection with the chains in the halved time
range.

4.6 Issues and Discussions
Additional Inter-process Communication Channels.

In communication libraries, in addition to common network
send and receive, there are other approaches to perform
inter-process communication, such as through a shared mem-
ory region on the same host, or using Remote Direct Mem-
ory Access (RDMA) to directly access memory on a remote
host. For data movements through shared memory, DM-
Tracker tracks them as data movements through non-shared
memory. However, our current prototype has not yet sup-
ported the shared memory region construction such as mem-
ory mapping to a common file. Therefore, DMTracker does
not link the chains crossing processes if they are communi-
cated through shared memory regions. This may affect the
accuracy in some cases, but is not a major problem in our
experiments because the separate chains are still analyzed
in each process. We plan to track the construction of shared
memory regions in our future work.

RDMA, an advanced feature provided by modern net-
works such as InfiniBand [29] and Quadrics [47], etc., al-

lows one-sided communication. Our current prototype does
not link chains through RDMA channels because only the
process on the active side has a DM-operation. To address
this issue, we need to modify device drivers or firmware of
network interface cards to expose RDMA operation to the
user-level process on the passive side.

Online Analysis and On-the-fly Detection. With
more computing power provided by multi-core systems, DM-
Tracker could process and analyze traces using dedicated
cores in each node. Since the processing cores can directly
access the traces in memory instead of via expensive file
I/Os, it can achieve high performance. In addition, the
storage overhead can be alleviated because much smaller
intermediate results are needed for further analysis after
preliminary local processing. These will enable us to ex-
tend DMTracker for performing on-the-fly detection in fu-
ture work.

5. EVALUATION AND CASE STUDIES
The experiments described in this section were conducted

on a 64-processor cluster with 32 nodes. On each node, there
are two 3.6GHz, 2MB L2Cache CPUs and 2GB memory.
These nodes are connected using InfiniBand PCI-Ex DDR
adapters with 10Gbps peak unidirectional bandwidth. The
Operating System is Linux with kernel version 2.6.17.7.

To evaluate DMTracker’s functionality, we use MVAPICH/
MVAPICH2 [43], a popular high performance open-source
MPI library over InfiniBand, with two real-world bug cases:
one data corruption bug causing incorrect results and one
deadlock bug causing program to hang. Both MVAPICH
and MVAPICH2 packages are large: each has more than
350,000 lines of C code in more than 1,500 source files.

To evaluate runtime overhead incurred by the online track-
ing component of DMTracker, we compare the performance
difference of High Performance Linpack (HPL) benchmark
and NAS Parallel Benchmarks (NPB) with and without
DMTracker.

5.1 Case 1: Data Corruption in Communica-
tion

The data corruption bug in MVAPICH2 version 0.9.8 was
triggered deterministically by executing a communication
library for linear algebra, called BLACS (Basic Linear Al-
gebra Communication Subprograms) [1]. The test program
for the BLACS package, called xCbtest, reports “Invalid el-
ement” error in all the 64 processes after executing BSBR
(broadcast/send and broadcast/recv) test cases. The data
corruption bug happens silently (i.e., no hang or system fail-
ures) and is shown at the last stage of result verification.

After being applied for this scenario, DMTracker reports
six abnormal chain groups that violate two of five extracted
FC-invariants. Out of the reported six abnormal cases, the
top two ranked anomalies indicate the real bug. In both
cases, a FC-invariant (15075 times) is violated by rarely-
occurred similar chains (154 times). Figure 5 shows the
frequently-happening chain (FC-invariant) on the left side
and the rare cases (a broken chain caused by the data cor-
ruption bug) on the right side. The instance context check-
ing confirms that all the 154 chain instances are caused by
the data corruption bug.

DMTracker not only detects this bug, but also provides
useful diagnostic information to programmers for quickly lo-
cating this bug. With detailed information about the ab-



Figure 5: Case 1: Broken Chain Figure 6: Case 2: Distancek of Pro-
cesses

normal chain groups, the root cause of the problem, an
optimization called header caching for RDMA operations
fails to handle a corner case in communication protocols,
can be easily identified. This demonstrates that statistical-
rule-based tools like DMTracker can be helpful in detecting
rarely-happening bugs and locating the root causes, which
otherwise would require much more human effort.

Furthermore, this case study shows that DMTracker can
also detect software bugs that manifest themselves across all
the processes in a similar way. This is because DMTracker
exploits temporal similarity within each process as well as
spatial similarity across different processes. This data cor-
ruption bug has been triggered in all the 64 processes in a
similar way, indicating that it is extremely hard, if not im-
possible, for previous work [41] to detect and diagnose it by
only exploring spatial similarity among different processes.

5.2 Case 2: Deadlock in Connection Setup
The deadlock bug was triggered by running FT bench-

mark when testing an internal version of MVAPICH on 64
processes. The program hang non-deterministically with a
very small chance during execution.

After being applied, DMTracker detects an anomaly that
violates the extracted CD-based invariant. As shown in Fig-
ure 6, process 43 has a very high Distancek score, 1.61,
which is significantly higher than the average score 0.23. It
strongly indicates that the chain distribution in process 43 is
an outlier of any cluster of chain distributions. DMTracker
detects this non-deterministic bug via exploiting the spatial
similarity across different processes.

DMTracker not only detects this bug, but also reports
useful diagnostic information to programmers for identify-
ing the root cause. It reports that the chain group with a
network send operation in function cm post ud packet() of
the file cm.c is the major contributor to the high Distancek

score. This information quickly narrows down the root cause
to a specific function. In that function, accessing of a vari-
able, which is forgotten to be defined as volatile, causes an
intended benign data race to be harmful by a small chance.

Although the time spent on the function cm post ud packet()
in bug cases is much longer than that in normal cases, it
can not be easily detected by the function time distribution
method [41] due to noises caused by other functions. To
achieve better performance, most communication libraries
built on current main-stream high performance networks
including MVAPICH/MVAPICH2 use a polling-based pro-
gressing mechanism. In this mechanism, when waiting for
an event, the process will be busy waiting in multiple polling
functions. The difference of time spent in abnormal func-
tions is easily overshadowed by the time spent in these polling

functions. In our experiments, we measured that the total
time spent in the abnormal function in the outlier process
is less than 0.05% of the total time in progressing functions,
which is not reflected in visible difference of function time
distribution. To filter the effect of polling functions, non-
trivial work is required with respect to each library to de-
termine which functions should count and which should not.

5.3 Runtime Overhead
In this set of experiments, we evaluated the performance

impact of DMTracker’s online tracking component with HPL
benchmark with different problem sizes and NPB bench-
mark with class C. We ran these benchmarks based on MVA-
PICH2 version 0.9.8 natively and with tracking using 32
nodes with 2 processes per node (32x2).

Table 5.3 lists the relative performance degradation for
HPL when applying DMTracker as compared to native. In
general, the runtime overhead is very low, from 2.3% to
3.1%. The low overhead is because DMTracker only tracks
a small set of functions related to data movements. In addi-
tion, we observe that the overhead decreases as the problem
size of HPL benchmark increases. That is because when the
problem size becomes larger, the data movements among
processes tends to be in larger chunks, resulting in less fre-
quent data movements and thus lower overhead. Therefore,
for long-running applications operating on large data sets,
the overhead incurred by DMTracker is expected to be low.

Table 1: Runtime Overhead for HPL

Problem Size 40000 50000 60000
Relative Degradation 3.1% 2.7% 2.3%

We also observe that applications with different communi-
cation characteristics show different runtime overheads when
being tracked by DMTracker. As shown in Table 2, the over-
head varies largely for different NPB benchmarks. The ones
with very frequent communications, like CG, IS, and LU,
show slightly higher overhead (3.9%-6.0%); while others,
BT, FT, MG, and SP, only show almost negligible overhead
(0.9%-1.6%). These results are expected since the overhead
is caused by tracking data communications in applications.
As demonstrated by both HPL and NPB, DMTracker incurs
very low runtime overhead, which indicates that DMTracker
can be deployed in production runs.

Table 2: Runtime Overhead for NPB

Benchmarks BT CG FT IS
Relative Degradation 1.0% 3.9% 0.9% 4.2%
Benchmarks LU MG SP
Relative Degradation 6.0% 1.4% 1.6%



Currently, the trace processing and analysis components
of DMTracker are still performed offline. Therefore, this
section only discusses the runtime overhead incurred by the
online tracking component. In the future, we plan to extend
DMTracker to detect software bugs on-the-fly by leveraging
stream processing algorithms and multi-core architectures.

5.4 Sensitivity Study and False Positives
We have also conducted a set of experiments to study

the parameter sensitivity of DMTracker. As in most static-
rule-based tools, parameters and threshold values can affect
the balance between effectiveness and false positives of DM-
Tracker. With lower thresholds, DMTracker can report more
potential bugs (also more false positives), while using higher
thresholds can reduce the number of false positives with the
risk of missing the real bug (false negative).

For FC-invariants, we tried several options to lower the
thresholds of parameters in case 1: a) uniqueness require-
ments for a chain group to be FC-invariant, from 5 to 3
(the minimum meaningful value); b) frequency thresholds
for a chain group to be FC-invariant, from 10% to 5% (a
very low value); and c) abnormality threshold for violation
report, from 0.7 to 0.5. Experimental results were sensitive
to these parameters to some extent: up to 3 more statistical
invariants and up to 15 more violations were reported, but
the real bug cases still ranked at the top and highlighted by
the context match. Most false positives for FC-invariants we
have encountered during the experiments with case 1, NPB,
and HPL, can be summarized as follows.

Infrequently used communication protocol. Since
the flow control algorithm in the MPI library may choose
different protocols according to network resource usage, in
some cases a fall-back protocol may be used. Then the data
movements in the infrequently used protocol will cause a
very small group of chains to be very similar but different
from FC-invariants, which will be reported as violation by
DMTracker. This type contributes more than half of the
false positives. To prune them, we can use more sophisti-
cated checking steps by incorporating semantic information.

Buffer reuse for control message. In the MPI library,
control messages are passed using the same protocol as small
data messages, but the communication buffers for control
messages are immediately reused instead of being copied to
application buffers. Thus the data movements for control
messages may result in a slightly different (usually longer)
chain than FC-invariant, which will be considered as a vio-
lation.

For CD-invariants, we tried different values of parameter
k, such as n/2, n/4, n/8, where n is the number of processes.
The result of case 2 is not affected by different values. When
applying to HPL and NPB, a few false alarms were given for
LU and CG indicating that they have abnormal processes
with different data movement statistics. These false alarms
can be pruned by checking the data movement statistics
about previous known good runs.

Note that to correct suboptimal parameter settings, users
only need to rerun the analysis component offline, which is
generally much cheaper than rerunning the large-scale par-
allel program again.

6. RELATED WORK
Our work builds upon many previous studies on software

reliability. Due to lack of space, here we only provide a brief

survey on related work in three categories: a) bug detection
for parallel programs, b) problem diagnosis in large scale
systems, and c) general software bug detection technologies.

Many research efforts have been made to help detect bugs
in parallel programs, including parallel debuggers [19, 40,
26, 6], technologies to support interactive parallel debug-
ging [10, 28, 49, 4], and automatic bug detection tools [12,
55, 31, 38, 27, 21, 41]. Most of these focus on helping
interactive debugging by using automated information col-
lection/aggregation technologies and visualization technolo-
gies. While some follow programming-rule-based approaches,
the study in [41] uses a statistical-rule-based method by de-
tecting anomaly in function time distribution. Our work is
complementary to these works by using a statistical-rule-
based method to detect anomaly in data movements.

Problem diagnosis in large scale systems has been studied
for many years [13, 59, 9, 7, 50, 3, 41, 30]. These works
mainly study how to analyze and locate the root causes of
system failures or performance problems. The root causes
can be hardware failures, configuration problems, software
bugs, operator mistakes, etc. Different from these works, we
focus more on capturing the problems in programs’ seman-
tics rather than monitoring environments or configurations,
since the purpose of our study is on detecting and analyzing
software bugs in parallel programs.

There have been many studies on technologies to detect
software bugs in general systems. Static bug detection tech-
nologies include implementation-level model checking [58,
17], compiler based technologies [15, 16, 11, 14, 20], and data
mining technologies [33, 34]. Dynamic bug detection tech-
nologies include pure software-based approaches [25, 42, 51,
18, 24, 35, 36, 22] and hardware-supported approaches [61,
60, 37, 45, 57, 46]. Unlike these works, we solely focus on
the data movements in parallel programs and propose DM-
based invariants to capture the special semantics.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an innovative statistical-

rule-based approach to automatically find the hard-to-detect
bugs that can cause severe problems such as data corrup-
tions and deadlocks in large-scale parallel programs. Our
approach extracts the data movement based program in-
variants at runtime, and detects anomaly based on the ex-
tracted invariants. Based on this idea, we have built DM-
Tracker to help programmers locate root causes of software
bugs. Our evaluation with two real-world bug cases in MVA-
PICH/MVAPICH2 shows that DMTracker is effective in de-
tecting them and providing useful diagnosis information. In
addition, DMTracker only incurs a very low runtime over-
head (0.9%-6.0%) measured by HPL benchmark and NAS
Parallel Benchmarks, so that it is possible to be deployed in
production runs.

Current DMTracker is only an initial step toward this di-
rection. For future work, we plan to conduct more case
studies for more types of programs. We also plan to study
more intelligent algorithms in data movement analysis and
more models besides the chain to model data movements
for detecting bugs more effectively. In addition, we would
like to extend DMTracker to detect abnormal behaviors in
parallel programs on-the-fly.
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