
Group-based Coordinated Checkpointing for MPI: A Case Study on InfiniBand ∗

Qi Gao Wei Huang Matthew J. Koop Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH, U.S.A.

{gaoq, huanwei, koop, panda}@cse.ohio-state.edu

Abstract
As more and more clusters with thousands of nodes are

being deployed for high performance computing (HPC),
fault tolerance in cluster environments has become a crit-
ical requirement. Checkpointing and rollback recovery is
a common approach to achieve fault tolerance. Although
widely adopted in practice, coordinated checkpointing has
a known limitation on scalability. Severe contention for
bandwidth to storage system can occur as a large number
of processes take a checkpoint at the same time, resulting
in an extremely long checkpointing delay for large parallel
applications. In this paper, we propose a novel group-based
checkpointing design to alleviate this scalability limitation.
By carefully scheduling the MPI processes to take check-
points in smaller groups, our design reduces the number of
processes simultaneously taking checkpoints, while allow-
ing those processes not taking checkpoints to proceed with
computation. We implement our design and carry out a
detailed evaluation with micro-benchmarks, HPL, and the
parallel version of a data mining toolkit, MotifMiner. Ex-
perimental results show our group-based checkpointing de-
sign can reduce the effective delay for checkpointing signif-
icantly, up to 78% for HPL and up to 70% for MotifMiner.

1. Introduction

With the rapid development in High Performance Com-
puting (HPC) systems, an increasing number of clusters
with thousands of nodes are being deployed. The failure
rates of those systems, however, also increase along with
their size and complexity. As a result, the running times

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342,
#CNS-0509452, and #CCF-0702675; grants from Intel, Mellanox, Cisco
systems, Linux Networx and Sun Microsystems; and equipment donations
from Intel, Mellanox, AMD, Apple, Appro, Dell, Microway, PathScale,
IBM, SilverStorm, and Sun Microsystems.

of many scientific applications are becoming longer than
the mean-time-between-failure (MTBF) of the cluster sys-
tems. Therefore, fault tolerance in cluster environments has
become a critical requirement to guarantee the completion
of application execution. A commonly used approach to
achieve fault tolerance is checkpointing and rollback recov-
ery, where the intermediate states of running parallel appli-
cations can be saved and used later for restart upon failures.

There are two main categories of checkpointing pro-
tocols for parallel programs: coordinated checkpointing
and uncoordinated checkpointing. They use different ap-
proaches to guarantee global consistency. Uncoordinated
checkpointing allows processes to save their states inde-
pendently with less concurrency in accessing the storage,
but requires message logging to guarantee consistency and
avoid cascade rollback. Since there is a clear trend for large
clusters to be equipped with high performance networks,
such as InfiniBand [17], the overhead of message logging
could be prohibitive considering the very high bandwidth
and messaging rate of the networks. On the other hand, in-
stead of using message logging, coordinated checkpointing
guarantees the consistency by global coordination, but typ-
ically requires all processes to save their states at relatively
the same time, which unfortunately, often causes the large
parallel applications suffering from extremely long check-
pointing delays. Because in a real-world scenario, check-
point files are often required to be stored on a reliable cen-
tral storage system. Given the limited bandwidth the cen-
tral storage system provides, the more processes accessing
it concurrently, the less bandwidth each process obtains. We
call this effect Storage Bottleneck, which significantly limits
the scalability of coordinated checkpointing for large paral-
lel applications.

In this paper, we address the scalability of checkpoint-
ing for parallel applications by a novel group-based check-
pointing scheme. Our design is based on coordinated check-
pointing, which avoids message logging and only incurs a

1



very low overhead in the failure-free case. At the same
time, our design takes a good feature of less concurrency
in storage accessing from uncoordinated checkpointing to
avoid the storage bottleneck. We divide the processes into
multiple smaller groups, and take the checkpoint group by
group through careful scheduling so that all processes do
not access the central storage at the same time. Thus, each
process in the checkpointing group obtains a larger share
of the bandwidth to storage and observes a much shorter
checkpoint delay. While a group of processes are taking a
checkpoint, our design allows processes in other groups to
proceed with their execution as much as possible, and only
defers the communications that can cause inconsistency. In
this way, our design can significantly reduce the checkpoint
delay for large scale applications.

In order to evaluate the benefits of group-based check-
pointing, we have implemented our design in MVA-
PICH2 [19, 3], a high performance MPI implementation
over InfiniBand based on MPICH2 [2]. We also propose
multiple performance metrics, which accurately character-
ize the time overhead of checkpointing parallel applica-
tions. We evaluate our design using both micro-benchmarks
and applications. Experimental results show that our new
group-based checkpointing design reduces the effective de-
lay for checkpointing significantly, up to 78% for HPL [20]
and up to 70% for MotifMiner [24]. Although our current
implementation is based on InfiniBand and MVAPICH2,
the design can be readily applicable to other coordination
checkpointing protocols for other MPI implementations and
networks.

The rest of the paper is organized as follows: In Section 2
we briefly discuss the background. In Sections 3 and 4, we
present our group-based checkpointing design and discuss
some key design issues. In Sections 5 and 6, we describe
the metrics of checkpoint delay and the evaluation results.
In Section 7, we discuss related work. Finally, we conclude
and briefly mention future directions in Section 8.

2. Background

2.1. Checkpointing Technologies
Checkpointing and rollback recovery is a commonly

used approach for failure recovery. By periodically saving
the running state of applications, the checkpointing system
allows applications to restart from a time point in the middle
of their executions upon failure, instead of from the begin-
ning. A survey of rollback recovery can be found in [12].

As discussed in Section 1, uncoordinated checkpoint-
ing has a larger overhead in failure-free cases because log-
ging all the messages in HPC applications would create a
huge volume of message logs, and storing them even tem-
porarily in an efficient manner could be a problem. On
the other hand, coordinated checkpointing has potentially
limited scalability largely due to the storage bottleneck. It

is possible to make use of local disk or spare memory on
peer nodes as temporary buffers to hold checkpoint files.
However, there are three facts which make these approaches
less practical: a) Scientific applications tend to use as much
memory as possible for computation, which makes the node
memory to be a scarce resource and not able to be used to
store checkpoints; b) The local disk may not be available on
the computing nodes in new large clusters, e.g. the compute
nodes in the Peloton clusters at LLNL, are diskless [18]; and
c) Buffering the checkpoint files on local disk may under-
mine the ability to recover from failure, because if the node
crashes before the checkpoint files are completely trans-
ferred to reliable storage, the checkpoint files may be lost.

Note that in this paper we refer the blocking design of
coordinated checkpointing protocol as ‘coordinated check-
pointing’, which does not require any message logging. Al-
though the non-blocking design of Chandy-Lamport coordi-
nated checkpointing protocol [9] allows processes to make
progress when other processes are taking checkpoints, it
does not explicitly schedule them globally. Therefore, in
a parallel application, all the processes are still very likely
to take checkpoints at the same time and hit the storage bot-
tleneck. In addition, the non-blocking protocol also requires
logging some messages in the channels during checkpoint-
ing. The high message logging overhead for this protocol
on high speed interconnects is reported in [10].

2.2. Checkpointing on OS-bypass Networks
Recently, high speed networks have been deployed on

clusters to achieve optimal performance. These networks
usually use intelligent network interface cards (NIC) and
provide user-level protocols to allow OS-bypass commu-
nications for low latency and high bandwidth. However,
as compared to Ethernet, they introduce additional chal-
lenges for system-level checkpointing. Essentially, since
communication contexts are cached on NIC and also mem-
ory mapped to process address space for user-level access,
network connections are usually required to be explicitly
torn down before the checkpoint and reconnected after-
wards. These challenges are discussed in detail in our pre-
vious work [14].

InfiniBand [17] is a typical and widely used high per-
formance interconnect, which uses a connection-oriented
model for best performance and advanced features, such as
Remote Direct Memory Access (RDMA). Most MPI im-
plementations on InfiniBand use the connection-oriented
model as default. To establish connections on InfiniBand,
two peers have to exchange connection parameters using
an out-of-band channel. As a result, the cost for connec-
tion management is much higher as compared to using the
TCP/IP protocol. And, even for a local checkpoint on one
node to take place, all the remote processes it connects to
need to participate in the costly procedure for connection
tear-down and rebuild. This makes the checkpointing pro-

2



tocols like uncoordinated checkpointing and non-blocking
coordinated checkpointing even more expensive.

In our previous work [14], we have designed and im-
plemented a checkpoint/restart (C/R) framework in MVA-
PICH2 [19, 3] using a coordinated checkpointing protocol
to take global checkpoints of all MPI processes at the same
time. The framework consists of a global C/R coordinator,
and a local C/R controller in each MPI process. Upon a
checkpoint request, the global C/R coordinator orchestrates
all MPI processes through a checkpointing cycle including
four phases: Initial Synchronization, Pre-checkpoint Co-
ordination, Local Checkpointing, and Post-checkpoint Co-
ordination. In the Local Checkpointing phase, the Berke-
ley Lab Checkpoint/Restart (BLCR) [11] toolkit is used to
take the snapshot of a single MPI process. The consis-
tency of InfiniBand communication channels is guaranteed
by a regular coordination protocol with all processes. Exe-
cuted in both Pre-checkpoint Coordination phase and Post-
checkpoint Coordination phase, the protocol stops the ex-
ecution of all the processes, flushes all the in-transit net-
work messages, globally tears-down all connections before
the checkpoint, and rebuilds them afterwards. Although en-
suring the correctness, this regular coordinated checkpoint-
ing protocol leads to suboptimal performance by hitting the
storage bottleneck when the job is large. In this paper, we
redesign the system using group-based checkpointing to im-
prove performance by avoiding the storage bottleneck.

3. Group-based Coordinated Checkpointing

3.1. Motivation
In coordinated checkpointing, the overall checkpointing

delay consists of two parts, coordination time and storage
access time. Coordination time is the time spent pass-
ing control messages between processes for synchronizing
checkpointing actions, while the storage access time is the
time for saving the program running states to the stable stor-
age. With the order-of-magnitude improvement in network
speed but limited improvement in disk speed in recent years,
the storage accessing time is the dominating part for check-
pointing [12]. And in our previous work [14], we found the
storage accessing time to be over 95% of the overall check-
pointing delay.

Storage access time can be even longer when a central
storage is shared by a large number of processes to store the
checkpoint. Figure 1 demonstrates the bandwidth to stor-
age with various number of clients writing checkpoint files
concurrently. It shows that using four PVFS2 [4] servers for
storage with a total of about 140MB/s aggregated through-
put, the bandwidth each client obtains decreases signifi-
cantly as the number of clients increases. The case where
140MB/s storage throughput shared by 32 clients (4.38
MB/client) is also an optimistic ratio considering the stor-
age bandwidth in current cluster deployments. For instance,

the Thunderbird cluster at Sandia National Lab has 4,480
nodes with 8,960 CPUs and its storage throughput is 6.0
GB/s [18]. (1.37 MB/node)

0

40

80

120

160

200

1 2 4 8 16 32
Number of Clients

0

40

80

120

160

200
Bandwidth per Client
Aggregated Throughput

B
an

dw
id

th
 p

er
 C

lie
nt

 (M
B

/s
)

A
gg

re
ga

te
d 

B
an

dw
id

th
(M

B
/s

)

Figure 1. Bandwidth per Client to Storage
with Different Number of Clients

Especially for large-scale parallel applications, the cen-
tral storage system is likely to be a bottleneck of check-
pointing. It is because that the throughput of a storage sys-
tem is limited, and thus the more processes accessing the
storage concurrently, the less bandwidth each process ob-
tains. With the number of processes (N ), checkpoint image
size per process (S), and the total throughput to storage sys-
tem (B), the ideal storage accessing time for checkpointing
(T ) can be estimated by T = N×S

B , assuming no congestion
effects and a fair bandwidth sharing among the processes to
the storage server. Taking the Thunderbird cluster as an ex-
ample, suppose the memory footprint for each process is 1
GB, and all storage bandwidth is effectively used for check-
pointing, it still needs 1493 seconds (about 25 minutes) to
save the checkpoint to the storage server. This estimation
is still optimistic. In practice, with a large number of pro-
cesses taking checkpoints concurrently, the system noise,
network congestion, and unbalanced share of throughput
to the storage server can significantly increase the delay.
Therefore, it is desirable to limit the number of processes
taking checkpoints at the same time.

Fortunately, previous studies [22] indicate that in many
parallel applications each process only communicates to a
limited number of peer processes. Therefore the MPI pro-
cesses can potentially make progress while other MPI pro-
cesses in the MPI job take their checkpoints.

3.2. Proposed Design
The main goal of group-based coordinated checkpoint-

ing is that when checkpointing a large MPI job with many
processes, MPI processes should be carefully scheduled
to take checkpoints at slightly different times to avoid the
storage bottleneck. While the design allows the processes
which are not currently taking the checkpoints to proceed
with their execution, the global consistency is maintained
by a coordination protocol without message logging to
avoid the overhead associated with logging.

As illustrated in Figure 2, when taking a consistent
global checkpoint in our group-based checkpointing design,
instead of all processes taking checkpoints at the same time

3



0

1

2

3

4
5

0

1

2

3

4
5

Figure 2. (a) Regular Coordinated Check-
pointing and (b) Group-based Checkpointing

and suffering a large checkpointing delay, processes are di-
vided into smaller groups and scheduled to take their own
checkpoints group by group through careful coordination.
Therefore, each process in the checkpointing group can ob-
tain a much larger bandwidth to the storage system and thus,
reduce their checkpointing delay greatly.

Group-based checkpointing has three steps. First, upon
a checkpoint request, we divide all processes into a set of
groups, and decide the order in which they take a check-
point. Second, the groups of processes take checkpoints in
turn. In this step, two levels of coordination protocols are
used. The intra-group coordination is only performed by
the processes in the group that is currently taking a check-
point. They are synchronized with each other to ensure
the consistency in the group. The inter-group coordina-
tion is performed by all processes, but processes in other
groups only coordinate in a passive manner as needed with-
out stopping computation. To guarantee the consistency,
the groups which have already taken the checkpoint should
not communicate with the groups which have not yet taken
the checkpoint. The messages to be passed between two
such groups are deferred until both of then have taken their
checkpoint. Finally, after all processes have taken their
checkpoint, the global checkpoint is marked complete.

Another alternative to handle messages between two
groups where only one of them has taken checkpoint is to
log the messages and resolve the potential inconsistency at
restart time. However, there are performance trade-offs in-
volved for that approach especially on high speed networks.
Besides the logging overhead itself, to enable message log-
ging, zero-copy rendezvous protocols, which are commonly
used in high speed networks to improve performance, can
not be used, which will affect the performance in failure-
free cases negatively. Therefore, in our current design,
we choose to defer the message passing between two such
groups using message or request buffering to resolve incon-
sistency. The differences between buffering and message
logging are discussed in detail in Section 4.3.

4. Design Issues

In this section, we highlight several key design issues of
group-based checkpointing, such as group formation, con-

nection management, message and request buffering, and
asynchronous progress.

4.1. Group Formation

To achieve maximum benefit of group-based checkpoint-
ing, checkpoint groups should be formed in a way that the
most frequent communication happens within groups. In
addition, the size of the group also affects the checkpoint-
ing delay since it is related not only to the communication
pattern but also the efficiency for accessing the storage.

The group formation can be done either statically or dy-
namically. In static group formation, the checkpoint groups
are formed based on a user-defined group size and the global
rank of each process. In dynamic group formation, a proto-
col is executed at runtime. First, information related to com-
munication patterns such as connection status, user-defined
communicators, etc., is collected to provide heuristic. Then,
a lightweight algorithm is executed to find the transitive
closure of frequently communicated processes. If the al-
gorithm finds that the application mainly does global com-
munication, it will fall back to the static group formation to
limit the analysis cost.

4.2. Connection Management

As mentioned in Section 2, connection management
for InfiniBand is more complex and more costly than
TCP/IP networks. In the regular coordinated checkpoint-
ing where all processes participate in checkpointing at the
same time [14], all connections can be torn-down and re-
built collectively using a global protocol. However, the
global tear-down/rebuild model does not work in group-
based checkpointing. The main difficulty here is to allow
other processes to continue computation when a group of
processes are taking a checkpoint. Thus, the connections
must be controlled dynamically, so that: a) only a small
subset of connections are disconnected when checkpointing
a group; and b) a process in the checkpointing group can
disconnect/reconnect to a peer process which is not in the
current checkpointing group (and thus will not actively par-
ticipate in connection management).

We have designed a connection manager for group-based
checkpointing. Our design maintains the connection status
for checkpointing on a per connection basis, so that it allows
each MPI process to disconnect/reconnect to only a specific
set of peer processes. In addition, it uses a client/server
(active/passive) protocol to provide the flexibility for any
side to initiate the disconnect/reconnect operation.

4.3. Message and Request Buffering

To defer passing messages for consistency, two buffering
techniques, namely message buffering and request buffer-
ing, are used under different circumstances. Message
buffering is to temporarily hold the messages that are to be

4



sent in message queues until communication to the destina-
tion is allowed. It is used only for small messages that have
already been copied into communication buffers but have
not yet been posted to the network. Request buffering is
to avoid the expensive content storage in message buffering
case. In most MPI implementations, there are internal data
structures to manage the communication requests from user
applications to the bottom layer (network device layer). Re-
quest buffering is to keep the communication requests in an
‘incomplete’ state and buffers them in queues. It is used in
all possible cases, i.e. for all large messages and the small
messages which have not yet been copied to a communica-
tion buffer.

There are two main differences between message buffer-
ing and message logging. First, instead of sending the mes-
sages and recording their content as in the message log-
ging case, in the message buffering case the message is only
buffered temporarily but not sent. It allows a consistent re-
covery line to be formed without relying on any message log
and thus the message buffer can be freed as soon as the mes-
sages are sent. Second, in message logging, the content of
messages must always be fully logged, while in the message
buffering case, the request buffering can be used to reduce
the cost of storing large messages. Both of these differences
lead to less storage overhead for message buffering.

4.4. Asynchronous Progress

In regular coordinated checkpointing where all processes
take a checkpoint at the same time, the coordination proto-
col is automatically guaranteed to make timely progress. In
group-based checkpointing, however, the coordination may
require the participation of the processes in other groups
which are potentially busy with computation. Therefore,
asynchronous progress is critical for inter-group coordina-
tion to avoid a large coordination delay.

Therefore, we introduce another state, called passive
coordination, to the state machine. A process enters the
passive coordination state when another group is taking a
checkpoint. In this state, the process will temporarily ac-
tivate a helper thread and a lightweight time recorder in
progress engine. Whenever it has been a long time since the
last progress, e.g. 100 milliseconds, the helper thread will
request a progress check. That way, even if the MPI applica-
tion is busy in computation for a long time, the inter-group
coordination will progress within a bounded time. Since
this helper thread is only activated in the passive coordina-
tion state and does not wake up very often, it has negligible
impact on the overall performance.

5. Performance Metrics

In this section, we introduce three metrics to character-
ize the time overhead of checkpointing parallel applications
and explain their correlations. These metrics are:

Effective Checkpoint Delay: The increase in the applica-
tion running time caused by taking one checkpoint during
application execution. Since it reflects the effective perfor-
mance impact of taking a checkpoint of the application, our
end goal is to minimize the Effective Checkpoint Delay.

Individual Checkpoint Time: The delay observed by each
individual MPI process when taking a checkpoint, which re-
flects the down time of each individual process in the middle
of execution.

Total Checkpoint Time: The total time from the point
when a checkpoint request is issued to the point when all
processes have finished taking their checkpoints.

Since the checkpoint image size per process is same
as the memory footprint for each process, and Individual
Checkpoint Time is dominated by the storage accessing
time (more than 95% in our experiments), we have:

Individual Checkpoint T ime

≈ Process Memory F ootprint×No. of Processes
Aggregated Throughput to Storage

(1)

For regular coordinated checkpointing where all the pro-
cesses take their checkpoints at the same time, we have:

Individual Checkpoint T ime

≈ Process Memory F ootprint×Total No. of Processes
Aggregated Throughput to Storage

(2a)

Individual Checkpoint T ime

= Effective Checkpoint Delay

= Total Checkpoint T ime

(2b)

However for group-based checkpointing, where pro-
cesses take checkpoints group by group, we have:

Individual Checkpoint T ime

≈ Process Memory F ootprint×No. of Processes in Group
Aggregated Throughput to Storage

(3a)
Total Checkpoint T ime

= No. of Groups × Individual Checkpoint T ime
(3b)

Individual Checkpoint T ime

≤ Effective Checkpoint Delay

≤ Total Checkpoint T ime

(3c)

Ideally, the Effective Checkpoint Delay should be the
Individual Checkpoint Time. Due to the synchronization
and dependencies, however, MPI processes can not always
make full progress when another process group is taking a
checkpoint. Therefore in practice, the Effective Checkpoint
Delay lies between the Individual Checkpoint Time and To-
tal Checkpoint Time. Note that in group-based checkpoint-
ing, the Total Checkpoint Time only reflects the worst case
impact to applications.

There are several parameters affecting the Effective
Checkpoint Delay. In the next section, we focus on two
most important parameters: checkpoint group size and is-
suance time of the checkpoint request.

6. Performance Evaluation

In this section, we analyze the benefits of group-based
checkpointing in terms of reduction in Effective Checkpoint
Delay with both micro-benchmarks and applications.

5



The experiments were conducted on an InfiniBand clus-
ter of 36 nodes, with 32 compute nodes and 4 storage nodes.
Each compute node is equipped with dual Intel 64-bit Xeon
3.6GHz CPUs, 2GB memory, and a Mellanox MT25208
InfiniBand HCA. Each storage node is equipped with dual
AMD Opteron 2.8 GHz CPUs, 4GB memory, and same In-
finiBand DDR HCA. The operating system used is RedHat
AS4 with kernel 2.6.17.7. The file system used is PVFS2
on top of local SATA disks. The network protocol used by
PVFS2 is IP over IB (IPoIB). The base performance of this
file system configuration is shown in Figure 1.

6.1. Evaluation with Micro-benchmarks
To evaluate the benefits of group-based checkpointing,

we designed a micro-benchmark to emulate communica-
tion in MPI applications. Since the performance benefits
mainly depend on how processes are synchronized, we use
abstracted models as explained later. The memory foot-
print in the micro-benchmarks is configured to be 180MB
per process, which is sufficiently large to show the trend.

Figure 3 shows the impact of different checkpoint group
sizes on the Effective Checkpoint Delay. In this experi-
ment, MPI processes communicate only within a communi-
cation group using blocking MPI calls continuously, effec-
tively synchronizing themselves in groups. The group size
(Comm. Group Size) is set to be 16, 8, 4, 2, and 1 (embar-
rassingly parallel). The results show that when a checkpoint
group covers one or more communication groups, the delay
will be reduced approximately by half when the checkpoint
group size is reduced by half. When a checkpoint group
is smaller than a communication group, the delay remains
on the same level, or even increases when the checkpoint
group size is very small (2 or 1). That is mainly due to the
under-utilization of the storage throughput.

0

10

20

30

40

50

60

All
(32)

16 8 4 2 1
Checkpoint Group Size

Ef
fe

ct
iv

e 
C

kp
t D

el
ay

 (s
) Comm. Group Size 16

Comm. Group Size 8
Comm. Group Size 4
Comm. Group Size 2
Embarrasingly Parallel

Figure 3. Checkpoint Group Size
The issuance time of checkpoint request, i.e. the check-

point placement time, is also an important parameter af-
fecting the benefits of group-based checkpointing. In this
experiment, we set both the checkpoint group size and the
communication group size to be eight, and enforce a global
synchronization using MPI Barrier every minute. As
shown in Figure 4, the Effective Checkpoint Delay lies in
between the Individual Checkpoint Time and Total Check-
point Time. When the checkpoint is placed closer to the
synchronization line (indicated by the vertical line), the de-
lay is larger, closer to the Total Checkpoint Time. It is be-

cause that in this case, the process groups which finish their
checkpoint earlier can not progress across the global barrier
to the next phase of execution without violating the seman-
tics of the barrier.

0
10
20
30
40
50
60
70
80

5 15 25 35 45 55 65 75 85 95 105 115
Issuance Time of Checkpoint (s)

Ti
m

e 
(s

)

Effective Ckpt Delay
Individual Ckpt Time
Total Ckpt Time

Figure 4. Checkpoint Placement

From the micro-benchmark results, we can see that both
checkpoint group size and issuance time of the checkpoint
are important parameters. In practice, checkpoint group
size should be chosen according to application’s commu-
nication group size and storage characteristics. And check-
point request should be placed long before synchronization
to achieve better overlap of storage access and computation.

6.2. Evaluation using HPL

In this section, we describe the experimental results for
High Performance Linpack (HPL) [20] benchmark. HPL is
to solve a dense linear system on distributed-memory com-
puters. The matrix data are distributed to a two-dimensional
grid of processes, and processes mostly communicate in the
same row or column. In our experiments, we choose a 8 ×
4 configuration with a larger block size. Thus the commu-
nication group size is effectively four.

In the experiment, we choose eight time points evenly
distributed across the execution time, and measure the Ef-
fective Checkpoint Delay for different checkpoint group
sizes. Figure 5 shows the detailed experimental results,
from which we observe that in general the delay in the cases
with group size 2, 4, 8, or 16 is noticeably less than the reg-
ular checkpointing case, where the group size is 32. Up to
a 78% reduction in delay for group size 4 at the point of
50 seconds was observed. Average reductions for all time
points with group sizes 2, 4, 8, and 16 are 37%, 46%, 46%,
and 35%, respectively. However, with group size 1, the de-
lay is not reduced much, and in some cases becomes even
worse. That is expected because the processes are not able
to make progress individually and the full bandwidth pro-
vided by parallel file system is not fully utilized. Note that
checkpointing delays are different for different time points
even in regular checkpointing case, because the memory
footprint is not constant during the execution time.

Figure 6 shows the average checkpoint delay with re-
spect to different checkpoint group sizes, with a vertical line
indicating the maximum and minimum delay for each group
size. We can clearly see that the checkpoint group sizes of
4 and 8 give the best performance. These results match the
configuration, 8 × 4 processes, as used in HPL experiments.

6



0

40

80

120

160

200

50 100 150 200 250 300 350 400
Issuance Time of Checkpoint (s)

Ef
fe

ct
iv

e 
C

kp
t D

el
ay

 (s
) All(32) Group(16)

Group(8) Group(4)
Group(2) Individual(1)

Figure 5. Effective Checkpoint Delay at 8
Time Points for HPL

0

40

80

120

160

All
(32)

16 8 4 2 1
Checkpoint Group Size

Ef
fe

ct
iv

e 
C

kp
t D

el
ay

 (s
)

Figure 6. Effective Checkpoint Delay with Dif-
ferent Checkpoint Group Sizes for HPL

6.3. Evaluation using MotifMiner
In this section, we demonstrate that even for the appli-

cations which do not follow a group-based communication
pattern, the group-based checkpointing can still benefit to a
certain degree. To evaluate the performance, we use the par-
allel version of MotifMiner [24], a data mining toolkit that
can mine for structural motifs in a wide area of biomolecu-
lar datasets. The algorithm follows an iterative pattern, and
the MPI Allgather is used to exchange data after each
iteration. We use an intra-molecule frequent substructures
analysis query on protein lysozyme as our dataset, and run
the program using 32 processes. We choose four points dis-
tributed across the execution time.

Figure 7 shows the Effective Checkpoint Delay with re-
spect to different checkpoint group sizes. We observe that
the delay is noticeably reduced, up to 70% for group size
4 at the point of 30 seconds. The average reductions of
checkpointing delay are 28%, 32%, 27%, and 14% with the
checkpoint group sizes of 16, 8, 4, and 2, respectively. The
benefits are because MotifMiner is very computation inten-
sive, therefore although it only does global communication,
each process still has a relative large chunk of computation
before they synchronize. In this case, the groups which fin-
ish their checkpoints earlier can continue their computation
to some extent before waiting for other groups.

7. Related Work
Many efforts have been carried out to provide fault tol-

erance to MPI programs. In recent years, the MPICH-V
team [1] has developed and evaluated several roll-back re-
covery protocols, including both uncoordinated checkpoint-
ing with message-logging protocols, such as V1 [5], V2 [6],

0

40

80

120

160

30 60 90 120
Issuance Time of Checkpoint (s)

E
ffe

ct
iv

e 
C

kp
t D

el
ay

 (s
)

All(32) Group(16)
Group(8) Group(4)
Group(2) Individual(1)

Figure 7. Effective Checkpoint Delay with Dif-
ferent Checkpoint Group Sizes for MotifMiner

Vcausal [7], and coordinated checkpointing protocols, such
as Vcl [8] based on Chandy-Lamport Algorithm [9], and
Pcl [10] based on the blocking coordinated checkpoint-
ing protocol. FT-MPI [13] has extended the MPI specifi-
cation to provide support to applications to achieve fault
tolerance on application level. LAM/MPI [21] has incor-
porated checkpoint/restart capabilities based on Berkeley
Lab’s Checkpoint/Restart (BLCR) [11] to checkpoint MPI
program, which also uses the blocking coordinated check-
pointing protocol. Their efforts have been recently incorpo-
rated in OpenMPI project with an extended framework [16].
Recently, a job pause service [23] has been proposed based
on LAM/MPI’s checkpointing framework to utilize process
migration to achieve very efficient failure recovery. In our
earlier work [14], we have proposed a framework to check-
point MPI programs over InfiniBand using a blocking coor-
dinated checkpointing protocol and BLCR.

In this paper, we extended the blocking coordinated
checkpointing design to take group-based checkpoints,
which reduces the effective checkpoint delay and im-
proves the scalability of checkpointing for MPI. The group-
based checkpointing differs from uncoordinated check-
pointing and non-blocking Chandy-Lamport coordinated
checkpointing in the sense that a consistent global check-
point is formed by the individual checkpoints without
message-logging at any time. This is a critical feature for
clusters that use high performance interconnects such as In-
finiBand, where message logging can potentially impose a
large overhead. Observations for the noticeable message
logging overhead in checkpointing MPI on high speed net-
work has also been reported recently in [10].

Another approach to deal with the storage bottleneck is
incremental checkpointing. Recently, a kernel-level check-
pointer called TICK [15] has been designed for parallel
computers with incremental checkpointing support. We be-
lieve that our group-based checkpointing mechanism can
be combined with incremental checkpointing techniques to
further reduce the checkpointing overhead.

8. Conclusions and Future Work
In this paper, we have presented a design of group-based

checkpointing as an extension to the coordinated check-
pointing protocol to address the scalability limitations. By

7



carefully scheduling the processes in an MPI job to take
checkpoints group by group, the group-based checkpoint-
ing alleviates the storage bottleneck and reduces the check-
pointing delay observed by every process. A prototype im-
plementation has been developed based on MVAPICH2,
and a detailed performance evaluation has been carried
out using micro-benchmarks and applications on an Infini-
Band cluster. The experimental results demonstrate that
group-based checkpointing can reduce the effective delay
for checkpointing significantly, up to 78% for HPL and up
to 70% for MotifMiner. For future research, we plan to
study in more depth on two important factors affecting the
checkpoint delay, checkpoint group formation and check-
point placement, on larger platforms. We also plan to study
how to combine our design with incremental checkpointing
techniques to further reduce the checkpoint delay.

Acknowledgements
We would like to thank Dr. Paul Hargrove from LBNL

for helpful advice and discussions about BLCR. We
would also like to thank Chao Wang and Dr. Srinivasan
Parthasarathy for providing the MotifMiner code and help-
ful discussions.

References

[1] MPICH-V Project. http://mpich-v.lri.fr.
[2] MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich2/.
[3] MVAPICH: MPI for InfiniBand and iWARP.

http://nowlab.cse.ohio-state.edu/projects/mpi-iba/.
[4] Parallel Virtual File System, Version 2. http://www.pvfs.org.
[5] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Magni-

ette, V. Néri, and A. Selikhov. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes. In IEEE/ACM Super-
Computing 2002, Baltimore, MD, November 2002.

[6] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik,
P. Lemarinier, and F. Magniette. MPICH-V2: a fault tol-
erant MPI for volatile nodes based on pessimistic sender
based message logging. In IEEE/ACM SuperComputing
2003, Phoenix, AZ, November 2003.

[7] A. Bouteiller, B. Collin, T. Hérault, P. Lemarinier, and
F. Cappello. Impact of event logger on causal message log-
ging protocols for fault tolerant MPI. In Proceedings of Int’l
Parallel and Distributed Processing Symposium (IPDPS),
Denver, CO, April 2005.

[8] A. Bouteiller, P. Lemarinier, T. Hérault, G. Krawezik, and
F. Cappello. Improved message logging versus improved
coordinated checkpointing for fault tolerant MPI. In Pro-
ceedings of Cluster 2004, San Diego, CA, September 2004.

[9] M. Chandy and L. Lamport. Distributed Snapshots: Deter-
mining Global States of Distributed Systems. In ACM Trans.
Comput. Syst. 31, 1985.

[10] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita,
E. Rodriguez, and F. Cappello. Blocking vs. non-blocking
coordinated checkpointing for large-scale fault tolerant MPI.
In ACM/IEEE SuperComputing (SC), 2006.

[11] J. Duell, P. Hargrove, and E. Roman. The Design and Im-
plementation of Berkeley Lab’s Linux Checkpoint/Restart.
Technical Report LBNL-54941, Berkeley Lab, 2002.

[12] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34(3), 2002.

[13] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen,
J. Pjesivac-Grbovic, K. London, and J. J. Dongarra. Ex-
tending the MPI Specification for Process Fault Tolerance
on High Performance Computing Systems. In International
Supercomputer Conference (ICS), 2003.

[14] Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-
Transparent Checkpoint/Restart for MPI Programs over In-
finiBand. In Int’l Conference on Parallel Processing (ICPP
’06), Columbus, OH, August 2006.

[15] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Transpar-
ent incremental checkpointing at kernel level: A foundation
for fault tolerance for parallel computers. In ACM/IEEE Su-
perComputing 2005, Seattle, WA, November 2005.

[16] J. Hursey, T. Mattox, A. Lumsdaine, and J. M. Squyres.
The design and implementation of checkpoint/restart pro-
cess fault tolerance for Open MPI. In Workshop on De-
pendable Parallel, Distributed and Network-Centric Sys-
tems(DPDNS), in conjunction with IPDPS, 2007.

[17] InfiniBand Trade Association. http://www.infinibandta.org.
[18] M. Leininger. InfiniBand and OpenFabrics Successes and

Future Requirements. http://www.infinibandta.org/events/
DevCon2006 presentations/0930 Past successes.pdf, 2006.

[19] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and Imple-
mentation of MPICH2 over InfiniBand with RDMA Sup-
port. In Int’l Parallel and Distributed Processing Sympo-
sium (IPDPS ’04), April 2004.

[20] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
High performance linpack. http://www.netlib.org/
benchmark/hpl/.

[21] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Du-
ell, P. Hargrove, and E. Roman. The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing.
International Journal of High Performance Computing Ap-
plications, pages 479–493, 2005.

[22] J. S. Vetter and F. Mueller. Communication Characteris-
tics of Large-Scale Scientific Applications for Contempo-
rary Cluster Architectures. In Proceedings of International
Parallel and Distributed Processing Symposium (IPDPS)
2002, Fort Lauderdale, FL, April 2002.

[23] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A
Job Pause Service under LAM/MPI+BLCR for Transparent
Fault Tolerance. In Int’l Parallel and Distributed Processing
Symposium (IPDPS ’07), 2007.

[24] C. Wang and S. Parthasarathy. Parallel Algorithms for Min-
ing Frequent Structural Motifs in Scientific Data. In ACM
International Conference on Supercomputing (ICS) 2004,
Malo, France, June 2004.

8


