Performance Evaluation of MM5 on Clusters
With Modern Interconnects: Scalability and
Impact

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210

Abstract. Clusters have become a crucial technology for providing low-
cost high performance computing to scientific applications like weather
prediction. In addition, networks like Myrinet, InfiniBand and Quadrics
have become popular as an interconnection technology for high perfor-
mance clusters. The high-bandwidth, low-latency characteristics of these
networks make them ideally suited to the demanding characteristics of
large scale weather simulations. Additionally, these networks have fea-
tures like efficient and scalable hardware broadcast, reduce and atomic
operations. Some of the features have been integrated into the MPI stack
for these networks, allowing the user to exploit them for improved per-
formance. In this paper, we evaluate the communication characteristics
of a popular weather simulation code MM5) using InfiniBand. We also
investigate how special features of InfiniBand like scalable broadcast can
benefit MM5 performance. For some workloads, we see that InfiniBand
performs up to 34% better than other interconnects. It also performs
better in general than other networks for all workloads.

Keywords: MM5, Myrinet, InfiniBand, Quadrics, System Area Net-
works, Clusters

1 Introduction

Clusters have been widely deployed for providing high-performance computing
for scientific applications. The lower cost of clusters means that several thousand
nodes may be deployed for running large scale applications. Achieving improved
performance from applications on large scale clusters is a challenging endeavor.
This is especially so, given the wide diversity of architectures and networking
technologies. Understanding the characteristics and trade-offs in different cluster
architectures is crucial for achieving the best performance from applications.
To exploit the benefits of parallel computers, several large scale applications
have been parallelized using implementations of the popular MPI standard [1].
MPI provides an interface to the application, abstracting out details of the under-
lying architecture and network. Computationally demanding applications such
as weather simulation, computational fluid dynamic codes and crash simulation
codes have MPI parallelizations [2-4]. Implementation of MPI such as MPICH
have been ported to a variety of architectures and networks. This allows the

* This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506; National Science Foundation’s grants #CCR-0204429 and #CCR-
0311542; and equipment donations from Intel and Mellanox

application to be run on a wide-range of platforms. The application may poten-
tially exploit the characteristics of these architectures and networks for improved
performance.

Myrinet [511 InfiniBand [6] and Quadrics [7] are some of the popular net-
works used in high performance computing. These networks offer low latency of
a few microseconds and high-bandwidth communication. Additionally, they offer
several features which may be exploited by the application or MPI layers. Net-
works like Myrinet and Quadrics have a programmable network interface card
(NIC), which may be used to offload application or system level computation [8].
Scalable collectives may be used to enhance application performance. Exploiting
thesltfe features is possible not only at the MPI level, but also by the application
itself.

In this paper, we evaluate a widely used weather simulation code MM5. We
attempt to study its communication characteristics. This is done by analyzing the
MPI calls characteristics with increasing system size. Following that, we study
the impact of varying different network parameters like latency and bandwidth
on the performance of the MM5. The impact of special network features is also
evaluated.

The rest of the paper is organized as follows. Section 2 gives some background
on high performance networks, bus technologies and MM5. Following that in
section 3, the scalability of different workloads is evaluated. In section 4, the
performance of MM5 while varying various network parameters is evaluated.
Some related work is discussed in section 5. Finally, in section 6, conclusions
and future work is presented.

2 Background

In this section, we discuss some of the topics relating to networks and weather
simulation models. In particular, in section 2.1, we first discuss the networking
technology Myrinet, InfiniBand and Quadrics. Following that in section 2.2, we
discuss the weather simulation model MM5.

2.1 Overview of Cluster-Networking Technologies

In the high performance computing domain, Myrinet, InfiniBand and Quadrics
are three of the popular networking technologies. InfiniBand [6Luses a switched,
channel-based interconnection fabric, which allows for higher bandwidth, more
reliability and better QoS support. The Mellanox implementation of the Infini-
Band Verbs API (VAPI) supports the basic send-receive model and the RDMA
operations read and write. There is also support for atomic operations and mul-
ticast. MVAPICH [9] is an implementation of Argonne’s MPICH [1] over Infini-
Band. The design of MVAPICH is based on the InfiniBand RDMA primitives.
MVAPICH delivers small message latency of 5.0us and large message bandwidth
of up to 900 MillionBytes/sec. MVAPICH is designed to take advantage of hard-
ware based multicast in InfiniBand [10].

Myrinet [5] is another low latency, high-bandwidth network which uses cut-
through switches. Myrinet E-cards [11] are programmable and allow up to two
ports for maximum bandwidth. MPICH-GM is an implementation of MPICH
over Myrinet delivering small message latency of up to 6.0 us and large mes-
sage bandwidth up to 500 MllhonBytes/sec Quadrlcs 7] is another high-speed
network. The current generation of Quadrics is Elan . Quadrics has a pro-
grammable NIC which can be used to offload computation from the host. MPI/
Elan4 is an implementation of MPICH over Quadrics QsNet II. MPI/Elan4 can

send small messages with a latency of 2.4 us and large messages with a band-
width of up to 900 MillionBytes/s. The latency and bandwidth of these different
networks is shown in Table 1. A basic comparison of these networks in terms of
micro-benchmarks is presented in [12].

Table 1. Latency and Bandwidth for some high performance networks

[Network [Latency (us)|[Bandwidth (MegaBytes/sec)]
Myrinet (MPICH-GM) 6.0 500
InfiniBand(MVAPICH) 5.0 890
Quadrics(MPI/Elan4) 2.4 900

2.2 Overview of MM5

MMS5 [4] is a limited area, non-hydrostatic, terrain following sigma-coordinate
model designed to simulate or predict mesoscale atmospheric circulation. This
regional model may be used for prediction on domains ranging from several
thousand miles to a few hundred miles or less. Domains are uniform rectan-
gular three dimensional areas of the atmosphere. The atmospheric dynamics
are non-hydroscopic and use finite-difference approximations. The model is sup-
ported by several pre- and post-processing programs, which are referred to
collectively as the MM5 modeling system. The MM5 modeling system soft-
ware is mostly written in Fortran, and has been developed at Penn State and
N(éAR as a community mesoscale model with contributions from users world-
wide.

The distributed-memory version

of MM5 [13](MM5-MPP) has

been 1mplemented I:ISng MPIT ¢ computation on coarse domain Computation on a domain
message-passing provided by the " exchange. stencil(domain(1)stencil A)

parallel Runtime System Library rsl_compute_cell(domain(1),solve A) \‘
(RSL) [14] RSL is a run-time Sys- rsl_exchange_stencil(d(?main(I), stencil B) |~
tem and library to support par- rsl_compute_cell(domain(1), solve B)

allelization of grid-based finite- Broadcast

difference weather models. RSL

supports mesh refinement. Mesh ¢ force nested boundaries
refinement allows the original do- rsl_exchange_stencil(stencil_interp)
main to be divided into smaller 5%% 1s]_beast(domain(1).domain(2))
areas (which may be nested). By ufsi

allpwmg these are?,s to be non- ¢ computation on nested domain Merge
uniform, computation may be fo- doisiep=1,3
cused on areas Of more active in- rsl_exchange_stencil(domain(1),stencil A)
terest in the domain ThlS usu- rsl_compute_cell(domain(1),solve A)

. Setc ... pEEE
ally sacrifices resolution in some cpddo s
areas of the domain (which may c force c.d from nest A gé‘g
not be of interest), but reduces "-"EdOmInD domain() SISis

)

the computational requirements.)
RSL communicates results be- Fig.1l. Overall parallel driver for a MM5b

tween sub-domains as shown in timestep with nest interactions (courtesy J.
Figure 1. In the next section, we Michalakes, et al. [13])

discuss how different workloads

scale with an increase in the num-

ber of nodes.

3 Communication
Characteristics of Parallel MM5 (MM5-MPP)

In this section, we take a look at the communication patterns in the parallel
version of MM5 (MM5-MPP) when using MPI over InfiniBand (MVAPICH).
This was done to help us understand what parameters of a network would help
us achieve better performance from this application. For example, if the appli-
cation sends a lot of small messages, low network latency might help. If it sends
large messages, it might be bandwidth sensitive. In addition, we would like to
understand whether the application employs special operations like collectives.
If it does, we would like to examine how efficient implementation of some collec-
tives by certain networks might impact the performance of MM5-MPP. In-order
to do this, we first evaluated how increasing the number of processors or system
size, impacted the performance of the application. Also with increasing system
size, we looked at how the distribution of MPT calls in the application changed.
Finally, we also looked at how the message sizes to different MPI calls changed
with increase in system size.

To evaluate these characteristics of MM5-MPP, we chose two different work-
loads and ran them on a 64-node, dual 2.4 GHz processor cluster with Mellanox
MT23108 InfiniBand adapters and a MVAPICH 0.9.4 installation (cluster A).
The first workload is the MM5 benchmark data set [15], which specifies a 3
hour run, TIMAX = 180, with an 81 second time-step (T3A). The second is the
large-domain run (LDOM) which may be obtained from [16]. MM5-MPP allows
the user to divide the workload among the different processors, so as to reduce
the memory usage. This is achieved by specifying two parameters; namely num-
ber of processors in the North-South directions (PROCNS) and processors in the
East-West directions (PROCEW) E)C] PROCNS and PROCEW were set so that
PROCNS >= PROCEW and PROCNS x PROCEW = number of processors.

In Section 3.1, we look at the impact of increasing the number of processors
on execution time. In Section 3.2, we look at the breakdown of time between ap-
plication computation and communication layers. Following that in Section 3.3,
the breakdown of time spent in the various calls in the MPI stack is presented.
Finally in Sections 3.4 and 3.5, the distribution of MPI calls and message sizes
with increasing system size is discussed.

3.1 Effect of system size

In this section, we observe the effect of an increasing number of processors on
parallel execution time. The workloads T3A and LDOM were run on cluster
A. Since each node has a dual processor, the total number of processors in the
system is 128. This allows us to study the impact of system size up to 128
processors. The effect of increasing system size on execution time for T3A and
LDOM is shown in Figure 2. It can be observed that with increasing system size
for T3A, the execution time decreases up to 128 processors. For T3A, there is an
approximate decrease in execution time of up to 37% when doubling the number
of processors. Figure 2 also shows the scaling efficiency of the two workloads.
It can be seen that for the workload T3A, the scaling efficiency starts at above
90% and then gradually decreases to a little over 65‘§

For LDOM, there is a maximum decrease in execution time of 32% when
doubling the number of processors. The scaling efficiency gradually decreases
from 74 % to approximately 49%, as shown in Figure 2. For LDOM, the benefits
of an increasing system size plateaus after 64 processors. This can be attributed
to the smaller problem size of LDOM compared to T3A. This leads to an in-
creased load imbalance, which manifests itself as increased wait time. This effect
is discussed in further detail in Section 3.2.

100

s LDOM —— "LDOM ——
50 |] 80 |]
—~ 45| E)
[8) j=2) L 4
@ l | g) ‘\&\\
o |] @ r
£ S 40l]
= 30t o
25 1 20
20 1
-
15 1 1 1 1 0 1 1 1 1
2 4 8 16 32 64 128 4 8 16 32 64 128
Number of processors Number of processors
350 T3A —— 100* ‘ ‘ " T3A ——
] 80 ’\\,_\
= g L
8 - |
[0} [
IS e L
= S 40
20
0 : - . : . 0 . . - '
2 4 8 16 32 64 128 4 8 16 32 64 128
Number of processors Number of processors

Fig. 2. MM5-MPP execution time with increasing system size of two different
workloads (left) and scaling efficiency (right)

3.2 Overall application timing breakdown

We will now discuss the average per-process breakdown of execution time of the
workloads LDOM and T3A. For improved scalability, it is better to spend the
maximum amount of time in application level computation and as little time
as possible in the communication libraries or in MPI calls. How much time is
spent in the communication libraries is partly dependent on the design of the
application as well as the communication library. If the application uses non-
blocking MPT calls, this time can be minimized. Blocking calls on the other
hand increase the amount of time spent in the communication libraries. The
time spent in the communication library also depends partly on the nature of
the progress function employed by the MPI stack.

The breakdown of timing was obtained using the lightweight profiling tool
mpiP [17]. We find that for LDOM, the percentage of time spent in communi-
cation (time spent in MPI layers) increases from slightly less than 5% at two
processors, to approximately 37% at 128 processors. For T3A, the percentage
of communication increases from approximately 2% at two processors to 27%
at 128 processors. This difference can be mainly attributed to the difference in
sizes of the two workloads. LDOM is a smaller workload as compared to T3A.
As a result, the computation datum assigned to each processor is smaller. This
effect manifests itself as increased process skew. Overall, a large amount of time
is spent in MPT layers particularly blocking MPI Receive calls. This issue will
be discussed in more detail in Section 3.3.

3.3 MPI timing breakdown

In this section, we discuss the average per-processor distribution of time spent
in different MPT calls for LDOM and T3A. Understanding the distribution of

time spent in different calls, gives us insight into which network might poten-
tially enhance the performance of MM5-MPP. This is specially true in the case
of efficient implementation of collective operations in some of the stacks such as
MVAPICH [10]. The percentage of MPI time spent in different calls is shown in
Figure 3. MM5-MPP largely uses the calls for blocking receive, blocking send,
non-blocking receive, message wait, message broadcast and gather corresponding
to MPI_Recv, MPI _Send, MPI IRecv, MPI_Wait, MPI_Bcast and MPI_Gather
respectively. Since the time spent in MPI_TRecv is not significant, it is not shown
in the figure. For both datasets, the percentage of time spent in MPI_Bcast in-
creases with increasing system size. For LDOM, time spent in MPI Bcast in-
creases from approximately 4% of total MPI time for a two processor run to
approximately 30% at 128 processors. For T3A, MPI_Bcast time increases from
2% at two processors to about 20% at 128 processors. In Section 4.3, the impact
of hardware broadcast on MMJ5 performance is evaluated.

A large percentage of time is spent in MPI_Recv for both LDOM and T3A
and increases with increasing system size. At 128 processors for LDOM and
T3A, the time spent is about 30% and 44% of communication time respectively.
For both cases, time spent in MPI_Wait decreases with increase in system size.
This decrease is more rapid in the case of T3A. Time spent in MPI_Recv and
MPI_Wait can be correlated to the amount of application wait time. This is
approximately 26% for LDOM and 21% for T3A. This would suggest that MM5-
MPP would benefit from dynamic load balancing, currently not implemented in
this version of MM5-MPP.

Percentage

2 4 8 16 32 64 128
Number of processes

Fig. 3. Breakdown of time spent in different MPI functions for two different
workloads
3.4 MPI call count distribution

In this section, we look at the average per-processor distribution of MPI calls in
MM5-MPP. The distribution of MPI calls for LDOM and T3A with increasing
system size is shown in Figure 4. As discussed in section 3.3, implementation
of MM5-MPP makes calls to the MPI functions for blocking sends, blocking re-
ceives, non-blocking receives, broadcast and gather. These calls are MPI_Send,
MPI_Recv, MPI_TRecv, MPI_Bcast and MPI_Gather respectively. Since the pro-
portion of calls to MPI IRecv is not significant, these calls are not shown in the
graphs. For both workloads, the number of calls increases with increasing system
size. For LDOM, MPI Send has the highest count, while for T3A MPI_Bcast is
the highest. For both cases, the number of calls to MPI_Send and MPI _Bcast
increases ten-fold, when the system size is increased from two processors to 128
processors.

From this we observe that MM5-MPP largely uses blocking MPI calls. MM5-
MPP might benefit from a design which uses more non-blocking calls. This might
be possible through the modification of the rsl_exch_stencil and rsl_merge_stencil

calls in Figure 1 to use non-blocking calls. In this case, it might issue a non-
blocking receive, to receive data from its adjacent neighbors. It might then con-
tinue computation on different sub-domains (assuming there is sufficient data
available). Between computations, it might check if there is any additional data
from its adjacent neighbors. If there is data available, it might use that to com-
plete some computations rather than blocking. This would help us with overlap
of computation and communication. This might also help reduce some of the
application wait time discussed in section 3.3. We plan on investigating this in
our future work.

LDOM

5

Hl MPI_Send
[MPI_Gather
[MPI_Bcast 5

bl
o

@
o
IS

log10(call count)
° = ™
S O R
log10(call count)
©

o
o

64 128 2 64 128

8 16 32 8 16 32
Number of processes Number of processes

Fig. 4. Frequency of different MPI calls for the two different workloads

LDOM T3A

W MPI_Send
I MPI_Gather
[MPI_Bcast 5

log10(size in bytes)
S © N o
log10(size in bytes)

©

2 4 8 16 32 64 128 2 4

8 32 64 128
Number of processes Number of processes

Fig. 5. Sizes of messages sent through different MPT calls in two different work-
loads

3.5 Message size distribution

As discussed in Section 3.4, MM5-MPP largely makes blocking MPI calls. In this
section, we look at the average sizes of messages sent from these blocking calls
namely MPI _Send, MPI Recv, MPI Bcast, and MPI_Gather. These results are
shown in Figure 5. For both workloads LDOM and T3A, the size of the message
passed to MPI_Send starts at between 129 KiloBytes and 300 KiloBytes at two
processors and gradually decreases to about 40 KiloBytes at 128 processors. On
the other hand, the size of messages passed to MPI_Bcast increases from about
50 bytes at two processors to approximately 300 bytes at 128 processors. It
is possible that MM5 might benefit from InfiniBand hardware based multicast
support integrated into MVAPICH. The impact of increase in unidirectional
bandwidth on MM5-MPP performance is examined in section 4.1, while the
impact of hardware multicast on MM5-MPP is examined in section 4.3. We will
Il\l/?I\VYI e}ﬁrlg%ne the impact of different network parameters on the performance of
5- .

4 TImpact of Network Technology

In this section, we look at how different network parameters affect the execution
time of MM5-MPP. In particular, the impact of latency, bandwidth and hardware
broadcast is examined. Experiments are conducted using the workloads LDOM
and T3A described in Section 3. These workloads were run on cluster B (8-
node, dual 3.0 GHz processor cluster with Myrinet E-cards, Quadrics Elan-4
and Mellanox MT23108 InfiniBand adapters). All experiments were run with
16 processes on eight nodes. In Section 4.1, the effect of network bandwidth
on applications is examined. Following that, we look at the impact of network
latency on MM5-MPP performance in 4.2.

Table 2. Explanation of notation used in this section.

[Notation |[Explanation

MPICHGM-1P|MPICHGM 1.2.6..14a using E-cards,
with a single port activated (GM 2.0.21)
MPICHGM-2P|MPICHGM 1.2.6..14a using E-cards,
with both ports activated (GM 2.1.21)
[MVAPICH-1N [MVAPICH 0.9.5 with a single NIC per node |
MVAPICH-HB|MVAPICH 0.9.5 with InfiniBand hardware broadcast enabled
MVAPICH-SB [MVAPICH 0.9.5 without InfiniBand hardware broadcast
[MPI/Elan4 [Quadrics MPI |

4.1 Effect of Network Bandwidth

In this section, we examine the impact of bandwidth on the performance of
MM5-MPP. This impact was measured using both different networking tech-
nologies, as well as multi-port support offered by different technologies. Myrinet
E-cards [11] has two ports, each capable of up to 250 MegaBytes/sec for a total
of up to 500 MegaBytes/sec. It is possible to activate either one or both ports
on these cards. We use notation as explained in Table 4. For large messages,
MVAPICH-1IN delivers up to 900 MegaBytes/sec. MPI/ELAN4 delivers up to
900 MegaBytes/sec [9]. The two workloads were run on cluster B, described in
Section 4. The execution time across different networks for LDOM and T3A at 16
processes on 8 nodes is shown in Figure 6. For LDOM, execution time is reduced
by approximately 34% when MPICHGM-2P is replaced by MVAPICH-1N. The
reduction in execution time may be attributed mainly to to the reduction in time
spent in MPT Bcast (24.2%), followed by the reduction in MPI_Recv (5%), along
with small reductions in MPI_Wait, MPI_Gather and MPI_Send making up the
remaining 5%. Note that hardware broadcast was not enabled for MVAPICH-1N.
For T3A, on replacing MPICHGM-2P with MVAPICH-1N, there is a reduction
in execution time of up to 12%. Most of this reduction comes from reduced time
spent in MPI_Bcast.

4.2 Effect of Network Latency

We will now examine the effect of network latency on the performance of MM5-
MPP. For the different network MPI stacks, we use notation similar to that in
Table 4. On cluster B, the latency of a 0-byte message for MPI/Elan4 is approx-
imately 2us while for MVAPICH-1N it is 5us. The bandwidth for large messages
of these two networks is comparable as shown in Table 1. The execution time of

LDOM T3A

Execution time (sec)
Execution time (sec)

0 MPICHGM-1P MPICHGM-2P MVAPICH-1N MPI/Elan4 0 MPICHGM-1P MPICHGM-2P MVAPICH-1N MPI/Elan4

Fig. 6. MM5-MPP execution time with different networks

the two workloads LDOM and T3A at 16 processors, on eight nodes is shown
in Figure 6. At 16 processors, for LDOM MVAPICH-1IN performs better than
MPI/Elan4 by approximately 20%. Most of this difference may be attributed to
time spent in MPI_Recv and MPI_Wait. For T3A, there is very little difference
in performance between MVAPICH-1N and MPI/Elan4.

4.3 Effect of Hardware Broadcast

In this section, we evaluate the impact of hardware based broadcast in InfiniBand
on the performance of MM5-MPP. As discussed in section 3.3, and shown in
Figure 3, a significant amount of time spent in the blocking call MPI Bcast. At
16 processors for LDOM, approximately 10% of time is spent in MPI_Bcast. For
T3A at 16 processors, approximately 5% of time is spent in MPI Bcast. Also as
discussed in Section 3.5, at 16 processors, the message size passed to MPI_Bcast
by both T3A and LDOM is approximately 100 bytes. At this size, hardware
based broadcast does better by up to 50% in terms of latency than the current
software based point-to-point algorithm [10]. It seems likely that MM5-MPP
could potentially benefit from InfiniBand hardware broadcast.

The workloads LDOM and T3A were evaluated with and without hardware
broadcast referred to as MVAPICH-SB and MVAPICH-HB respectively on clus-
ter B, as explained in Section 4. All runs were taken up to 16 processes on eight
nodes. For LDOM there is a reduction in execution time of approximately 2.14%.
For T3A, the reduction in execution time is approximately 5.1%.

5 Related Work

The parallel implementation of MM5, MM5-MPP, was described in [13]. Only
basic scalability in terms of execution time is discussed here. The performance
using different commodity cluster interconnects is not discussed in this paper.
Also the impact of efficient collective operations in modern interconnects on ap-
plication performance is not discussed. The evaluation of the MM5 benchmark
T3A on various architectures is carried out in [15]. Only the basic scalability
in terms of execution time with increasing number of processors is discussed
here. The impact of various network features like multicast is not evaluated
here. The performance and scalability of various networks is evaluated using
micro-benchmarks and NAS parallel benchmarks in [18]. This study focuses
on comparing Myrinet, Quadrics and InfiniBand. The relative performance of
Myrinet, InfiniBand and Quadrics in terms of micro-benchmarks is evaluated
in [12]. There is no application-level evaluation here.

6 Conclusions and Future Work

In this paper, we have looked at the scalability of the parallel distributed memory
version of the popular weather simulation code MM5. We have also looked at the
sensitivity of MM5 to network parameters like latency, bandwidth and efficient
collectives like hardware broadcast in InfiniBand. MM5 uses messages sizes of
the order of 100 to 300 KiloBytes for system sizes up to 16 processors. These
sizes decrease with increase in system size. A considerable amount of time is
spent in the collective call MPI Bcast which increases with increasing system.
We conclude that, at smaller system sizes, MM5 would benefit from increased
bandwidth. Experimentation with InfiniBand shows a reduction in execution
time up to 34% compared with Myrinet at 16 processors. For larger system sizes,
the improved latency of hardware based broadcast might be more beneficial
to the application. Experimentally on a 16 processor environment, we see an
improvement of up to 5% in overall execution time when using InfiniBand based
hardware broadcast. Additionally, MM5 spends substantial time waiting in the
MPI calls MPI_Wait and MPI_Recv as system size increases. We would like to
determine the impact of efficient communication progress functions available in
stacks like Myrinet MX and Quadrics on the performance of MM5, for large
scale systems. MM35 also packs and unpacks its own data structures. We would
h%«l}\/[tli)/[investigate the effect of efficient zero-copy datatypes on the performance
o 5.

References

1. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable Im-
plementation of the MPI, Message Passing Interface Standard. Technical report,
(Argonne National Laboratory and Mississippi State University)

2. Fluent CFD. (http://www.fluent.com)

3. LSDYNA. (http://www.Istc.com)

4. G.A. Grell, J. Dudhia, and D.R. Stauffer: A Description of the Fifth-Generation
Penn State/NCAR Mesoscale Model (MM5). Tech. Rep. NCAR/TN-398+STR,
National Center for Atmospheric Research, Boulder, Colarado (1994)

5. Boden, N.J., Cohen, D., et al.: Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro (1995) 29-35

6. Infiniband Trade Association. (www.infinibandta.org)

7. Quadrics Ltd. (www.quadrics. comf

8. R. Noronha and N. B. Abu-Ghazaleh: Using Programmable NICs for Time Warp
Optimization. IPDPS (2002)

9. MPI over InfiniBand Project. Iéhtt nowlab cis.ohio-state.edu/projects/mpi-iba)

10. J. Liu, A. Mamidala an Fast and Scalable MPI-Level Broadcast

using InfiniBand’s Hardware Multlcast Support. IPDPS (2004)

11. Myrinet E-cards. (http://www.myri. cor\rxl/m rinet /PCIX /m3f2-pcixe.html)

12. J. Liu, B. Chandrasekaran, W. Yu, E Buntinas, S. Kini, P. Wyckoff and
D. K. Panda.: Micro-Benchmark Performance Comparlson of ngh Speed Cluster
Interconnects. IEEE Micro. (2004)

13. J. Michalakes, T. Canfield, R. Nanjundiah and S. Hammond: Parallel Implementa-
tion, Validation and Performance of MM5. Sixth Workshop on the Use of Parallel
Processors in Meteorology, European Center for Medium Range Weather Forecast-

ing, Reading, U.K. (1994)

14. Mlchalakes J.. A Runtime System Library for Parallel Finite Difference Models
with Nestmg Technical Report ANL/MCS-TM-197 (1997)

15. Parallel MM5 benchmarks. http://www.mmm.ucar.edu/mmb/mpp/helpdesk/
20040304a.html (2004)

16. MM5 Community Model. (http //www.mmm.ucar. edu/mm5/)

17. mpiP MPI Profiling Tool. htt%ﬁwww Alnl.gov ({CASC/mplp

18. R. Brightwell, D. Doerfler and Underwood: A Comparison of 4X InfiniBand
and Quadrics Elan-4 Technologies. IEEE Conference on Cluster Computing. (2004)

