
Efficient Barrier using Remote Memory Operations on VIA-Based Clusters
�

Rinku Gupta* Vinod Tipparaju
�

Jarek Nieplocha
�

Dhabaleswar Panda*

*The Ohio State University�
guptar, panda � @cis.ohio-state.edu

�
Pacific Northwest National Laboratory�

vinod.tipparaju, jarek.nieplocha � @pnl.gov

Abstract

Most high performance scientific applications re-
quire efficient support for collective communication.
Point-to-point message-passing communication in cur-
rent generation clusters are based on Send/Recv commu-
nication model. Collective communication operations
built on top of such point-to-point message-passing op-
erations might achieve suboptimal performance. VIA
and the emerging InfiniBand architecture support re-
mote DMA operations, which allow data to be moved
between the nodes with low overhead, they also allow
to create and provide a logical shared memory address
space across the nodes. In this paper, we focus on bar-
rier, one of the frequently-used collective operations. We
demonstrate how RDMA write operations can be used to
support inter-node barrier in a cluster with SMP nodes.
Combining this with a scheme to exploit shared mem-
ory within a SMP node, we develop a fast barrier algo-
rithm for cluster of SMP nodes with cLAN VIA intecon-
nect. Compared to the current barrier algorithms using
Send/Recv communication model, the new approach is
shown to reduce barrier latency on a 64 processor (32
dual nodes) system by up to 66%. These results demon-
strate that high performance and scalable barrier imple-
mentations can be delivered on current and next genera-
tion VIA/Infiniband-based clusters with RDMA support.

1. Introduction

Cluster computing systems are becoming increas-
ingly popular for providing cost-effective and affordable
computing environments for day-to-day computational
needs of a wide-range of applications. These systems
are typically built by interconnecting a set of commodity
PCs/workstations with commodity Local Area Network-
ing (LAN)/ Systems Area Networking (SAN) technolo-

�
This Research is supported in part by Department of Energy’s

Grant # DE-CF02-01ER25506 and an NSF Grant #EIA-9986052.

gies (such as Fast Ethernet [15], Gigabit Ethernet[8],
Myrinet [5], ATM [2], and GigaNet [1]).

Distributed and high performance scientific applica-
tions running on such clusters require efficient support
for both point-to-point and collective communication.
Frequently used collective communication operations
include: barrier, broadcast, all-reduce, gather, scatter,
etc. Many times collective operations fall in the critical
path of a program’s execution. Thus, providing high-
performance and scalable support for collective commu-
nication operations is critical for any cluster.

The increasing performance and availability of Local
Area Networks (LANs)/ System Area Networks (SANs)
is shifting the communication bottlenecks in clusters
from network fabrics to communication overheads at
the senders and receivers. In clusters with the tradi-
tional communication architecture, sending a message
from one node to another used to involve multiple copies
and context switches to the kernel at the sender and the
receiver side. With the advent of user-level communi-
cation protocols such as AM[24], FM[18], U-Net[23],
LAPI[20], EMP[21], these multiple copies and the ker-
nel context switches have been purged from the critical
path the message takes.

Communication in most current generation message
passing protocols adheres to the the Send/Recv model.
Both the sender and the receiver actively participate in
the communication step. Generally in user level proto-
cols, the Send/Recv model requires explicit posting of
descriptors on both the Send and Receive side and then
sending the data.

Modern user level protocols such as Virtual Interface
Architecture (VIA) [11] offer another method for com-
munication namely the Remote memory operation or
Remote DMA (RDMA). The concept of Remote DMA
transfer is used for direct transfer of data between user
spaces. Remote DMA write allows the sender to specify
the data storage area on the receive side, and then di-
rectly write data to that area. Remote DMA Read allows
the receiver to specify the address on the sender side and

directly read data from that location. The RDMA facil-
ity is very much like the get-put model supported by any
higher-level libraries like ARMCI [17]. Using RDMA
relieves the receiver from the task of posting a descrip-
tor, or allocating buffers before a send takes place. This
is because RDMA in itself is transparent to the receiver.
The sender knows the memory address of the destination
node and can directly write to it.

This raises an interesting challenge whether this re-
mote memory operation capability can be used to sup-
port efficient collective communication in clusters. Past
works in the collective communication area have primar-
ily focused on development of optimized and scalable
algorithms on top of point-to-point operations [13, 4,
19]. These point-to-point operations are typically sup-
ported by Send/Recv model of communication. Remote
memory capability through RDMA operations allows to
define a set of buffers across the nodes of a cluster which
can be used as a logical shared address space to ex-
change data efficiently. As modern clusters are being
built with Symmetric Multi-Processor (SMP) nodes, it
also provides shared memory within a node to support
efficient intra-node communication. This raises the fol-
lowing open questions:

1. Can remote operations be used to support efficient
inter-node communication steps for a collective op-
eration?

2. Can shared memory communication within an
SMP node be used to support efficient intra-node
communication steps for a collective operation?

3. How both these features can be combined to sup-
port high performance and scalable collective oper-
ations on modern and next generation clusters con-
sisting of SMP nodes?

In this paper, we take on such a challenge. We focus
on barrier synchronization, a frequently-used collective
communication operation. First, we show how remote
memory operations (such as RDMA write) can be used
to support efficient inter-node barrier on an SMP clus-
ter. Various design issues and alternatives associated
with this approach are presented and analyzed. Next,
we describe our approach of exploiting shared memory
within an SMP node to support efficient intra-node bar-
rier. Combining both these solutions lead to a high per-
formance implementation of barrier for cluster of SMP
nodes.

Compared to the current barrier algorithm in
MVICH/MPICH using Send/Recv communication
model, our new approach is shown to reduce barrier
latency on a 64 processor (32 dual nodes) system by up
to 66%.

The paper is organized as follows. Section 2 provides
an overview of Virtual Interface Architecture and Mes-

sage Passing Interface(MPI). Section 3 presents the ba-
sic idea behind using remote operations. Design issues
are presented in Section 4. Section 5 describes our new
Barrier algorithm. Design solutions and implementation
details are presented in Section 6. Experimental results
are presented in Section 7. Conclusions and future work
are presented in Section 8.

2. Overview of VIA and MPICH/MVICH

In this Section, we provide a brief overview of VIA
and MPICH/MVICH architecture.

2.1. Virtual Interface Architecture

The Virtual Interface Architecture (VIA) has been
proposed as a standard for user-level communication
protocols for low latency and high bandwidth SANs.
The VIA specification mainly aims at reducing the num-
ber of copies associated with a message transfer and
removing the kernel from the critical path the mes-
sage takes. It is achieved by providing user applica-
tions a protected and directly accessible network inter-
face called a Virtual Interface (VI).

Figure 1 describes the Virtual Interface Architectural
model. Each VI is a communication endpoint consist-
ing of a Send Queue and a Receive Queue. Applications
post requests to these queues in the form of VI descrip-
tors. Each descriptor contains a Control Segment (CS),
variable number of Data Segments (DS) and possibly an
Address Segment (AS). Each DS contains a user buffer
virtual address. The descriptor gives necessary informa-
tion including the data buffer address and length. VIA
requires that the memory buffers used in the data trans-
fer to be registered to avoid swapping out of the pages
and transferring data directly from the buffers to the net-
work. For each contiguous region of memory registered,
the application (VI consumer) gets an opaque handle.
The registered memory can be referenced by the virtual
address and the associated memory handle.

 VI Network Adapter

Application

OS Communication Interface

VI User Agent

VI Provider

Kernel Mode

User Mode

VI Consumer

VI VI VI CQ

Send/Recv/RDMA Read/
RDMAWrite

Open/Connect/
Register Memory

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

C
O

M
PL

E
T

IO
N

SE
N

D

 VI Kernel Agent

Figure 1. VI Architectural Model
The VIA specifies two types of data transfer facil-

ities: the traditional send and receive messaging model

and the Remote Direct Memory Access (RDMA) model.
The VI Descriptor distinguishes between the Send and
RDMA. The Send descriptor contains the CS and DS. In
case of RDMA, the VI descriptor also contains the AS.
In the AS, the user specifies the address of the buffer at
the destination node and the memory handle associated
with that registered destination buffer address.

In the send and receive model, each send descriptor
on the local node has to be matched with a receive de-
scriptor on the remote node. Failure to post a receive de-
scriptor on the remote node results in the message being
dropped and if the connection is a reliable connection, it
even results in the breaking of the connection.

In the RDMA model, the initiator specifies both the
virtual address of the local user buffer and that of the re-
mote user buffer. In this model, a descriptor does not
have to be posted on the receiver side corresponding
to every message. The exception to this case is when
the RDMA write is used in conjunction with immedi-
ate data, a receive descriptor is consumed at the receiver
end.

There are two types of RDMA operations: RDMA
write and RDMA read. In the RDMA write operation,
the initiator specifies both the virtual address of the lo-
cally registered source user buffer and that of the remote
destination user buffer. In the RDMA Read operation,
the initiator specifies the source of the data transfer at the
remote and the destination of the data transfer within a
locally registered contiguous memory location. In both
cases, the initiator should know the remote address and
should have the memory handle for that address before-
hand.

Since the introduction of VIA, many software,
firmware and hardware implementations of VIA have
become available. The Berkeley VIA [6], Firm VIA [3],
M-VIA [14], ServerNet VIA [22], GigaNet VIA [12] are
among these implementations. In this paper, we focus
on the RDMA write feature of VIA and use GigaNet
VIA for experimental evaluation.

2.2. MPICH/MVICH

Message Passing Interface [16] is a standard library
specification for message passing. MPI includes point-
to-point message passing and collective communication,
all scoped to a user specified group of processes. MPI
provides abstractions for processes at two levels. First,
processes are named according to the rank of the group
in which the communication is being performed. Sec-
ond, virtual topologies allow graph or Cartesian naming
of processes that help relate the application semantics
to the message passing semantics in a convenient and
efficient way. A key concept in MPI is that of a com-
municator, which provides a safe message-passing con-

text for the multiple layers of software within an appli-
cation that may need to perform message passing. For
example, messages from a support library will not in-
terfere with the other messages in the application, pro-
vided the support library uses a separate communicator.
Communicators, which house group and communica-
tion context (scope) information, provide an important
measure of safety that is necessary and useful for build-
ing up library-oriented parallel code. Within a commu-
nicator, point-to-point and collective operations are also
independent.

MPICH [9], which combines portability with high
performance is one of the most popular implementations
of Message Passing Interface. A new version of MPICH,
called MVICH [10], was developed over the VIA. We
evaluate our scheme using MVICH 1.0.

3. Basic Concept

In a shared memory system, a barrier operation can
be done very easily. A specific memory location can
be reserved for the barrier operation and initialized to
‘0’. When processes reach the barrier, they can simply
increment the value at the location (in an atomic manner)
and then wait for the value to be updated by all other
processes.

Another approach is to have a section of memory
(with multiple locations) be reserved for barrier and ini-
tialized to ‘0’. Every process can write a ‘1’ to a speci-
fied location in this memory region when it reaches the
barrier. Next, it reads from other memory locations to
see if other nodes have reached the barrier. This concept
is illustrated in Figure 2 with four processes (P0, P1, P2
and P3) and four memory locations. The figure shows
the memory location corresponding to each process. In
this figure, P0, P2, and P3 have already set the byte in
the respective locations when they encounter the barrier
and are waiting for P1 to set the value in its location. As
soon as P1 sets the value in its location, all processes
view it and can be released from their barrier.

1

0

1

1

P1

P2

P3

P0

Figure 2. Illustration of a simple barrier
scheme using shared memory

Efficient execution of the above shared memory-
based barriers require several issues related to cache
coherency to be addressed. If the shared memory is

cache coherent, the barrier implementation turns out to
be considerably simpler and faster. The processes ob-
tain the data by a simple local read operation without
additional complexities. However to reduce false shar-
ing, the memory locations associated with the processes
need to be mapped to different cache lines to eliminate
false sharing [7].

In a cluster with distributed memory organization,
when an operation like barrier takes place, the nodes
typically send and receive explicit messages. Some
kind of barrier algorithms (pair-wise exchange with re-
cursive doubling or gather-followed-by-broadcast) with
multiple phases (steps) are used to implement the bar-
rier. Each of the communication steps typically use a
Send/Recv model to communicate. Receiving a mes-
sage from a node is typically an expensive operation in
higher level libraries over user level protocols like VIA.
For example, in the MPI library, a receiver has to take
care of unexpected receive messages. When messages
come in, the relevant descriptor has to be searched for.
If there is no descriptor posted, data is sent to an inter-
mediate buffer. When the actual descriptor gets posted,
the data has to be copied from the temporary buffer to
the user buffer. In addition, the layering structure of the
middle libraries adds considerable overhead on the mes-
sage latency, making each of the communication step
slower and the entire barrier operation slower.

The method of RDMA communication offers a new
mechanism for transferring data, by directly writing into
the memory of a remote processor/node. Consider a
set of buffers being allocated at each remote proces-
sor/node and their addresses being exchanged before ex-
ecution of a program. The collection of these buffers
(together with their addresses) provide a logical shared
memory region (without coherency) for all processors.
Now, the processors can exploit the advantages asso-
ciated with shared memory-based algorithms to imple-
ment barrier. Since RDMA operations are typically
faster than Send/Recv communication on the GigaNet
VIA implementation, this approach also promises better
performance. In addition, posting receive descriptor is
not required for RDMA operations to complete.

Modern clusters consist of network of SMP nodes
where each node can have multiple processors. We ex-
ploit the coherent shared memory within a node to sup-
port efficient intra-node barrier steps. We exploit the
logical shared memory capability provided by RDMA
operations to support efficient inter-node barrier steps. A
combination of these two approaches lead us to a better
barrier implementation in MPI compared to the current
implementation using Send/Recv communication steps.

In the next Sections, we discuss the major design is-
sues, alternative solutions and their trade-offs and de-

scribe the implementation details.

4. Design Issues

The idea behind using RDMA for barrier is to uti-
lize the concepts of shared memory. The RDMA mech-
anism and memory registration constraints open up sev-
eral major issues for designing an RDMA based barrier.
One issue is how and when to register the buffers and
communicate the addresses of individual buffers to all
nodes. Another issue is how to identify valid data at the
receiver.

In this Section, we discuss these design issues and
present some solutions. In Section 6 we discuss the de-
sign choices for our implementation.

4.1. Registration of buffers and Address
Exchange

It is a requirement in VIA that data to be sent and re-
ceived should only be from and to registered buffers. A
flexible buffer management scheme is required for this
purpose in the context of collective operations. Keeping
this in consideration, one solution is to statically register
contiguous buffers in memory for each communicator
when the communicator is created. In this approach the
address of only the starting buffer needs to be communi-
cated to all nodes as the length of the buffer space is the
same for all nodes in the same communicator. There
will be certain constraints to the order of using these
buffers, which we shall discuss in the Section 6. Also,
because this is a static scheme the address is communi-
cated only once and the buffers are to be reused as and
when needed.

Another approach would be to allow dynamic reg-
istration and use of non-contiguous buffers. This will
make it mandatory to communicate the addresses of all
the buffers to all the nodes. Dynamic registration need
not be done in the start of the program but can be done
as and when needed. However, the disadvantage of this
approach is that the buffer addresses need to be commu-
nicated whenever the buffers are created dynamically.
Hence, if we register the buffer in the collective opera-
tion, we will have additional overhead of address com-
munication with the destination set in the collective op-
eration before sending the actual data to the destination
set.

4.2. Data Validity at the Receiver end

No data is communicated to the receiver in the barrier
operation. RDMA write is receiver transparent. It does
not require that the receiver posts a descriptor or per-
forms any action in anticipation of the incoming data.
The receiver process receives no indication that a new
data has been written. When the destination needs the

data it goes to the memory location and fetches the data
from there. We need a mechanism for indicating to the
receiver that the data in the memory is valid data.

One method is to let the receiver NIC interrupt the
receiver once it receives an RDMA message but this is a
very expensive operation and thus not helpful to achive
high performance.

Another approach is to use the immediate field in the
RDMA descriptor, and set the field when the last RDMA
write operation has taken place. However, this requires
a consumption of a descriptor at the receive end. This
also requires that the receiver be aware of the data com-
ing and post a receive descriptor in advance. This ap-
proach disturbs the illusion of shared memory and is not
feasible.

Another approach is to let the sender write a special
data value, which will be known by the receiver in ad-
vance. The presence of that special value will indicate
to the receiver that data has been written to its memory
location by the sender.

5. Our Algorithm

In this Section, we introduce our intra-node, inter-
node and overall barrier algorithms.

5.1. Inter-node Barrier

The algorithm we use is pairwise exchange with re-
cursive doubling. This algorithm was chosen for its sim-
plicity and efficiency. This algorithm is also currently
used in MVICH 1.0 distribution with Send/Recv com-
munication model. It also enables us to provide a fair
comparison between performance of the Barrier using
Send/Recv and our new implementation of Barrier with
RDMA.

When the RDMA barrier is called, the pairwise ex-
change method follows. Figure 3 gives a pictorial repre-
sentation of the RDMA Barrier in a 4 node cluster hav-
ing processes P0, P1, P2, P3 each on a different node.
During each barrier involving the same communicator,
each process keeps a static count of the barrier number it
is participating in that communicator. The Pairwise Ex-
change Algorithm is a recursive algorithm. The nodes
pair up and each node does an RDMA write to the other
process buffer using the destination buffer address and
memory handle. The sender writes the barrier number
which it is involved in for that communicator. Since the
receiver is also in the same barrier for that communi-
cator, it also knows the barrier number and it can read
the barrier number from its location. Thus, the nodes
in the pair do a RDMA write to each others memory
and read the data that the other node has written from
its own local memory. The nodes form a group. In the
next step two groups pair up and a node from one group

does an RDMA write and checking for written data with
one node from the other group. These groups are then
merged together. This process of pairing up, writing data
to each others buffers and then merging is repeated until
only one group is left. The barrier is then finished. Over-
all, in this approach each node performs ��������� RDMA
writes, where � is the number of nodes in power of two.

For non-power of two nodes, the set of nodes � is
divided into two sets 	 and 	�
 where 	 is the maximum
power of two less than � and 	�
 is the set of nodes in N
but not in 	 . Initially, every node in 	�
 does an RDMA
write to another node in 	 . Then the nodes in 	 perform
a pairwise exchange barrier. Once the nodes in 	 reach
a barrier, they RDMA write to the corresponding nodes
in 	
 . This concludes the barrier for the � nodes. The
number of steps it takes to reach the barrier is ����� � �����
steps.

1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1 −1 −11 1 1

P0 P1 P2 P3

In the First Step

In the Second Step

−1 −1 −1 −1 −1 −1 −11 1 1 1 1 11

P0 P1 P2 P3

−1 1

Figure 3. Inter-node RDMA Barrier between
4 nodes

5.2. Intra-node Barrier

A barrier algorithm within an SMP node is imple-
mented using a flat tree. For small and medium size
SMP nodes such as in the commodity Linux clusters, we
found this approach fast and sufficiently scalable. The
algorithm is very simple and involves using one flag per
process. That flag is located in shared memory and we
assure that each flag is located on a different cache line.
That flag is set by the corresponding process to indicate
that the process arrived at a barrier. After that the pro-
cess waits until that flag is reset which indicates that all
the processes on the node were synchronized. One pro-
cess on an SMP node is selected as a master. Master
process waits for all processes to check in and then it
resets the value of the flag for all other processes.

5.3. Overall Barrier

The above two algorithms are merged for implement-
ing barrier on a cluster of SMP nodes. First the master
process within an SMP node waits until all processes on

the node check in at the barrier, then it executes inter-
node barrier algorithm involving one master process on
each node, and then it resets the value of all flags to no-
tify the other processes that the global barrier operation
is complete.

6. Design Solutions and Implementation
Details

We currently restrict ourselves to the RDMA Write
operation because RDMA-Read is an optional feature
of the VIA specification and not all implementations of
VIA support it. Now we discuss the design solutions
for the implementation of the inter-node RDMA Barrier
with GigaNet cLAN as the cluster interconnect.

We indicate the nodes that take part in the barrier
by the term ‘barrier group’. As mentioned above, for
cluster of SMP nodes, the master nodes form the barrier
group.

6.1. Buffer Registration

We register a buffer with every process. For SMP
nodes, we register the buffer for only the master pro-
cess, of size equal to the number of nodes in the barrier
group. Every byte in the buffer is reserved for a differ-
ent node in the barrier group. Nodes are differentiated
on the basis of their id in their barrier group. Each node
has a different id in the barrier group. The same buffer is
reused for all the other following barrier operations and
no new buffers need to be registered.

The first byte is reserved for the node with id 0, the
second byte for the node with id 1 and so on. In Figure
3, each node has reserved a four byte buffer, with one
byte reserved for every node in that barrier group.

6.2. Address exchange

For a node to write data in some other process’s mem-
ory, the node needs to know the destination address and
have the right memory handle. Thus, address of the
buffers need to be communicated from one node to all
the other nodes. Since the buffers are contiguously al-
located and have the same handle, only the start address
needs to be communicated to the other nodes. The im-
plementation does address exchange when the barrier
group is created using explicit Send/Recv primitives.
Communicating the address need to be done only once.

6.3. Buffer Initialization

Since barrier is essentially a synchronization opera-
tion and the data passed is not relevant; we initialize all
the buffer bytes reserved for barrier operation to a neg-
ative constant. It shall be shown in the next sub-section
that we never indicate a barrier operation by a negative
number and hence the initial value of negative constant

suffices. Figure 3 shows the first barrier operation of a
program. The buffer bytes are initialized to the negative
constant -1.

6.4. Data identification at the Receiver end

When the receiver needs the data, it goes to the cor-
responding memory location and reads the data from
there. The algorithm writes the barrier number at the
destination. The receiver knows the barrier number that
can be written. Hence it checks the location for the de-
sired data. However the implementation does not check
for the desired value, but instead it checks to see if the
value written in its location by the other node is greater
than or equal to the barrier number. This is to take care
of consecutive barriers. In a barrier between a pair of
nodes, one of the participating nodes may be slower than
the other. The faster node may enter the second barrier
before the slower exists the first one. Thus the faster
node may overwrite the barrier number by the barrier
number of the next barrier. Thus, as shown in Figure 3
if the nodes in the cluster are in the first barrier, process
P0 will poll for a value greater than or equal to 1 to be
written in its buffer by the various processes.

7. Experimental Results

In this Section, we discuss the results that have been
obtained for RDMA Barrier and compare it with the re-
sults for the MPI Barrier for a cluster of uniprocessor
and SMP nodes.

We evaluated out implementation on the following
clusters.

Cluster 1: A cluster of 8 nodes, each with a 66MHz
PCI bus, 700MHz Pentium III machines, 1GB of Main
memory and Linux version 2.2.17. The machines are
connected using a GigaNet 5300 switch.

Cluster 2: A cluster of 16 nodes, each with a 33MHz
PCI bus, 1000MHz Pentium III machines, 512MB of
Main memory and Linux version 2.2.17. The machines
are connected using a GigaNet 5300 switch.

Cluster 3: A cluster of 32 dual 500 MHz PIII ma-
chines. The nodes are PowerEdge-1300. The machines
are connected using GigaNet 5000 and 5300 switches.

To obtain the barrier latency, we ran 10000 iterations
of MPI Barrier and took the average of the barrier laten-
cies at each node. The MVICH version used is mvich-
1.0.

7.1. Inter-Node Barrier Evaluation

Figures 4(a) and 4(b) show the barrier latency for
all nodes in Cluster 1 and Cluster 2. We ran the orig-
inal MPI Barrier without modification, the results of
which are labeled under Message Passing. The inter-
node RDMA Barrier is labeled under RDMA.

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8

T
im

e
(u

se
cs

)

Nodes

Message Passing
RDMA

(a) Cluster 1

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16

T
im

e
(u

se
cs

)

Nodes

Message Passing
RDMA

(b) Cluster 2

Figure 4. Barrier Latency for All nodes

For Cluster 1, the RDMA Barrier for 8 nodes com-
pletes in 31.88 � s as compared to the Message Passing
Barrier, which completes in 45.14 � s. For every mes-
sage sent, we save 4 � s in one-way latency. The RDMA
Barrier outperforms the Message Passing Barrier for all
power of 2 cases. This leads up to 29.4% performance
improvement

Similar results are obtained in Cluster 2, where we
see that RDMA Barrier for 8 nodes completes in 29 � s as
compared to 40.5 � s of the Message Passing Barrier. The
results for 16 nodes in Cluster 2 show that RDMA Bar-
rier completes in 39.4 � s as compared to Message Pass-
ing Barrier which takes 56.3 � s. This leads up to 28.4%
improvement on the 8 nodes and 30% for 16 nodes and
is thus scalable.

The barrier latency for non-power of 2 nodes is
greater than the power of 2 nodes because they exe-
cute larger number of steps. The timings for non power
of two nodes also demonstrate an improvement in per-
formance of inter-node RDMA Barrier as compared to
Message Passing Barrier.

Evaluation of the inter-node barrier is done by run-
ning one task on each node of Cluster 3. In Figure 5 we
obtain an improvement up to 41% for 16 and 32 nodes
using RDMA Barrier. The Message Passing Barrier is
labelled under MPI- 1task/node and the RDMA barrier
is labelled under RDMA - 1task/node.

7.2. Overall Barrier Evaluation

The overall barrier was evaluated on Cluster 3, which
contains dual SMP processors. Our barrier uses shared
memory protocol within SMP node and RDMA accross
the network.

Evaluation of the overall barrier by using both the
dual processors on each node, by running two tasks
on each node. Figure 5 shows graphs for the over-
all barrier algorithm that integrates shared memory and

RDMA, and the corresponding MPI barrier operation
that is based on point-to-point message passing.

We observe increased performance advantage of the
RDMA barrier over the MPI barrier as the number of
processors grows. Our barrier is able to exploit shared
memory very effectively as the difference between one
and two task per node results is very close. In case of the
MVICH barrier, the gap between these two configura-
tions is substantial and growing as the number of nodes
increases. Overall, the proposed RDMA barrier outper-
forms the barrier based on point-to-point message pass-
ing by a large factor. For example, on 32 nodes and 64
tasks the message passing barrier takes 193 � s whereas
the overall RDMA barrier takes only 65 � s. We see a
performance improvement of 66%.

8. Conclusions and Future Work

We have presented a new approach for imple-
menting efficient barrier on clusters with SMP nodes.
This scheme exploits remote memory operations across
nodes and shared memory within an SMP node. The
barrier algorithms together with design and implemen-
tation issues on clusters with GigaNet cLAN VIA are
presented. The complete implementation is evaluated
on three different cluster configurations. The results
demonstrate that the new scheme delivers up to 66% re-
duction in barrier latency on a 64 processor (32 dual pro-
cessor nodes) cluster. The results also demonstrate that
the proposed scheme is scalable and can deliver better
performance as the system size increases.

In the current paper, we have focused on barrier. We
are extending our framework for other common collec-
tive operations such as broadcast, and all-reduce opera-
tions. We plan to incorporate the new schemes into the
collective communication libraries for VIA/InfiniBand
clusters. We also plan to study the application-level per-
formance benefits of the proposed new schemes.

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 32

T
im

e
(u

se
cs

)

Number of SMP Nodes

MPI - 1task/node
RDMA - 1task/node

MPI - 2task/node
RDMA - 2task/node

Figure 5. Performance of MPI and RDMA
barrier on cluster with 32 dual CPU nodes
using one and two tasks per node on Clus-
ter 3

9. Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL) and at Ohio State Univer-
sity. PNNL is operated for DOE by Battelle Memo-
rial Institute. This work was supported by the Center
for Programming Models for Scalable Parallel Comput-
ing project, sponsored by the Mathematical, Informa-
tion, and Computational Science Division of DOE’s Of-
fice of Computational and Technology Research. The
Molecular Science Computing Facility at PNNL pro-
vided some of the high-performance computational re-
sources for this work.

References
[1] GigaNet Corporations. http://www.giganet.com.
[2] ATM Forum. ATM User-Network Interface Specifica-

tion, Version 3.1, September 1994.
[3] M. Banikazemi, V. Moorthy, L. Hereger, D. K. Panda,

and B. Abali. Efficient Virtual Interface Architec-
ture Support for IBM SP switch-connected NT clus-
ters. In the Proceedings of the International Parallel and
Distributed Processing Symposium, pages 33-42, May
2000.

[4] M. Barnett, R. Littlefield, D. G. Payne, and R. V.
de Geijn. Global Combine on Mesh Architectures with
Wormhole Routing. In Proceedings of the International
Parallel Processing Symposium, pages 156–162, 1993.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A
Gigabit-per-Second Local Area Network.

[6] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Interface Ar-
chitecture. In the Proceedings of Supercomputing ’98,
1998.

[7] D. E. Culler and J. P. Singh. Parallel Computer Archi-
tecture: A Hardware-Software Approach. Morgan Kauf-
mann, March 1998.

[8] H. Frazier and H. Johnson. Gigabit Ethernet: From 100
to 1000Mbps.

[9] W. Gropp and E. Lusk. MPICH Working Note: The
Second Generation ADI for the MPICH Implementation
of MPI.

[10] F. T. Group. MVICH: MPI for Virtual Interface Archi-
tecture. In http://www.nersc.gov/research/FTG/mvich.

[11] http://www.viarch.org/. Virtual Interface Architecture
Specifications.

[12] G. Incorporations. cLAN for Linux: Software Users’
Guide. 2001.

[13] S. L. Johnsson and C.-T. Ho. Optimum Broadcasting
and Personalized Communication in Hypercubes. IEEE
Transactions on Computers, pages 1249–1268, Septem-
ber 1989.

[14] M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/ research/FTG/via.

[15] L. Melatti. Fast Ethernet: 100 Mbit/s Made
Easy. Data Communications on the Web, Nov.
http://www.data.com/tutorials/100mbits-made-
easy.html.

[16] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, Mar 1994.

[17] J. Nieplocha and B. Carpenter. ARMCI: A Portable Re-
mote Memory Copy Library for Distributed Array Li-
braries and Compiler Run-time Systems. In 3rd Work-
shop on Runtime Systems for Parallel Programming (RT-
SPP) of International Parallel Processing Symposium
IPPS/SPDP ’99, April 1999.

[18] S. Pakin, M. Lauria, and A. Chein. High Performance
Messaging on Workstations: Illinois Fast Messages (FM
). In Proceedings of SC, 1995.

[19] D. K. Panda. Global Reduction in Wormhole k-ary n-
cube Networks with Multidestination Exchange Worms.
In International Parallel Processing Symposium, pages
652–659, Apr 1995.

[20] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison,
R. K. Govindaraju, K. Gildea, P. DiNicola, and C. Ben-
der. Performance and Experience with LAPI: A New
High Performance Communication Library for the IBM
RS/6000 SP. In the Proceedings of the International
Parallel Processing Symposium ’98, March 1998.

[21] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Pass-
ing. In the Proceedings of Supercomputing ’01, Novem-
ber 2001.

[22] E. Speight, H. Abdel-Shafi, and J. K. Bennett. Realizing
the Performance Potential of the Virtual Interface Archi-
tecture. In Proceedings of the International Conference
on Supercomputing, June 1999.

[23] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
Net: A user-level network interface for Parallel and Dis-
tributed Computing. In the Proceedings of the 15th ACM
Symposium on Operating Systems Principles, December
1995.

[24] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Inte-
grated Communication and Computation. In Interna-
tional Symposium on Computer Architecture, 1992.

